Neuroptera: Myrmeleontidae: Nemoleontini) Lionel A

Total Page:16

File Type:pdf, Size:1020Kb

Neuroptera: Myrmeleontidae: Nemoleontini) Lionel A University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 A revision of the genus Navasoleon Banks (Neuroptera: Myrmeleontidae: Nemoleontini) Lionel A. Stange Florida State Collection of Arthropods Robert B. Miller Florida State Collection of Arthropods, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Stange, Lionel A. and Miller, Robert B., "A revision of the genus Navasoleon Banks (Neuroptera: Myrmeleontidae: Nemoleontini)" (2018). Insecta Mundi. 1129. https://digitalcommons.unl.edu/insectamundi/1129 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. April 27 2018 INSECTA 0619 1–25 urn:lsid:zoobank.org:pub:13B1B3A8-D9A7-453B-A3A5- A Journal of World Insect Systematics B1EFF91FF927 MUNDI 0619 A revision of the genus Navasoleon Banks (Neuroptera: Myrmeleontidae: Nemoleontini) Lionel A. Stange Florida State Collection of Arthropods Gainesville, Florida, U.S.A. Robert B. Miller Florida State Collection of Arthropods Gainesville, Florida, U.S.A. Date of issue: April 27, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Lionel A. Stange and Robert B. Miller A revision of the genus Navasoleon Banks (Neuroptera: Myrmeleontidae: Nemoleontini) Insecta Mundi 0619: 1–25 ZooBank Registered: urn:lsid:zoobank.org:pub:13B1B3A8-D9A7-453B-A3A5-B1EFF91FF927 Published in 2018 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Guidelines and requirements for the preparation of manuscripts are available on the Insecta Mundi website at http://centerforsystematicentomology.org/insectamundi/ Chief Editor: David Plotkin, [email protected] Assistant Editor: Paul E. Skelley, [email protected] Head Layout Editor: Robert G. Forsyth Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas Review Editors: Listed on the Insecta Mundi webpage Printed copies (ISSN 0749-6737) annually deposited in libraries CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, UK Muzeum i Instytut Zoologii PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies (Online ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico. Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240 Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/ Layout Editor for this article: Robert G. Forsyth 0619: 1–25 2018 A revision of the genus Navasoleon Banks (Neuroptera: Myrmeleontidae: Nemoleontini) Lionel A. Stange Florida State Collection of Arthropods Gainesville, Florida, U.S.A. [email protected] Robert B. Miller Florida State Collection of Arthropods Gainesville, Florida, U.S.A. Abstract. Nine species of Navasoleon (Neuroptera: Myrmeleontidae: Nemoleontini) are recognized in the present work with the description of seven new species: N. amazonas Stange, N. brasiliensis Miller, N. egeri Stange, N. lithophilus Miller, N. lotti Stange, N. tarsalis Miller, and N. venezolanus Stange. Navasoleon bosqui (Navás) is designated a nomen dubium. A key to the species is provided as well as to the genera of Nemoleontini with closing pretarsal claws. The larvae of two species are described and keyed with biological notes. Biological data presented in Miller and Stange (1985), erroneously attributed to N. bolivianus (Banks), has now been corrected to N. lithophilus. Included in this treatise are 71 color photographs including photos of male and female terminalia, male genitalia, and two species of larvae. Key words. Biology, Zoogeography, keys to adults, larvae of Navasoleon, key to genera with closing tarsal claws, pretarsal claws. Resumen. Se reconocen nueve especies de Navasoleon (Neuroptera: Myrmeleontidae: Nemoleontini) con las des- cripciones de seven especies nuevas: N. amazonas Stange, N. brasiliensis Miller, N. egeri Stange, N. lithophilus Miller, N. lotti Stange, N. tarsalis Miller, y N. venezolanus Stange. Se designa a Navasoleon bosqui (Navás) como nomen dubium. Se presenta una clave para las nueve especies y para las larvas además para los generos de Nemoleontini con uñas prensiles. Se provee una diagnosis para las especies además de datos sobre distribución geográfica. Se describen las larvas de dos especies con observaciones biologícas. Datos biológicos en el trabajo de Miller and Stange (1985), erroneamenta asignado como N. bolivianus (Banks), ahora corrigido a N. lithophilus. Se incluye 71 fotos de color, incluyendo fotos de las terminalias de los machos y