CCAM Systematic Satisfiability Programming in Hopfield Neural

Total Page:16

File Type:pdf, Size:1020Kb

CCAM Systematic Satisfiability Programming in Hopfield Neural Communications in Computational and Applied Mathematics, Vol. 2 No. 1 (2020) p. 1-6 CCAM Communications in Computational and Applied Mathematics Journal homepage : www.fazpublishing.com/ccam e-ISSN : 2682-7468 Systematic Satisfiability Programming in Hopfield Neural Network- A Hybrid Expert System for Medical Screening Mohd Shareduwan Mohd Kasihmuddin1, Mohd. Asyraf Mansor2,*, Siti Zulaikha Mohd Jamaludin3, Saratha Sathasivam4 1,3,4School of Mathematical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia 2School of Distance Education, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia *Corresponding Author Received 26 January 2020; Abstract: Accurate and efficient medical diagnosis system is crucial to ensure patient with recorded Accepted 12 February 2020; system can be screened appropriately. Medical diagnosis is often challenging due to the lack of Available online 31 March patient’s information and it is always prone to inaccurate diagnosis. Medical practitioner or 2020 specialist is facing difficulties in screening the disease accurately because unnecessary attributes will lead to high operational cost. Despite of acting as a screening mechanism, expert system is required to find the relationship between the attributes that lead to a specific medical outcome. Data mining via logic mining is a new method to extract logical rule that explains the relationship of the medical attributes of a patient. In this paper, a new logic mining method namely, 2 Satisfiability based Reverse Analysis method (2SATRA) will be proposed to extract the logical rule from medical datasets. 2SATRA will capitalize the 2 Satisfiability (2SAT) as a logical rule and Hopfield Neural Network (HNN) as a learning system. The extracted logical rule from the medical dataset will be used to diagnose the final condition of the patient. The proposed 2SATRA will utilize four prominent datasets that focuses on well-known medical disease such as Hepatitis, Diabetes and Cancer. This paper utilizes Diabetic Retinopathy Debrecen, Pima Indians Diabetes, Hepatitis and Mammographic Mass datasets that were obtained from established repository. The efficiency of 2SATRA is evaluated in terms of performance error and computation time. The results obtained for all medical data sets of 2SATRA achieved acceptable accuracy. Keywords: Hopfield Neural Network; Logic Mining; Medical Screening 1. Introduction because the main objective of ANN is to replicate the human Medical screening is a vital part of a healthy lifestyle. intelligence with astonishing computation capability. The Regular health check-up will help us detect early potential growing attention towards the ANN as a model for AI is due health problem. Most of the medical practitioner utilized to the capability of ANN in representing the model in terms of preventive health screening to analyze the condition of our mathematical equations. One of the most appreciated simple body. Patients will supply them with data (from the health ANN is Hopfield Neural Network (HNN). Popularized by screening) and the medical practitioner will classify the Hopfield, HNN [1] has been utilized to solve various both condition of the patient. Medical practitioner experienced high constrained and unconstrained optimization problem. HNN frequent of misdiagnosed due to several factors such as consists of interconnected neurons that updates missing data, unnecessary attributes and error in medical asynchronously as the dynamic of the network changes. The instruments. In that regard, the intelligent system is required quality of the solution for HNN is represented in terms of to learn the past data and utilize it to predict and classify the energy function. The main focus of the HNN model is to find current patient. Hence, a more accurate and efficient system is the solution that corresponds to the minimum Lyapunov very crucial in the field of medicine. Energy function. To serve as a useful method, the training of Artificial intelligence (AI) is a prominent field of science HNN must be conducted in an efficient and effective manner. that specializes in data modelling. The subfield of AI, Considering the network architecture, input of the neurons Artificial Neural Network (ANN) gained its popularity will be excited to generate the synaptic weight of the system [2, 3]. Fault tolerance and content addressable memory *Corresponding author: [email protected] 2020 FAZ Publishing. All right reserved. Mohd Kasihmuddin et. al., Communications in Computational and Applied Mathematics, Vol. 2 No. 1 (2020) p. 1-6 properties contribute to the popularity of HNN in processing simulation results indicate the proposed logic mining is able and constructing the pattern of the data. In another to classify diabetic patients with high accuracy. development, the beneficial feature of HNN is implemented in The work is organized as follows. Section 2 and 3 present the field of health sciences. Chang and Chung [4] proposed the overview of 2-SAT representation and 2SAT utilization in HNN in medical image segmentation. In this paper, the image HNN respectively. In Section 4, the formation of 2SATRA segmentation produced by HNN is more continuous and used to undertake the medical data sets is presented. The smoother compared to other methods. Hsu [5] proposed fuzzy attained results and limitations encountered in this experiment HNN in clustering electroencephalogram data. The proposed are presented in Section 5. Conclusions and future work method is used to classify left and right medical imagery data directions are given in Section 6. with acceptable accuracy compared to other popular classifiers. Sammouda [6] improvised the usage of HNN in 2. 