Supplementary Information s6
Total Page:16
File Type:pdf, Size:1020Kb
SUPPLEMENTARY INFORMATION
A study of interfacial adsorption isotherm at divided interface for
novel macrocycles in solvent extraction
Halil Zeki Gök a ,, Hasan Demir b
a Department of Chemistry, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey
b Department of Chemical Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey
1. Experimental
1.1. Materials and Equipment
Corresponding author. Tel.: + 90 (328)-827 1000x2539; fax: +90 (328)-825 0097; e-mail: [email protected], Department of Chemistry, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey N,N'-(2,2'-(4,5-dicyano-1,2-phenylene)bis(sulfanediyl)bis(2,1-phenylene))bis(2- chloroacet-amide) 1 was prepared according to the literature report [1]. Macrocycles 3 and 5 were prepared according to the literature reports [1, 2]. All reagents and solvents were reagent grade quality and were obtained from commercial suppliers. For synthesis, all solvents were dried and purified as described by Perrin and Armarego [3]. Demineralized water was used in extraction experiments. FTIR spectra were measured on a Perkin Elmer Spectrum 65 spectrometer in KBr pellets. 1H and 13C NMR spectra were recorded on a Varian Mercury 400
MHz spectrometer in CDCl3 and DMSO-d6 (99.9%). Mass spectra were measured on a
Micromass Quatro LC/ULTIMA LC-MS/MS spectrometer. Optical spectra were recorded in the UV-Vis region with a PG-T80+ spectrophotometer in 1 cm path length cuvettes at room temperature. The elemental analyses were obtained with a LECO Elemental Analyzer (CHNS
0932) spectrophotometer. The melting points were determined with an electrothermal apparatus and are reported without correction. In solvent extraction experiment Selecta type shaker with thermostat was used. 11 6,3
11 0
10 5 562,18
477,79 10 0 3051,91 950,50 498,91
710,13 526,46 95
2923,06 1058,79 90 1159,16 1032,03 873,11 1133,82 917,96 3285,62 1107,49 85 659,40 1226,68 2234,99 1264,34 80 1383,96 1197,06 1345,48 75 1460,71 % T 70
65
60 1295,80
55 764,67
1577,46 1433,59 50 O
NC S N S 45 H S H 40 NC S N S 1682,34
O 35 1513,38
30 ,7 400 0,0 360 0 32 00 28 00 2 400 2 000 1 800 1 600 14 00 12 00 10 00 80 0 60 0 450 ,0 cm-1
Figure S1. The FT-IR spectrum of macrocyclic ligand 2
12 9 ,1
1 2 5
1 2 0 569,91 475,75 1 1 5 497,88
529,97 1 1 0 2989,23 2349,33
1 0 5 3067,67 1737,82 2956,24 951,68 712,35 1 0 0 2919,18 872,96 667,32 3251,78 2860,28 1055,11 917,91 1161,41 1033,87 95 1199,00 1346,48 2227,54 1374,22 1266,91 90 1455,63 1235,04 1220,97 85 1103,05 % T 80 1295,22
1435,06 763,13 75 1577,55
70
65 O 1691,02
60 NC S N S 1517,70 H 55 O H 50 NC S N S
45 O
40 3 7 ,2 4 0 0 0,0 36 0 0 3 2 00 2 8 00 2 4 0 0 2 0 0 0 1 8 00 1 6 00 1 4 0 0 1 2 0 0 1 0 00 8 0 0 6 0 0 4 5 0 ,0 c m- 1
Figure S2. The FT-IR spectrum of macrocyclic ligand 3 89 ,5 88
86
84 921,95 82 888,32 528,00 1034,83 80
78 1108,65 1383,29 76 3275,93 1345,99
74 2230,55
1221,30 72 2856,12 70
68 % T 66 1456,53 1297,35 64
62 2926,48 60 757,93 58 1578,55
O 1435,06 56 1688,81 54 NC S N S H 52 H NC S N S 50
O 1513,84 48
45 ,7 400 0,0 360 0 32 00 28 00 2 400 2 000 1 800 1 600 14 00 12 00 10 00 80 0 60 0 450 ,0 cm-1