hembras, las genitalias de los machos, y las larvas de dos especies. Palabras clave. La biología, Zoogeografía, claves para los adultos, larvas de Navasoleon, clave para los géneros con uñas prensiles, uñas prensiles. Introduction The genus Navasoleon Banks differs from all other new world groups of antlions by having the foreleg elongate, usually much longer than the hindleg and midleg. The pretarsal claws can close against the setal brush on the ventral surface of the distal tarsomere. This South American genus is unusual as the larvae live on bare rock (Miller and Stange 1985). The larvae are ascalaphid-like in appearance, with abdominal scolus-like processes and with the mandibular teeth placed distally. Nine rather uncommonly collected species are known and are classified in three species groups based on leg structure, wing vena- tion and female terminalia. The species appear to have restricted distributions suggesting that more species will probably be found in other areas. Descriptions and keys to the species are provided as well as biological notes. Also, a key to the genera of Nemoleontini with folding pretarsal claws is provided. Materials and Methods Adult terminology is based on Stange (1970a) and larval terminology on Badano and Pantaleoni (2014). Larvae were preserved in 75 percent ethanol after treatment with KAAD larval fixative (solution made from kerosene, ethyl alcohol, glacial acetic acid and dioxane). A machinist’s caliper was used to 2 • INSECTA MUNDI 0619, April 2018 STANGE AND MILLER make measurements of adult wings and body length. Most photos of larvae were made from preserved specimens, which lack the natural coloration seen in live material. Photographs of adults and larvae were taken using an Auto Montage (Leica Z16 APO) zoom lens attached to a JVC 3-CCD digital camera (KY-F75U)), and montaged with syncroscopy Automontage software. Images of adult antlions were cap- tured from pinned specimens. Male genitalia, after clearing in KOH and dissection, were photographed under ethanol submerged cover slips to prevent movement. After study and photographs, the genitalia were stored in microvials in glycerin associated with pinned specimens. Female terminalia, after clear- ing in KOH, were placed in petri dishes and covered with a microscope slide, where they were then photographed after correct positioning had been achieved. Preserved larvae were photographed under ethanol submerged microscope slides. Photographs were electronically enhanced and cleaned up using the Picasa program. Use of this program on terminalia was found to bring out visual contrast
Recommended publications
  • Taxonomy and Phylogeny of the Genera Gymnocnemia
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Deutsche Entomologische Zeitschrift (Berliner Entomologische Zeitschrift und Deutsche Entomologische Zeitschrift in Vereinigung) Jahr/Year: 2017 Band/Volume: NF_64 Autor(en)/Author(s): Badano Davide, Aspöck Horst, Aspöck Ulrike Artikel/Article: Taxonomy and phylogeny of the genera Gymnocnemia Schneider, 1845, and Megistopus Rambur, 1842, with remarks on the systematization of the tribe Nemoleontini (Neuroptera, Myrmeleontidae) 43-60 ©https://dez.pensoft.net/;Licence: CC BY 4.0 Dtsch. Entomol. Z. 64 (1) 2017, 43–60 | DOI 10.3897/dez.64.11704 museum für naturkunde Taxonomy and phylogeny of the genera Gymnocnemia Schneider, 1845, and Megistopus Rambur, 1842, with remarks on the systematization of the tribe Nemoleontini (Neuroptera, Myrmeleontidae) Davide Badano1, Horst Aspöck2, Ulrike Aspöck3,4 1 Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche (IBAF–CNR), Via Salaria km 29,300, Monterotondo Scalo (Roma), Italy 2 Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, Austria 3 Natural History Museum Vienna, Department of Entomology, Burgring 7, Vienna, Austria 4 Department of Integrative Zoology, University of Vienna, Althanstraße 14, Vienna, Austria http://zoobank.org/EA434B98-3E3B-40BE-914F-ABE214D598F4 Corresponding author: Davide Badano ([email protected]) Abstract Received 4 January 2017 Accepted 13 February 2017 The delineation of antlion genera has often been based on morphological characters not Published 8 March 2017 tested in a phylogenetic context, thus seriously impairing the study of systematics of the family Myrmeleontidae. Nebulous generic limits also impede the taxonomy and study of Academic editor: the affinities of closely related species.