2 Satisfiability Representation performing pathological liver colour images. The proposed 2 Satisfiability or (2SAT) is variant of generalized HNN is evaluated based on 20 real pathological liver data that Satisfiability representation kSAT that consists of exactly 2 consist of various colour images and was reported to be literals per clause. 2SAT formulation can be expressed in effective in data segmentation. These applications raised an terms of 2 Conjunctive Normal Form (2CNF). 2SAT can be important question: what is the most effective method to identified based on the following criteria [10]: extract important information from the medical dataset but at 1. A set of l variables, x, x ,......, x . the same time the extracted information is readable by the 12 l user? 2. A set of literals and each literal can be a positive or Logic programming in HNN is initially proposed by Wan negative (negation). Abdullah [7] by incorporating logical rule in Hopfield Neural 3. A set of m distinct clauses: Ci here im1,2,3,..., . Network. The proposed network obtains synaptic weight by C is connected to C by conjunction ( ). The 2 comparing the cost function with the final energy function. i i1 The quest of creating optimal HNN is continued by literals inside each Ci is connected by disjunction ( Sathasivam [8] where the proposed HNN is incorporated with ). Horn clause. The usage of Horn clause is considered effective In general, each of the variables consists of the because the proposed logical rule is always satisfiable. In information which contributes the nature of the combinatorial order to comply with real life problem, Sathasivam and problem. The state for each 2SAT variable in each C is Abdullah [9] proposed Reverse Analysis method to extract i valuable logical rule from the real-life dataset. One of the given as -1 (FALSE) and 1 (TRUE). 2SAT formulation can be limitations of the proposed Reverse Analysis is the flexibility defined explicitly as follows: of the logical rule to extract the optimal logical rule. Despite having high value of global minima ratio, the induced logical m PC2SAT i (1) rule is not able to effectively generalize the real-life dataset. i1 The scope of the real-life dataset used in the proposed Reverse Analysis is also limited to small data points. In another where each clause C is given as follows: development, Kasihmuddin et al. [10, 11] proposed a new i systematic logical rule namely 2 Satisfiability (2SAT) in HNN. The proposed logical rule has been optimized by using n Ci x i, y i (2) Metaheuristics Algorithm [11, 12] and the proposed method i1 managed to achieve global minimum solution. The usage of 2SAT in HNN has been extended to several applications such as Pattern Satisfiability [13] and Very Large-Scale Integration One of the example of P2SAT instance based on Equations (1) (VLSI) [14]. The recent works demonstrated the practical and (2) is: usage of 2SAT in Mutation HNN [10] and Radial Basis Function Neural Network [15]. P2SAT x 1 x 2 x 3 x 4 (3) Unfortunately, the usage of 2SAT in Reverse Analysis method is still poorly understood. In this case, there is no recent innovation to extract important logical rule in the One possible variable assignation that would satisfy medical datasets. Hence, the contributions of this paper are: Equation (3) is x1, x 2 , x 3 , x 4 , x 5 1, 1, 1,1 . In this case, (1) This paper explores the representation of the dataset by both clauses C1 and C2 are satisfied CC121, 1 that lead using 2SAT logical rule. (2) A novel logic mining method via 2 Satisfiability Reverse Analysis method is proposed by to P2SAT 1 . On the other hand, Equation (3) shows logical implementing 2SAT as a systematic logical rule in HNN. The inconsistencies P2SAT 1 if one of the clauses does not functionality of the proposed methods is divided into 2 parts. satisfied C 1. Note that, the state of variable in each C The first part discusses the implementation of 2SAT in HNN. i i The later part will explain the implementation of HNN in 2 exhibits useful logical informations that contribute the Satisfiability Based Reverse Analysis method. (3) Logic outcome of the P2SAT . In this case, we choose k 2 Mining will be used to extract the logical relationship that because we only consider two-dimensional relationship explains the behaviour of the medical datasets.
