The Curriculum Foundations Project

Total Page:16

File Type:pdf, Size:1020Kb

The Curriculum Foundations Project The Curriculum Foundations Project Voices of the Partner Disciplines Reports from a series of disciplinary workshops organized by the Curriculum Renewal Across the First Two Years (CRAFTY) subcomittee of the Committee for the Undergraduate Program in Mathematics (CUPM) Copyright ©2004 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2004100780 ISBN 0-88385-813-4 Printed in the United States of America Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 The Curriculum Foundations Project Voices of the Partner Disciplines Reports from a series of disciplinary workshops organized by the Curriculum Renewal Across the First Two Years (CRAFTY) subcomittee of the Committee for the Undergraduate Program in Mathematics (CUPM) Edited by Susan L. Ganter Clemson University William Barker Bowdoin College Published and Distributed by The Mathematical Association of America Preface Given the impact of mathematics instruction on so many other fields of study—especially instruction during the first two years—there is a need for significant input from the partner disciplines when designing the undergraduate mathematics curriculum. An unprecedented amount of information on the mathematical needs of partner disciplines has been gathered through a series of disciplinary-based workshops known as the Curriculum Foundations Project. Informed by the views expressed in these workshops, the Mathematical Association of America (MAA) has completed an extensive study of the undergraduate program in mathematics. The result is a set of rec- ommendations from the MAA Committee on the Undergraduate Program in Mathematics (CUPM)— Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide 2004— that will assist mathematics departments as they plan their programs through the first decade of the 21st century. The CUPM subcommittee Curriculum Renewal Across the First Two Years (CRAFTY) organized and ran the Curriculum Foundations Project, gathering input from partner disciplines through a series of eleven workshops held across the country from November 1999 to February 2001. A final summary conference, attended by representatives of all the previous workshops, took place in November 2001. Each Curriculum Foundations workshop consisted of 20–35 participants, the majority chosen from the discipline under consideration, the remainder chosen from mathematics. The workshops were not intended to be discussions between mathematicians and colleagues in the partner disciplines, although this certainly happened informally. Instead, each workshop was a dialogue among the representatives from the partner discipline, with mathematicians present only to listen and serve as resources when questions arose about the mathematics curriculum. Each workshop produced a report directed to the mathematics community summarizing the workshop’s recommendations and conclusions. The reports were written by representatives of the partner disciplines, insuring accurate reporting of the workshop discussions while also adding credibility to the recommenda- tions. The Curriculum Foundations Steering Committee supplied a common set of questions to guide the discussions at each workshop. This helped achieve uniformity in structure for the reports and made it eas- ier to compare the recommendations from different disciplines. Workshop participants from the partner disciplines were extremely grateful—and surprised—to be invited by mathematicians to state their views about the mathematics curriculum. That the opinions of the partner disciplines were considered important and would be taken seriously in the development of the CUPM Guide 2004 only added to their enthusiasm for the project as well as their interest in continuing conversations with the mathematics community. At the final summary conference, held at the U. S. Military Academy at West Point in November 2001, a common set of recommendations—the Collective Vision—were distilled from the reports of the previ- ous workshops. This volume includes CRAFTY’s official report on the Collective Vision recommendations as well as the individual disciplinary reports. The disciplinary reports and Collective Vision were used extensively v vi The Curriculum Foundations Project by CUPM to inform the preparation of its CUPM Guide 2004. However, the workshop reports and Collective Vision have value independent of the CUPM Guide 2004 since they also serve as resources for multi-disciplinary discussions at individual institutions. Promoting and supporting informed interdepart- mental discussions about the undergraduate curriculum might ultimately be the most important outcome of the Curriculum Foundations Project. Contents Preface . v A Collective Vision: Voices of the Partner Disciplines . 1 Susan L. Ganter and William Barker Biology . 15 Judy Dilts and Anita Salem Business and Management . 19 Chris Lamoureux Chemistry . 27 Norman C. Craig Computer Science . 37 Charles F. Kelemen Engineering: Chemical Engineering . 51 Michael D. Graham Engineering: Civil Engineering . 57 Lynn Katz Engineering: Electrical Engineering . 65 Ben Oni Engineering: Mechanical Engineering . 79 David Bigio Health-Related Life Sciences . 91 Thomas F. Huff and William J. Terrell Interdisciplinary Core Mathematics . 97 Chris Arney and Don Small Mathematics . 109 Herbert Kasube and William McCallum Physics . 115 Karen Cummings and Guy Emery Statistics . 125 Tom Moore, Roxy Peck, and Allan Rossman Teacher Preparation: K–12 Mathematics . 145 Sharon L. Senk, Brian Keller, Joan Ferrini-Mundy Technical Mathematics: Biotechnology and Environmental Technology . 