Figure S3. The FT-IR spectrum of macrocyclic ligand 4 Date: 20 Aralýk 2011 Salý
88,0
85
80 950,00 479,09
1060,12 502,88 2915,67 1032,55 75 1161,13 1105,78 879,41 673,10 527,48 918,96 1261,38
70 1380,36 3253,86 1223,31
65 2232,25 1347,85
758,36 %T 60 1454,72
55 1299,34 1568,11 O 50 NC S N S H H 1435,21 45 NC S N S 1578,94
O 40 1680,12
35 1515,01 33,0 4000,0 3000 2000 1500 1000 450,0 cm-1
Figure S4. The FT-IR spectrum of macrocyclic ligand 5 Date: 20 Aralýk 2011 Salý
89,5 88
86
84 542,71 480,06 82 470,36 500,82 80 615,90 693,24
78 525,97 3079,56 918,48 76 2920,84 1035,46
74 889,24 3316,78 72 1158,78 2228,75 1261,75 1104,12 70 1384,80 %T 68 1347,01 66 1213,52
64 1452,62
62 1290,59
60 O 1576,87 1565,11 756,57 58 NC S N S H 56 H 1434,16 NC S N S 54 1688,58 52 O 1514,53 50 48,8 4000,0 3000 2000 1500 1000 450,0 cm-1
Figure S5. The FT-IR spectrum of macrocyclic ligand 6
O
NC S N S H S H NC S N S
O
7.650 7.600 7.550 7.500 7.450 7.400 7.350 7.300 ppm (t1) 1 1 1 1 0 . . . . . 0 2 0 8 9 6 7 7 2 4 1 1 1 0 1 0 2 4 ...... 0 0 1 9 6 8 1 5 0 0 4 8 6 5 8 3
10.0 5.0 ppm (t1)
1 Figure S6. The H-NMR spectrum of macrocyclic ligand 2 in CDCl3. O
NC S N S H O H NC S N S
O 1 0 1 1 1 0 2 2 2 ...... 0 9 0 0 4 8 1 1 0 0 6 5 2 8 5 3 2 9
5.0 ppm (t1)
1 Figure S7. The H-NMR spectrum of macrocyclic ligand 3 in CDCl3.
O
NC S N S H H NC S N S
O
1.700 1.650 1.600 1.550 1.500 ppm (t1) 1 1 1 1 1 0 2 2 3 1 ...... 0 0 5 0 6 8 0 2 3 4 0 9 2 4 2 2 5 8 1 7
10.0 5.0 ppm (t1)
1 Figure S8. The H-NMR spectrum of macrocyclic ligand 4 in CDCl3. O
NC S N S H H NC S N S
O
1.9001.8751.8501.8251.8001.7751.7501.7251.700 3.5003.4503.4003.3503.3003.2503.200 ppm (t1) ppm (t1)
10.00 9.50 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 ppm (t1)
1 Figure S9. The H-NMR spectrum of macrocyclic ligand 5 in DMSO-d6.
O
NC S N S H H NC S N S
O 1 1 2 1 0 2 2 ...... 0 0 3 2 9 5 2 0 7 8 5 1 2 0
5.0 0.0 ppm (t1)
1 Figure S10. The H-NMR spectrum of macrocyclic ligand 6 in CDCl3 O
NC S N S H S H NC S N S
O
150 100 50 0 ppm (t1)
13 Figure S11. The C-NMR(APT) spectrum of macrocyclic ligand 2 in CDCl3
O
NC S N S H O H NC S N S
O
150 100 50 0 ppm (t1)
13 Figure S12. The C-NMR(APT) spectrum of macrocyclic ligand 3 in CDCl3 O
NC S N S H H NC S N S
O
150 100 50 0 ppm (t1)
13 Figure S13. The C-NMR(APT) spectrum of macrocyclic ligand 4 in CDCl3
O
NC S N S H H NC S N S
O
150 100 50 0 ppm (t1)
13 Figure S14. The C-NMR(APT) spectrum of macrocyclic ligand 5 in CDCl3 O
NC S N S H H NC S N S
O
150 100 50 0 ppm (t1)
13 Figure S15. The C-NMR(APT) spectrum of macrocyclic ligand 6 in CDCl3 References
[1] H.Z. Gök, B. Farsak, Synthesis, characterisation and aggregation properties of novel
metal-free and metallophthalocyanines containing four 21-membered oxatetrathiadiaza
macrocycles, J. Organomet. Chem. 735 (2013) 65-71.
[2] H.Z. Gök, B. Farsak, Synthesis and spectral properties of novel metal-free and
metallophthalocyanines bearing four 19-membered tetrathiadiaza macrocycles, J. Mol.
Struct. 1054-1055 (2013) 25-31.
[3] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals. 2nd ed.,
Pergamon Press, Oxford, 1989.
Appendix A. Supplementary material Additional data associated with this article are given in Online Resource 1