    [Show full text]
  • Review of Neuroleon Navás of West Africa with Descriptions of Four New Species (Neuroptera, Myrmeleontidae)
    Zootaxa 3519: 32–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:E7E9CC12-4ECF-4A13-8E81-F56803F9B0B6 Review of Neuroleon Navás of West Africa with descriptions of four new species (Neuroptera, Myrmeleontidae) BRUNO MICHEL1 & MASSOUROUDINI AKOUDJIN² 1CIRAD, UMR CBGP (INRA/IRD/CIRAD/ Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988, Montfer- rier-sur-Lez, France. E-mail: [email protected] 2CIRDES, BP 454, Bobo-Dioulasso, Burkina Faso. E-mail: [email protected] Abstract The Neuroleon species of sub-Saharan West Africa are reviewed. Eight species are recorded: N. drosimus Navás, N. lap- idarius nov. sp., N. modestus (Navás), N. nubilatus (Navás), N. rapax nov. sp., N. raptor nov. sp., N. pardalice (Banks), and N. ruber nov. sp. A ninth species, N. nigericus Navás, of which no specimens could be examined, is tentatively main- tained in the genus Neuroleon pending examination of the type. Three new synonymies are established. Seven species are removed from the genus Neuroleon. N. pardalice is recorded from the region for the first time. The species are illustrated and keyed. Key words: Antlion, Afrotropical Region, Myrmeleontinae, Nemoleontini Introduction This contribution to taxonomic knowledge of the antlions of West Africa deals with the genus Neuroleon Navás, 1909, which was described including the following species: N. arenarius (Navás, 1904) (a replacement name for Myrmeleon variegatus Rambur, 1842, nec Klug, 1839), N. ochreatus (Navás, 1904), N sticticus (Navás, 1903) (= N. egenus (Navás, 1914a), a preoccupied name), and N. distichus (Navás, 1903), without designating a type species for the new genus.
    [Show full text]
  • Supplementary Information
    Supplementary Information A first higher-level time-calibrated phylogeny of antlions (Neuroptera: Myrmeleontidae) Bruno Michel, Anne-Laure Clamens, Olivier Béthoux, Gael J. Kergoat, Fabien L. Condamine Table S1. Taxon sampling used in this study. It contains information on the taxonomy and systematics, as well as the voucher ID, and the collection locality. It also contains the GenBank accession numbers for each molecular marker successfully sequenced. Table S2. PCR conditions (a) and PCR primers (b) used in this study to sequence the selected genes. Figure S1. The Bayesian consensus tree inferred with MrBayes on the 113-taxa and seven genes. Posterior probabilities depict node supports. Figure S2. Bayesian time-calibrated tree as inferred with BEAST (three fossil calibrations set with uniform priors, and a birth-death process a the tree prior). Figure S3. Bayesian time-calibrated tree as inferred with BEAST (four fossil calibrations set with uniform priors, and a birth-death process a the tree prior). ! ! Table S1. Taxon sampling used in this study. It contains information on the taxonomy and systematics, as well as the voucher ID, and the collection locality. It also contains the GenBank accession numbers for each molecular marker successfully sequenced. Voucher Family Subfamily Tribe Subtribe Genus Species Locality COI COIII Cytb 12S 16S 18S 28S Ascalaphidae Ascalohybris subjacens - NC_021428 NC_021428 NC_021428 NC_021428 NC_021428 KC413913 - Ascalaphidae Ascaloptynx appendiculata - NC_011277 NC_011277 NC_011277 NC_011277 NC_011277
    [Show full text]
  • Modulation in the Feeding Prey Capture of the Antlion, Myrmeleon Crudelis
    RESEARCH ARTICLE Modulation in the Feeding Prey CaptureoftheAnt-lion, Myrmeleon crudelis à ERIC PATTEN LAMBERT , PHILIP JAY MOTTA, AND DAYV LOWRY Department of Integrative Biology, University of South Florida, Tampa, Florida ABSTRACT Ant-lions are pit-building larvae (Neuroptera: Myrmeleontidae), which possess relatively large mandibles used for catching and consuming prey. Few studies involving terrestrial arthropod larva have investigated prey capture behavior and kinematics and no study has shown modulation of strike kinematics. We examined feeding kinematics of the ant-lion, Myrmeleon crudelis,using high-speed video to investigate whether larvae modulate strike behavior based on prey location relative to the mandible. Based on seven capture events from five M. crudelis,thestriketook 17.6072.92 msec and was characterized by near-simultaneous contact of both mandibles with the prey. Modulation of the angular velocity of the mandibles based on prey location was clearly demonstrated. M. crudelis larvae attempted to simultaneously contact prey with both mandibles by increasing mean angular velocity of the far mandible (65721 rad secÀ1) compared with the near mandible (35714 rad secÀ1). Furthermore, kinematic results showed a significant difference for mean angular velocity between the two mandibles (Po0.005). Given the lengthy strike duration compared with other fast-striking arthropods, these data suggest that there is a tradeoff between the ability to modulate strike behavior for accurate simultaneous mandible contact and the overall velocity of the strike. The ability to modulate prey capture behavior may increase dietary breadth and capture success rate in these predatory larvae by allowing responsive adjustment to small-scale variations in prey size, presentation, and escape response.