157 Elaine Johnson, John C. Peterson, and Kathy Yoshiwara vii viii The Curriculum Foundations Project Technical Mathematics: Electronics, Telecommunications, and Semiconductor Technology . 181 Bob L. Bixler, James Hyder, John C. Peterson, and Kathy Yoshiwara Technical Mathematics: Information Technology . 195 Robert D. Campbell, John C. Peterson, and Kathy Yoshiwara Technical Mathematics: Mechanical and Manufacturing Technology . 207 Al Schwabenbauer, John C. Peterson, and Kathy Yoshiwara A Collective Vision Voices of the Partner Disciplines Susan L. Ganter Clemson University William Barker Bowdoin College Introduction Mathematics can and should play an important role in the education of undergraduate students. In fact, few educators would dispute that students who can think mathematically and reason through problems are bet- ter able to face the challenges of careers in other disciplines—including those in non-scientific areas. Add to these skills the appropriate use of technology, the ability to model complex situations, and an under- standing and appreciation of the specific mathematics appropriate to their chosen fields, and students are then equipped with powerful tools for the future. Unfortunately, many mathematics courses are not successful in achieving these goals. Students do not see the connections between mathematics and their chosen disciplines; instead, they leave mathematics courses with a set of skills that they are unable to apply in non-routine settings and whose importance to their future careers is not appreciated. Indeed, the mathematics many students are taught often is not the most relevant to their chosen fields. For these reasons, faculty members outside mathematics often per- ceive the mathematics community as uninterested in the needs of non-mathematics majors, especially those in introductory courses. The mathematics community ignores this situation at its own peril since approximately 95% of the stu- dents in first-year mathematics courses go on to major in other disciplines. The challenge, therefore, is to provide mathematical experiences that are true to the spirit of mathematics yet also relevant to students’ futures in other fields. The question then is not whether they need mathematics, but what mathematics is needed and in what context. The Mathematical Association of America (MAA) is currently studying the undergraduate program in mathematics, informed by the views of a broad segment of the mathematics community and its partner dis- ciplines. The goal is a set of recommendations from the MAA Committee on the Undergraduate Program in Mathematics (CUPM)—the CUPM Curriculum Guide 2004—that will assist mathematics departments as they plan their programs through the first decade of the 21st century. The current efforts by CUPM are being informed by an unprecedented amount of information on the mathematical needs of partner disci- plines, obtained through a series of disciplinary-based workshops known as the Curriculum Foundations Project. 1 2 The Curriculum Foundations Project The Curriculum Foundations Project The CUPM subcommittee Curriculum Renewal Across the First Two Years (CRAFTY) has gathered input from partner disciplines through a series of eleven workshops held across the country from November 1999 to February 2001, followed by a final summary conference in November 2001 (see Appendix A). Each Curriculum Foundations workshop consisted of 20−35 participants, the majority chosen from the discipline under consideration, the remainder chosen from mathematics. The workshops were not intend- ed to be discussions between mathematicians and colleagues in the partner disciplines, although this cer- tainly happened informally. Instead, each workshop was a dialogue among the representatives from the partner discipline, with mathematicians present only to listen and serve as a resource when questions about the mathematics curriculum
Recommended publications
  • The Beauty, Power and Future of Mathematics I Am Thrilled and at The
    The Beauty, Power and Future of Mathematics I am thrilled and at the same time humble to be honored by the Doctor Honoris Causa of the University Politehnica of Bucharest. Romania is a country with a very excellent tradition of mathematics at the very best. When I was in high school in Hong Kong, I read with care an elementary book by Popa with lucid explanation and colorful illustrations of basic mathematical concepts. During my undergraduate studies at Sir George Williams University in Montreal, a professor introduced me to Barbu’s works on nonlinear differential and integral equations. I should also mention that he introduced me to the book on linear partial differential operators by Hörmander. When I was a graduate student at the University of Toronto working under the supervision of Professor Atkinson, I learned Fredholm operators from him and the works of Foias and Voiculescu from the operator theory group. I was also influenced by the school of harmonic analysts led by E. M. Stein at Princeton. When I was a visiting professor at the University of California at Irvine, I learned from Martin Schechter of the works of Foias on nonlinear partial differential equations. This education path of mine points clearly to the influence of Romanian mathematics on me, the importance of knowing in depth different but related fields and my life‐long works on pseudo‐differential operators and related topics in mathematics and quantum physics. I chose to specialize in mathematics when I was in grade 10 at Kowloon Technical School in Hong Kong dated back to 1967, not least inspired by an inspiring teacher.
