Worksheet 8.1 Advanced Periodic Logarithmic and Exponential Functions

Worksheet 8.1 Advanced Periodic Logarithmic and Exponential Functions

<p>Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 1</p><p>WorkSHEET 8.1 Advanced Periodic Logarithmic and Exponential Functions</p><p>Name: ______</p><p>1 Using de Moivre’s theorem and the binomial z  cos  i sin expansion, prove that z 2  cos  isin 2 cos2   cos2   sin 2   2cos2  1 Using de Moivre’s theorem, z 2  cos 2  i sin 2 Writing the binomial expansion of z 2 , we have z 2  cos2   sin 2   2i cos sin  cos 2  cos2   sin 2  Applying the Pythagorean Identity, sin 2   1 cos2   cos 2  cos2   1 cos2    2cos2  1  cos 2  cos2   sin 2   2cos2  1</p><p>2 Using the multiple angle formulas, prove that 2sin 4x cos 2x</p><p>2sinx cos  x = sin  x  sin   x 1 4 4 1 2 2  2 z  z   z  z   2i 2 1  z 4  z 4 z 2  z 2  2i 1  z 6  z 2  z 2  z 6  2i 1  z 6  z 6  z 2  z 2  2i z 6  z 6 z 2  z 2   2i 2i  sin 6x  sin 2x Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 2</p><p>1 3 4 1 z  z Prove that sin x  cos4x 4cos2x 3 sin x  8 2i 4 z  z 1 sin 4 x    16 4 z  z 1   z 4  4z 3.z 1  6z 2 .z 2  4z.z 3  z 4  z 4  z 4  4z 2  z 2  6  2cos 4x  4 2cos 2x  6  2cos 4x  8cos 2x  6 1 sin 4 x  2cos 4x  8cos 2x  6 16 2  cos 4x  4cos 2x  3 16 1  cos 4x  4cos 2x  3 8</p><p>4 2 i 2i Express in standard form. 2e 3 2e 3 2 2  2cos  2isin 3 3  1  3  2    2i   2  2  1 i 3</p><p>5 If u  3  i and w  1 i, u  3  i, w  1 i (a) express both u and w in Euler’s form. (a) u  2 u is a complex number in the 4th quadrant of the complex plane   argu   6 i   u  2e 6 w  2 w is in the first quadrant of the complex plane  arg w   4 i   w  2 e 4</p><p> u 3 (b) express in standard form. (b) w5 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 3</p><p>i u 3 23 e 2  w5 5 5i 2 2 e 4 i 8e 2  3i  4 2 e 4 i 2  e 4 2 2  1 i      2  2 2   1 i</p><p>5 (c) find values for m and n such that (c) (Cont.) um w n  8 i . u m wn  8i LHS  u m wn mi n ni  2m e 6 .2 2 e 4 n  n m  m i     2 2.e  4 6  n  3n2m  m i    2 2.e  12  i RHS  23 e 2 n m  23  2 2 n i.e. 3  m  2 2m  n  6 3n  2m 1 and   2k for an integer k. 12 2 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 4</p><p> i.e. 3n  2m  6  24k and n  2m  6  4n  12  24k n  3  6k  2m  6  n  6  3  6k 2m  3  6k i.e. m  1.5  3k There is an infinite solution set given by m  1.5  3k and n  3  6k for integer k. Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 5</p><p>6 Apply Euler’s formula to evaluate  e x sin2x dx x  esin x d x e2ix  cos 2x  isin 2x Ime2ix  sin 2x   e x sin2x dx   e x Ime2ix dx   Ime x .e2ix dx   Ime12ix dx e12ix   Im   1 2i  e12ix 1 2i   Im    1 2i 1 2i  e12ix 1 2i  Im   5  x e 2ix   Im .e 1 2i  5  e x   Im cos 2x  isin 2x1 2i  5  e x   Im cos 2x  2i cos 2x  i sin 2x  2sin 2x  5  e x ie x   Im cos 2x  2sin 2x sin 2x  2cos 2x  5 5     e x sin2x dx e x  sin 2x  2cos 2x c 5</p><p>7 (a) Sketch the function y= ex cos( x) over (a) Here, cos x is squeezed between the x the domain  x   . envelopes  e . Graph y  ex and then squeeze y  cos x between the envelopes Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 6</p><p>x (b) Determine lim e cosx x</p><p>(b) limex cosx  0 ex converges rapidly to zero while cos x oscillates between 1. Hence ex cosx oscillates towards y  0 as x increases.</p><p>7   (Cont.) (c) Evaluate  ex cosxdx (c)  ex cos x dx 0 0 Consider I   ex cos x dx Apply the parts formula.  d  I  ex  sin x dx   dx  d  ex sin x  ex sin x dx  dx  ex sin x   ex sin x dx Now consider  ex sin x dx d ex sin x dx  ex  cos x dx   dx  ex cos x   ex cos x dx  ex cos x  I i.e. I  ex sin x  ex cos x  I  2I  ex sin x  ex cos x  ex sin x  cos x 1  I  ex sin x  cos x 2 Hence, Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 7</p><p> n ex cos x dx  lim ex cos x dx  n  0 0    ex cos x dx 0 1 n  lim  e sin n  cos n n2 1 0   e sin0 cos0 2  1  0   1 2 1  . 2</p><p>8 (a) Find the set of complex numbers zn (a) n 3 where n = 1, 2 and 3 given that  2ik  zn  exp  3    n  2ik  k1  3  z  exp  n    n  1, 2, 3. k1  3  1  2i  z1  exp  k1  3  2i  e 3 1 3  z    i 1 2 2 2  2ik 3    z2  exp  k1  3  2i 16i  e 3  e 3 1 3  1 3       i    i 2 2  2 2 </p><p> z2  1 3  2ik 3    z3  exp  k1  3   1 3   1 3      18i    i    i  e  2 2   2 2   11  0  1 3   zn    i, 1, 0  2 2 </p><p>(b) Graph zn in the complex plane joining (b) Plot each point in the sequence in the Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 8</p><p> the points together to form a closed complex plane. Join them together. The figure. What shape is this figure? figure formed is an equilateral triangle.</p><p>9 Show that n n sink  sink   Imei  e2i  e3i ⋯⋯ ein  k1 k1  sin  sin2  sin3   sinn  ei  cos  i sin Imei   sin Likewise Imeik   sin k n sin k k1  Imei  Ime2i  Ime3i   Imeni   Imei  e2i  e3i   eni </p><p>10 Given that x  et cosat represents the displacement of a particle at time t, (a) show that x˙t  et cosat asinat (a) x  et cosat dx  x˙ dt dx d  et cosat et cosat dt dt  et cosat aet sinat  x˙  et cosat asinat</p><p>(b) If x˙    0 show that (b) 1 x˙   0 tana   , a  0 a  e cosa  asina   0 i.e. cosa  asina   0  asina   cosa  1  tana   a provided a  0 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 9</p><p>1 (c) Solve tana   . (c) By making appropriate use of graphics a calculator functions, find the first positive HINT: Use a ‘solver’ routine in the 1 value of a for which tan a   . graphics calculated to show that a a  0.383.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us