    [Show full text]
  • Preference of Antlion and Wormlion Larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for Substrates According to Substrate Particle Sizes
    Eur. J. Entomol. 112(3): 000–000, 2015 doi: 10.14411/eje.2015.052 ISSN 1210-5759 (print), 1802-8829 (online) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes Dušan DEVETAK 1 and AMY E. ARNETT 2 1 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; e-mail: [email protected] 2 Center for Biodiversity, Unity College, 90 Quaker Hill Road, Unity, ME 04915, U.S.A.; e-mail: [email protected] Key words. Neuroptera, Myrmeleontidae, Diptera, Vermileonidae, antlions, wormlions, substrate particle size, substrate selection, pit-builder, non-pit-builder, habitat selection Abstract. Sand-dwelling wormlion and antlion larvae are predators with a highly specialized hunting strategy, which either construct efficient pitfall traps or bury themselves in the sand ambushing prey on the surface. We studied the role substrate particle size plays in these specialized predators. Working with thirteen species of antlions and one species of wormlion, we quantified the substrate particle size in which the species were naturally found. Based on these particle sizes, four substrate types were established: fine substrates, fine to medium substrates, medium substrates, and coarse substrates. Larvae preferring the fine substrates were the wormlion Lampromyia and the antlion Myrmeleon hyalinus originating from desert habitats. Larvae preferring fine to medium and medium substrates belonged to antlion genera Cueta, Euroleon, Myrmeleon, Nophis and Synclisis and antlion larvae preferring coarse substrates were in the genera Distoleon and Neuroleon. In addition to analyzing naturally-occurring substrate, we hypothesized that these insect larvae will prefer the substrate type that they are found in.
    [Show full text]
  • Comparative Study of Sensilla and Other Tegumentary Structures of Myrmeleontidae Larvae (Insecta, Neuroptera)
    Received: 30 April 2020 Revised: 17 June 2020 Accepted: 11 July 2020 DOI: 10.1002/jmor.21240 RESEARCH ARTICLE Comparative study of sensilla and other tegumentary structures of Myrmeleontidae larvae (Insecta, Neuroptera) Fernando Acevedo Ramos1,2 | Víctor J. Monserrat1 | Atilano Contreras-Ramos2 | Sergio Pérez-González1 1Departamento de Biodiversidad, Ecología y Evolución, Unidad Docente de Zoología y Abstract Antropología Física, Facultad de Ciencias Antlion larvae have a complex tegumentary sensorial equipment. The sensilla and Biológicas, Universidad Complutense de Madrid, Madrid, Spain other kinds of larval tegumentary structures have been studied in 29 species of 2Departamento de Zoología, Instituto de 18 genera within family Myrmeleontidae, all of them with certain degree of Biología- Universidad Nacional Autónoma de psammophilous lifestyle. The adaptations for such lifestyle are probably related to México, Mexico City, Mexico the evolutionary success of this lineage within Neuroptera. We identified eight types Correspondence of sensory structures, six types of sensilla (excluding typical long bristles) and two Fernando Acevedo Ramos, Departamento de Biodiversidad, Ecología y Evolución, Unidad other specialized tegumentary structures. Both sensilla and other types of structures Docente de Zoología y Antropología Física, that have been observed using scanning electron microscopy show similar patterns in Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain. terms of occurrence and density in all the studied
    [Show full text]