    [Show full text]
  • Issue 73 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature History Interview ERCOM Hedgehogs Richard von Mises Mikhail Gromov IHP p. 11 p. 31 p. 19 p. 35 September 2009 Issue 73 ISSN 1027-488X S E European M M Mathematical E S Society Geometric Mechanics and Symmetry Oxford University Press is pleased to From Finite to Infinite Dimensions announce that all EMS members can benefit from a 20% discount on a large range of our Darryl D. Holm, Tanya Schmah, and Cristina Stoica Mathematics books. A graduate level text based partly on For more information please visit: lectures in geometry, mechanics, and symmetry given at Imperial College www.oup.co.uk/sale/science/ems London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the FORTHCOMING subject. Differential Equations with Linear 2009 | 460 pp Algebra Paperback | 978-0-19-921291-0 | £29.50 Matthew R. Boelkins, Jack L Goldberg, Hardback | 978-0-19-921290-3 | £65.00 and Merle C. Potter Explores the interplaybetween linear FORTHCOMING algebra and differential equations by Thermoelasticity with Finite Wave examining fundamental problems in elementary differential equations. This Speeds text is accessible to students who have Józef Ignaczak and Martin completed multivariable calculus and is appropriate for Ostoja-Starzewski courses in mathematics and engineering that study Extensively covers the mathematics of systems of differential equations. two leading theories of hyperbolic October 2009 | 464 pp thermoelasticity: the Lord-Shulman Hardback | 978-0-19-538586-1 | £52.00 theory, and the Green-Lindsay theory. Oxford Mathematical Monographs Introduction to Metric and October 2009 | 432 pp Topological Spaces Hardback | 978-0-19-954164-5 | £70.00 Second Edition Wilson A.
    [Show full text]
  • An Overview on the Libxc Library of Density Functional Approximations
    An overview on the Libxc library of density functional approximations Susi Lehtola Molecular Sciences Software Institute at Virginia Tech 2 June 2021 Outline Why Libxc? Recap on DFT What is Libxc? Using Libxc A look under the hood Wrapup GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 2/28 Why Libxc? There are many approximations for the exchange-correlation functional. But, most programs I ... only implement a handful (sometimes 5, typically 10-15) I ... and the implementations may be buggy / non-standard GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 3/28 Why Libxc, cont'd This leads to issues with reproducibility I chemists and physicists do not traditionally use the same functionals! Outdated(?) stereotype: B3LYP vs PBE I how to reproduce a calculation performed with another code? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 4/28 Why Libxc, cont'd The issue is compounded by the need for backwards and forwards compatibility: how can one I reproduce old calculations from the literature done with a now-obsolete functional (possibly with a program that is proprietary / no longer available)? I use a newly developed functional in an old program? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 5/28 Why Libxc, cont'd A standard implementation is beneficial! I no need to keep reinventing (and rebuilding) the wheel I use same collection of density functionals in all programs I new functionals only need to be implemented in one place I broken/buggy functionals only need to be fixed in one place I same implementation can be used across numerical approaches, e.g.