Recommended publications
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • The Concept of Effective Method Applied to Computational Problems of Linear Algebra
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 5, 17--25 (1971) The Concept of Effective Method Applied to Computational Problems of Linear Algebra OLIVER ABERTH Department of Mathematics, Texas A & M University, College Station, Texas 77843 Received April 28, 1969 A classification of computational problems is proposed which may have applications in numerical analysis. The classification utilizes the concept of effective method, which has been employed in treating decidability questions within the field of com- putable numbers. A problem is effectively soluble or effectively insoluble according as there is or there is not an effective method of solution. Roughly speaking~ effectively insoluble computational problems are those whose general solution is restricted by an intrinsic and unavoidable computational difficulty. Some standard problems of linear algebra are analyzed to determine their type. INTRODUCTION Given a square matrix A with real entries, the computation of the eigenvalues of A is, more or less, a routine matter, and many different methods of calculation are known. On the other hand, the computation of the Jordan normal form of A is a problematical undertaking, since when d has multiple eigenvalues, the structure of off-diagonal l's of the normal form will be completely altered by small perturbations of the matrix elements of d. Still, one may ask whether the Jordan normal form computation can always be carried through for the case where the entries of A are known to arbitrarily high accuracy. This particular question and others like it can be given a precise answer by making use of a constructive analysis developed in the past two decades by a number of Russian mathematicians, the earliest workers being Markov, Ceitin, Zaslavskii, and Sanin [4, 6, 10, 12, 13].
    [Show full text]
  • METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
    METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence.
    [Show full text]
  • The AND/OR Process Model for Parallel Interpretation of Logic Program^
    6ff dS UNTV^RSITY OF a\I.UORNIA Irvine The AND/OR Process Model for Parallel Interpretation of Logic Program^ John S. Coneri^ Technical Report 204 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Information and Computer Science June 1983 Committee in charge: Professor Dennis Kibler, Chair Professor Liibomir Bic Professor James Neighbors © 1983 JOHN S. CONERY ALL RIGHTS RESERVED Dedication For my teachers ~ For my parents, Pat and Elaine, both secondary school teachers, who started this whole process; For Betty Benson, John Sage, and the other outstanding teachers at John Burroughs High School, who inspired me to continue; For Larry Rosen and Jay Russo, valued friends and colleagues as well as teachers at UC San Diego, who introduced me to the world of scientific research. This work does not represent the end of my education; it is simply a milestone in the career of a "professional student" who will, thanks to you, never stop learning. Ill Contents List of Figures vii Acknowledgements viii Abstract ix Chapter 1: Introduction 1 Chapter 2: Logic Programming 5 2.1. Syntax 6 2.2. Semantics 9 2.3; Control 13 2.4. Prolog 17 2.5. Alternate Control Strategies 28 2.6. Sources of Parallelism 37 2.7. Chapter Summary 38 Chapter 3: The AND/OR Process Model 41 3.1. Oracle 41 3.2. Messages 43 3.3. OR Processes 44 3.4. AND Processes 46 3.5. Interpreter 46 3.6. Programming Language 49 3.7. Chapter Summary 50 Chapter 4: Parallel OR Processes 52 iv I I 4.1.
    [Show full text]
  • G the Church-Turing Thesis: Its Nature and Status
    136 Robin Gandy happens next in a Turing machine or a polycellular automation has a strictly local character . Now it is time for me to come down off the fence-on both g sides. 1 . I think it conceivable that in fifty or a hundred years time The Church-Turing Thesis : there will be machines of the tenth or twentieth generation which in some areas of mathematics will be regarded by first-rate math- Its Nature and Status ematicians as valuable colleagues (not merely assistants). The ma- ANTONY GALTON chines will write papers, argue back when criticized, and will take part in discussion on how best to tackle a new problem. This is an updated version of the Turing Test. The conception raises an important point. In his book Penrose asserts forcefully that con- sciousness is essential to rational thought; I do not quite under- 1 . The Church-Turing thesis (CT), as it is usually stand what he means by consciousness. But machines of the kind understood, asserts the identity of two I am imagining would display the effects of consciousness-the classes of functions, the effectively computable ability to concentrate attention on a particular part or aspect of functions on the one hand, and the recursive (or their input, the ability to reflect on and to alter the behaviour of Turing-machine computable) functions on the other. In support subsystems in their hierarchic structure, the ability to produce a of this thesis, it is customary to cite the circumstance that all range of alternatives, and even, in a very restricted way, an ability serious attempts to characterize the notion of an effectively com- putable function in precise mathematical terms to adapt their social behaviour.