  • Neuropterida (Insecta: Megaloptera, Raphidioptera, Neuroptera) of Pakistan: a Catalogue and Faunistic Review
    Zootaxa 4686 (4): 497–541 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4686.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:8A62C7C0-CFC6-4158-8AB8-87680901FBA3 Neuropterida (Insecta: Megaloptera, Raphidioptera, Neuroptera) of Pakistan: a catalogue and faunistic review MUHAMMAD ASGHAR HASSAN1, JOHN D. OSWALD2, AHMED ZIA3 & XINGYUE LIU1,4 1Department of Entomology, China Agricultural University, Beijing 100193, China. 2Department of Entomology, Texas A&M University, College Station, Texas 77843, USA. 3National Insect Museum, National Agricultural Research Centre, Islamabad 44000 Pakistan. 4Corresponding author. E-mail: [email protected] Table of content Abstract. 498 Introduction. 499 Materials and methods . 499 Results . 500 RAPHIDIOPTERA Navás, 1916. 501 Family Inocelliidae Navás, 1913 . 501 Subfamily Inocelliinae Navás, 1913. 501 Family Raphidiidae Latreille, 1810 . 501 Subfamily Raphidiinae Latreille, 1810. 501 Genus Mongoloraphidia H. Aspöck & U. Aspöck, 1968. 501 MEGALOPTERA Latreille, 1802 . 501 Family Corydalidae Leach, 1815. 501 Subfamily Corydalinae Davis, 1903. 502 Genus Nevromus Rambur, 1842. 502 NEUROPTERA Linnaeus, 1758. 502 Family Coniopterygidae Burmeister, 1839. 502 Subfamily Aleuropteryginae Enderlein, 1905. 502 Genus Aleuropteryx Löw, 1885. 502 Genus Helicoconis Enderlein, 1905. 502 Genus Hemisemidalis Meinander, 1972. 502 Genus Semidalis Enderlein, 1905. 502 Subfamily Coniopteryginae Enderlein, 1905. 503 Genus Coniopteryx Curtis, 1834 . 503 Family Dilaridae Newman, 1853. 503 Subfamily Dilarinae Newman, 1853. 503 Genus Dilar Rambur, 1838. 503 Family Berothidae Handlirsch, 1906 . 504 Subfamily Berothinae Handlirsch, 1906. 504 Genus Asadeteva U. Aspöck & H. Aspöck, 1981. 504 Family Mantispidae Leach, 1815. 504 Subfamily Mantispinae Leach, 1815 .
    [Show full text]
  • Review of Japanese Myrmeleontidae (Neuroptera)
    Title Review of Japanese Myrmeleontidae (Neuroptera) Author(s) SEKIMOTO, Shigeyuki Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 70, 1- Citation 87 Issue Date 2014-10 Doc URL http://hdl.handle.net/2115/57386 Type bulletin (article) File Information 01:01-87p.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 70: 1–87 OCTOBER 2014 REVIEW OF JAPANESE MYRMELEONTIDAE (NEUROPTERA) By SHIGEYUKI SEKIMOTO Abstract SEKIMOTO, S., 2014. Review of Japanese Myrmeleontidae (Neuroptera). Ins. matsum. n. s. ±¿JV -DSDQHVHVSHFLHVRIWKHIDPLO\0\UPHOHRQWLGDHDUHUHYLVHG7KHIROORZLQJ VSHFLHVDUHUHFRJQL]HGMyrmeleon formicarius Linnaeus, M. bore (Tjeder), M. solers Walker, M. taiwanensis0LOOHU 6WDQJH QHZUHFRUGIURP-DSDQ Baliga micans (McLachlan), Dendroleon pupillaris (Gerstaecker), Gatzara jezoensis (Okamoto), Epacanthaclisis moiwana (Okamoto), Distoleon nigricans (Okamoto), Di. contubernalis (McLachlan), Di. bistrigatus (Rambur), Di. boninensis Adams, Neuroleon parvulus (Okamoto) n. comb., Paraglenurus japonicus (McLachlan), Pa. okinawensis (Okamoto), Pseudoformicaleo nubecula (Gerstaecker) and Synclisis japonica (McLachlan). The male of Di. boninensisLVUHFRUGHGIRUWKH¿UVWWLPH$OO-DSDQHVHVSHFLHVRI0\UPHOHRQWLGDH are redescribed and illustrated, except for M. taiwanensis for which detailed male and IHPDOHWHUPLQDOVWUXFWXUHVZHUHUHFHQWO\LOOXVWUDWHG$NH\WRWKHWULEHVJHQHUDDQG species of Japanese antlions is provided. In appendix,
    [Show full text]
  • Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
    Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education.