    [Show full text]
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • Fundamental Concepts of History of Mathematics
    RESEARCH PAPER RESEARCH REVIEW International Journal of Multidisciplinary e-ISSN: 2455-3085 | Vol.06 | Iss.07 | July 2021 | pp. 43-59 Double-Blind Peer Reviewed/Refereed Journal Fundamental Concepts of History of Mathematics *Dr. Rupen Chatterjee Department of Mathematics, NabagramHiralal Paul College, Nabagram, Hooghly, West Bengal Pin:712246, India (Affiliated to Calcutta University) Abstract Article Publication The science of structure, discipline, and relationships arose from the first practice of Published Online: 15-Jul-2021 calculating, measuring, and describing the shape of an object. It involves logical reasoning and quantitative computing. And the development of the ideal and the *Author's Correspondence abstraction of the subject has reached an extended level. Beginning in the seventeenth Dr. Rupen Chatterjee century, mathematics was an essential complement to the physical sciences and technologies and, more recently, began to play a similar role in the quantitative aspects Department of Mathematics, of the life sciences. In many cultures influenced by the need for practical study, for NabagramHiralal Paul College, example, the mathematics of trade and agriculture far exceeded calculations. This Nabagram, Hooghly, West Bengal growth was most pronounced in sophisticated societies sufficient to sustain this activity Pin:712246, India (Affiliated to Calcutta University) and to build on the free time of thought and the capacity to build on the successes of previous mathematicians. The field of study known as the history of mathematics is [email protected] practically the study of the source of discovery. Examples of new mathematical developments in mathematical methods and the study of mathematical methods of 10.31305/rrijm.2021.v06.i07.008 identifying the past and to a lesser extent in the modern age and before the spread of knowledge worldwide have appeared in only a few places.
    [Show full text]
  • ADP-Ribose) Polymerase-1 Catalytic Pocket Using Autogrow4, a Genetic Algorithm for De Novo Design
    Targeting the Poly (ADP-Ribose) Polymerase-1 Catalytic Pocket Using AutoGrow4, a Genetic Algorithm for De Novo Design by Jacob Oscar Spiegel Bachelor of Engineering in Biomedical Engineering, State University of New York at Stony Brook, 2013 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jacob Oscar Spiegel It was defended on March 10, 2020 and approved by Dr. Andrew VanDemark, Associate Professor, Department of Biological Sciences Dr. Jeffrey Lawrence, Professor and Chair, Department of Biological Sciences Dr. Bennett Van Houten, Professor, Department of Pharmacology and Chemical Biology Dissertation Director: Dr. Jacob Durrant, Assistant Professor, Department of Biological Sciences ii Copyright © by Jacob Oscar Spiegel 2020 iii Targeting the Poly (ADP-Ribose) Polymerase-1 Catalytic Pocket Using AutoGrow4, a Genetic Algorithm for De Novo Design Jacob Oscar Spiegel, Ph.D. University of Pittsburgh, 2020 AutoGrow4 is a free and open-source program for de novo drug design that uses a genetic algorithm (GA) to create novel predicted small-molecule ligands for a given protein target without the constraints of a finite, pre-defined virtual library. By leveraging recent computational and cheminformatic advancements, AutoGrow4 is faster, more stable, and more modular than previous versions. Features such as docking-software compatibility, chemical filters, multithreading options, and selection methods have been expanded to support a wide range of user needs. This dissertation will cover the development and validation of AutoGrow4, as well as its application to poly (ADP-ribose) polymerase-1 (PARP-1).