    [Show full text]
  • SMC: Satisfiability Modulo Convex Optimization
    SMC: Satisfiability Modulo Convex Optimization Yasser Shoukryxy Pierluigi Nuzzo∗ Alberto L. Sangiovanni-Vincentelliy Sanjit A. Seshiay George J. Pappas∗∗ Paulo Tabuadax yDepartment of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA xDepartment of Electrical Engineering, University of California, Los Angeles, CA ∗ Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA ∗∗Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA ABSTRACT used to analyze continuous dynamics (e.g., real analysis) and We address the problem of determining the satisfiability of discrete dynamics (e.g., combinatorics). The same difficulty a Boolean combination of convex constraints over the real arises in the context of optimization and feasibility prob- numbers, which is common in the context of hybrid sys- lems involving continuous and discrete variables. In fact, tem verification and control. We first show that a special some of these problems arise from the analysis of hybrid type of logic formulas, termed monotone Satisfiability Mod- systems. In complex, high-dimensional systems, a vast dis- ulo Convex (SMC) formulas, is the most general class of crete/continuous space must be searched under constraints formulas over Boolean and nonlinear real predicates that re- that are often nonlinear. Developing efficient techniques to duce to convex programs for any satisfying assignment of perform this task is, therefore, crucial to substantially en- the Boolean variables. For this class of formulas, we develop hance our ability to design and analyze hybrid systems. a new satisfiability modulo convex optimization procedure Constraint Programming (CP) and Mixed Integer Pro- that uses a lazy combination of SAT solving and convex gramming (MIP) have emerged over the years as means for programming to provide a satisfying assignment or deter- addressing many of the challenges posed by hybrid systems mine that the formula is unsatisfiable.
    [Show full text]
  • The Curriculum Foundations Project
    The Curriculum Foundations Project Voices of the Partner Disciplines Reports from a series of disciplinary workshops organized by the Curriculum Renewal Across the First Two Years (CRAFTY) subcomittee of the Committee for the Undergraduate Program in Mathematics (CUPM) Copyright ©2004 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2004100780 ISBN 0-88385-813-4 Printed in the United States of America Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 The Curriculum Foundations Project Voices of the Partner Disciplines Reports from a series of disciplinary workshops organized by the Curriculum Renewal Across the First Two Years (CRAFTY) subcomittee of the Committee for the Undergraduate Program in Mathematics (CUPM) Edited by Susan L. Ganter Clemson University William Barker Bowdoin College Published and Distributed by The Mathematical Association of America Preface Given the impact of mathematics instruction on so many other fields of study—especially instruction during the first two years—there is a need for significant input from the partner disciplines when designing the undergraduate mathematics curriculum. An unprecedented amount of information on the mathematical needs of partner disciplines has been gathered through a series of disciplinary-based workshops known as the Curriculum Foundations Project. Informed by the views expressed in these workshops, the Mathematical Association of America (MAA) has completed an extensive study of the undergraduate program in mathematics. The result is a set of rec- ommendations from the MAA Committee on the Undergraduate Program in Mathematics (CUPM)— Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide 2004— that will assist mathematics departments as they plan their programs through the first decade of the 21st century.
    [Show full text]
  • Arithmetical Conservation Results
    ARITHMETICAL CONSERVATION RESULTS BENNO VAN DEN BERG1 AND LOTTE VAN SLOOTEN2 Abstract. In this paper we present a proof of Goodman’s Theorem, a classical result in the metamathematics of constructivism, which states that the addition of the axiom of choice to Heyting arithmetic in finite types does not increase the collection of provable arithmetical sentences. Our proof relies on several ideas from earlier proofs by other authors, but adds some new ones as well. In particular, we show how a recent paper by Jaap van Oosten can be used to simplify a key step in the proof. We have also included an interesting corollary for classical systems pointed out to us by Ulrich Kohlenbach. 1. Introduction The axiom of choice has a special status in constructive mathematics. On the one hand, it is arguably justified on the constructive interpretation of the quantifiers. Indeed, one could argue that a constructive proof of ∀x ∈ X ∃y ∈ Y ϕ(x, y) should contain, implicitly, an effective method for producing, given an arbitrary x ∈ X, an element y ∈ Y such that ϕ(x, y). Such an effective method can then be seen as a constructive choice function f: X → Y such that ϕ(x, f(x)) holds for any x ∈ X. In fact, it is precisely for this reason that the type-theoretic axiom of choice is provable in Martin-L¨of’s constructive type theory (see [16]). On the other hand, many standard systems for constructive mathematics do not include the axiom of choice. One example of such a system is Aczel’s constructive set theory CZF.