    [Show full text]
  • New Data About the Distribution of Neuropterida in Bulgaria and Romania
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 27 (online 001): 1–39 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 3.10.2018 ROLAND DOBOSZ1, ALEXI POPOV2 New data about the distribution of Neuropterida in Bulgaria and Romania http://doi.org/10.5281/zenodo.1443230 1 Upper Silesian Museum, Department of Natural History, pl. Jana III Sobieskiego 2, 41-902 Bytom, Poland e-mail: [email protected] 2 National Museum of Natural History, Tsar Osvoboditel Blvd 1, 1000 Sofia, Bulgaria e-mail: [email protected] Abstract: The collections of neuropterid orders from Bulgaria and Romania preserved in museums in Poland (Upper Silesian Museum in Bytom and Museum and Institute of Zoology in Warsaw) are identified. Faunistic information on 89 species is reported: 77 species from Bulgaria and 37 species from Romania (25 species from both countries). Coniopteryx (Xeroconiopteryx) atlasensis, Megalomus tineoides, Cunctochrysa cosmia and Neuroleon assimilis are new species for the fauna of Bulgaria. These first records shift the range borders of three species with 190 to 700 km northwards. Easternmost localities of Phaeostigma (Phaeostigma) pilicollis and Nothochrysa capitata and northernmost locality of Neuroleon assimilis are registered. The new localities outline the borders of the ranges of 20 species. Very rare species are Phaeostigma (Pontoraphidia) rhodopicum (Balkan endemic species), Libelloides lacteus (a single population in Romania), Coniopteryx (Metaconiopteryx) lentiae (in Romania), Coniopteryx (Holoconiopteryx) haematica and Sagittalata perla (both in Bulgaria), and Nedroledon anatolicus (in both countries). Key words: Raphidioptera, Megaloptera, Neuroptera, faunistics, Bulgaria, Romania. INTRODUCTION The fauna of all three neuropterid orders of Romania and Bulgaria is well explored and the species diversity is almost fully known.
    [Show full text]
  • A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge Nicole F
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge Nicole F. Boehme Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Boehme, Nicole F., "A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge" (2014). All Graduate Theses and Dissertations. 2078. https://digitalcommons.usu.edu/etd/2078 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. A COMPARISON OF ANTLIONS, BEES, DARKLING BEETLES AND VELVET ANTS ACROSS SAND DUNE AND NON-SAND DUNE HABITATS AT ASH MEADOWS NATIONAL WILDLIFE REFUGE by Nicole F. Boehme A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: _________________________ _________________________ Dr. James P. Pitts Dr. Theresa L. Pitts-Singer Major Professor Committee Member _________________________ _________________________ Dr. Barbara Bentz Dr. Mark McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright © Nicole F. Boehme 2014 All Rights Reserved iii ABSTRACT A Comparison of Antlions, Bees, Darkling Beetles and Velvet ants across Sand Dune and Non-sand Dune Habitats at Ash Meadows National Wildlife Refuge by Nicole F.
    [Show full text]
  • Works, and Natural History
    INSECTA MUNDI A Journal of World Insect Systematics 0182 Antlions of Hispaniola (Neuroptera: Myrmeleontidae) Robert B. Miller Research Associate Florida State Collection of Arthropods P. O. Box 147100 Gainesville, FL, 32614-7100, U.S.A. Lionel A. Stange Florida Department of Agriculture and Consumer Services Florida State Collection of Arthropods P. O. Box 147100 Gainesville, FL, 32614-7100, U.S.A. Date of Issue: May 27, 2011 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Robert B. Miller and Lionel A. Stange Antlions of Hispaniola (Neuroptera: Myrmeleontidae) Insecta Mundi 0182: 1-28 Published in 2011 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomencla- ture, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book re- views or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manu- scripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manu- script must be a current member of the Center for Systematic Entomology.
    [Show full text]