    [Show full text]
  • Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8- Oxoguanine Glycosylase, Hogg1
    Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8- Oxoguanine Glycosylase, hOGG1 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crenshaw, Charisse M., Kwangho Nam, Kimberly Oo, Peter S. Kutchukian, Brian R. Bowman, Martin Karplus, and Gregory L. Verdine. 2012. “Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, HOGG1.” Journal of Biological Chemistry287 (30): 24916–28. https:// doi.org/10.1074/jbc.M111.316497. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41511240 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 30, pp. 24916–24928, July 20, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1*□S Received for publication, October 25, 2011, and in revised form, March 17, 2012 Published, JBC Papers in Press, April 16, 2012, DOI 10.1074/jbc.M111.316497 Charisse M. Crenshaw‡¶, Kwangho Nam§¶, Kimberly Oo§, Peter S. Kutchukian§¶, Brian R. Bowman§¶, Martin Karplus§ʈ, and Gregory L. Verdine§¶**1 From the Departments
    [Show full text]
  • CCAM Systematic Satisfiability Programming in Hopfield Neural
    Communications in Computational and Applied Mathematics, Vol. 2 No. 1 (2020) p. 1-6 CCAM Communications in Computational and Applied Mathematics Journal homepage : www.fazpublishing.com/ccam e-ISSN : 2682-7468 Systematic Satisfiability Programming in Hopfield Neural Network- A Hybrid Expert System for Medical Screening Mohd Shareduwan Mohd Kasihmuddin1, Mohd. Asyraf Mansor2,*, Siti Zulaikha Mohd Jamaludin3, Saratha Sathasivam4 1,3,4School of Mathematical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia 2School of Distance Education, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia *Corresponding Author Received 26 January 2020; Abstract: Accurate and efficient medical diagnosis system is crucial to ensure patient with recorded Accepted 12 February 2020; system can be screened appropriately. Medical diagnosis is often challenging due to the lack of Available online 31 March patient’s information and it is always prone to inaccurate diagnosis. Medical practitioner or 2020 specialist is facing difficulties in screening the disease accurately because unnecessary attributes will lead to high operational cost. Despite of acting as a screening mechanism, expert system is required to find the relationship between the attributes that lead to a specific medical outcome. Data mining via logic mining is a new method to extract logical rule that explains the relationship of the medical attributes of a patient. In this paper, a new logic mining method namely, 2 Satisfiability based Reverse Analysis method (2SATRA) will be proposed to extract the logical rule from medical datasets. 2SATRA will capitalize the 2 Satisfiability (2SAT) as a logical rule and Hopfield Neural Network (HNN) as a learning system. The extracted logical rule from the medical dataset will be used to diagnose the final condition of the patient.
    [Show full text]
  • 500 Years of Mathematics
    30TH APRIL 2019 500 Years of Mathematics PROFESSOR CHRISTOPHER BUDD OBE Introduction In the 500th year since the birth of Thomas Gresham in 1519 it is an interesting exercise to ask if I was around then (OK I’m not quite that old) what would I say had happened mathematically in the last 500 years. The answer is not a lot. In Europe almost nothing new had been discovered since the Greeks. The great advances in Arabic mathematics had largely stopped at least 500 years before, and in China before then. Only in India had much been going on, including significant advances in algebra and trigonometry. However, almost none of these discoveries were known to Thomas Gresham’s contemporaries in the West. In contrast the last 500 years have seen an explosion in mathematical discovery, with the pace of discovery increasing in the 21st Century. The start of this rapid acceleration started in Thomas Gresham’s lifetime and has continued almost uninterrupted till the present day. In particular we can see the time of Thomas Gresham as being the birth both of modern algebra and also calculus, both of which dominate modern mathematics. It is thus very fitting that I can give a talk about 500 years of mathematics, as I think we can say with some justification that we are celebrating the 500th anniversary not only of the birth of Thomas Gresham but also of the birth of modern mathematics. In this talk I will try to survey what in my opinion are the really great mathematical achievements of the last 500 years.