    [Show full text]
  • Metalogic Cheat Sheet
    Metalogic Cheat Sheet The formal language P: Six symbols: p, 0, ∼, ⊃, (, ) Propositional symbols of P: p followed by one or more 0, e.g. p0, p00, p000 Formulas (wffs) of P: valid sentences in the formal language P satisfy the following criteria: (1) A single propositional symbol of P. (2) If A is a formula, the ∼ A is a formula. (3) If A and B are formulas, then (A ⊃ B) is a formula (parentheses are sometimes dropped if A ⊃ B is alone). Definition: An interpretation of P is an assignment to each propositional symbol of P a T or F, but not both. Definition: I is a true interpretation of P if for any formulas A and B (1) If A is a propositional formula, the A is true for I iff I assigns a value of T to A (2) ∼ A is true for I iff A is not true for I (3) A ⊃ B is true for I iff either A is not true or B is true for I Definition: A false interpretation of P: A is false for I iff A is not true for I Definition: An interpretation I is a model of a set of formulas of P iff every formula in the set is true for I. Definition: (j=P A) A is a logically valid formula of P iff A is true for every interpretation I of P. Definition: A model-theoretically consistent set of formulas of P is one that has a model. Definition: A model-theoretically inconsistent set of formulas of P is one that has no model.
    [Show full text]
  • An Unsolvable Problem of Elementary Number Theory Alonzo Church
    An Unsolvable Problem of Elementary Number Theory Alonzo Church American Journal of Mathematics, Vol. 58, No. 2. (Apr., 1936), pp. 345-363. Stable URL: http://links.jstor.org/sici?sici=0002-9327%28193604%2958%3A2%3C345%3AAUPOEN%3E2.0.CO%3B2-1 American Journal of Mathematics is currently published by The Johns Hopkins University Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/jhup.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Mar 3 10:49:53 2008 AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER THEORY.= 1.
    [Show full text]
  • The Limits of Logic Philosophy 450, Fall 2018 Jeff Russell ([email protected]) Tuesday and Thursday 9:30–10:50Am, VKC 211
    The Limits of Logic Philosophy 450, Fall 2018 Jeff Russell ([email protected]) Tuesday and Thursday 9:30–10:50am, VKC 211 With the tools of formal logic, finite beings can understand the limits on finite beings— and also what is beyond those limits. There are infinities that cannot be counted. For any language, there are properties it cannot express. There are questions that cannot be systematically answered. For any reasonable theory, there are facts that it cannot prove. Office Hours Stonier 227, Tuesday and Thursday 11am–12pm or by appointment Please come to office hours or make an appointment if you feel like you could use help with problems or more discussion of what’s going on. Goals You will gain skills: • Reading and understanding precise statements, definitions, and arguments • Finding careful, step-by-step justifications for abstract claims (“informal proofs”) • Presenting and explaining technical ideas to others • Using precise language and reasoning to describe and understand language and reasoning themselves You will gain knowledge and understanding: • What are infinite collections like? Which infinite collections can be counted using ordinary numbers? Why does this matter? • How can we give precise models of language and its relationship to the world? • How can we use these models to understand logical ideas like consistent theories and valid arguments? 1 • What is a definable set? What kinds of features can and cannot be described in a precise language? • What is an effectively decidable question? What kinds of questions can and
    [Show full text]
  • On Computable Numbers, with an Application to the Entscheidungsproblem (Proc
    On computable numbers, with an application to the Entscheidungsproblem (Proc. Lond. Math. Soc., series 2 vol. 42 (1937), pp. 230-265) - A correction (ibid. vol. 43 (1937), p. 544-546) PREFACE 1. Preamble This is the classic paper which first established Turing's reputation and by which he will longest be remembered. The argument falls into three parts. A. The notion of a Turing machine is introduced and it is argued that any com- putation, which can be performed by a human can be imitated by such a machine. B. It is shown that there is a universal machine which, when provided with a standard description of any Turing machine will imitate the action of that machine. C. A diagonal argument is used to show that there are questions about the actions of Turing machines which cannot be answered by any machine. By formaliz- ing the action of Turing machines in the lower predicate calculus it is shown that the Entscheidungsproblem is mechanically undecidable. 1.1. History Turing always enjoyed calculating. At school he had devised a method for com- puting 7v and had used it to calculate the first 36 decimal places [Hodges p. 35]. While walking, bicycling or washing up he would perform mental calculations about mathematical or physical phenomena. Whether calculating mentally or with pencil and paper, Turing was methodical only by fits and starts, and of- ten made mistakes. [When I came to know him later the phrase 'What's a factor of two between friends?' had become a catchword.] But he understood very well what it meant to be totally methodical.
    [Show full text]