    [Show full text]
  • The Dimer-Monomer Equilibrium of SARS-Cov-2 Main
    www.nature.com/scientificreports OPEN The dimer‑monomer equilibrium of SARS‑CoV‑2 main protease is afected by small molecule inhibitors Lucia Silvestrini1, Norhan Belhaj2, Lucia Comez3, Yuri Gerelli2, Antonino Lauria4, Valeria Libera5, Paolo Mariani2, Paola Marzullo4, Maria Grazia Ortore2, Antonio Palumbo Piccionello4, Caterina Petrillo5, Lucrezia Savini1, Alessandro Paciaroni5 & Francesco Spinozzi2* The maturation of coronavirus SARS‑CoV‑2, which is the etiological agent at the origin of the COVID‑ 19 pandemic, requires a main protease Mpro to cleave the virus‑encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer‑dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad‑spectrum antiviral drug leads. In the present study, we exploit Small Angle X‑ray Scattering (SAXS) to investigate the structural features of SARS‑CoV‑2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer‑dimer equilibrium is derived, together with the temperature‑dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is afected by small inhibitors selected by virtual screening. We fnd that these inhibitors afect dimerization and enzymatic activity to a diferent extent and sometimes in an opposite way, likely due to the diferent molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.
    [Show full text]
  • The Concept of Effective Method Applied to Computational Problems of Linear Algebra
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 5, 17--25 (1971) The Concept of Effective Method Applied to Computational Problems of Linear Algebra OLIVER ABERTH Department of Mathematics, Texas A & M University, College Station, Texas 77843 Received April 28, 1969 A classification of computational problems is proposed which may have applications in numerical analysis. The classification utilizes the concept of effective method, which has been employed in treating decidability questions within the field of com- putable numbers. A problem is effectively soluble or effectively insoluble according as there is or there is not an effective method of solution. Roughly speaking~ effectively insoluble computational problems are those whose general solution is restricted by an intrinsic and unavoidable computational difficulty. Some standard problems of linear algebra are analyzed to determine their type. INTRODUCTION Given a square matrix A with real entries, the computation of the eigenvalues of A is, more or less, a routine matter, and many different methods of calculation are known. On the other hand, the computation of the Jordan normal form of A is a problematical undertaking, since when d has multiple eigenvalues, the structure of off-diagonal l's of the normal form will be completely altered by small perturbations of the matrix elements of d. Still, one may ask whether the Jordan normal form computation can always be carried through for the case where the entries of A are known to arbitrarily high accuracy. This particular question and others like it can be given a precise answer by making use of a constructive analysis developed in the past two decades by a number of Russian mathematicians, the earliest workers being Markov, Ceitin, Zaslavskii, and Sanin [4, 6, 10, 12, 13].
    [Show full text]
  • REGISTER Further Information Or Reser­ Ground Will Be Broken Sunday, Jan
    Laywomento Sponsor Member of 'Audit Bureau of Circulation Loretto Heights Contents Copyrighted by the Catholic Press Society, Inc., 1951— Permission to Reproduce, Except on Press Speaker Day of Recollection Articles Otherwise Marked, Given After 12 M. Friday Following Issue. Work to Be Started In Littleton Jan. 27 The 17th annual day o f recol­ lection will be sponsored by the Catholic Laywomen’s Retreat as­ sociation Sunday, Jan. 27, iir St. Mary’s church and hall, Littleton. DENVER CATHOLIC The retreat Jhaster will be the On St. John s Church Rev. Frederick Mann, C.SS.R., of S t Joseph’s Redemptorist parish, Denver. « Transportation may be pbtained Gtound-Breaking Ceremonies Jan. 13 via either Trailways or tramway bus. The fee for the day is $2. REGISTER Further information or reser­ Ground will be broken Sunday, Jan. 13, at 3 o ’clock for the new Church vations may be obtained by calling of St. John the Eyangelist in East Denver at E. Seventh avenue parkway and Mrs. Thomas Carroll, PE. 5842, or VOL. XLVIl. No. 21. THURSDAY, JANUARY 10, 1952 DENVER, dOLO. Littleton 154-R. Elizabeth street. The Rt. Rev. Monsignor John P. Moran, pastor, announced that construction will begin immediately on the long-needed new church. The construction contract has been awarded to the Originality, Co-Operatioa Keynote All-Parochial Play Frank J. Kirchhof Construction company of Denver, who submitted the low base bid of $300,400. The electrical and + + + + + Co-operation is the keynote + + + + + heating contracts increase this figure to $345,688. John K. Monroe of the all-parochial play pro­ is the architect o f the structure, which is patterned on modernized duction.
    [Show full text]