Hydrocortisone Vs. Dexamethasone Treatment for Bronchopulmonary Dysplasia and Their Effects on General Movements in Preterm Infants

Total Page:16

File Type:pdf, Size:1020Kb

Hydrocortisone Vs. Dexamethasone Treatment for Bronchopulmonary Dysplasia and Their Effects on General Movements in Preterm Infants nature publishing group Articles Clinical Investigation Hydrocortisone vs. dexamethasone treatment for bronchopulmonary dysplasia and their effects on general movements in preterm infants Marrit M. Hitzert1, Manon J.N.L. Benders2, Annemiek M. Roescher1, Frank van Bel2, Linda S. de Vries2 and Arend F. Bos1 INTRODUCTION: Hydrocortisone (HC) and dexamethasone neurological outcome as compared to controls (6,7). A two- (DXM) are used to treat preterm infants at risk for bronchopul- center comparative study reported that HC-treated children monary dysplasia (BPD). This may, however, affect their long- had a better cognitive and motor neurodevelopmental outcome term neurological development. We aimed to determine the as compared to DXM-treated children (8). In a recent system- effect of HC and DXM therapy in preterm infants on neurologi- atic review, however, early postnatal HC therapy showed no cal functioning as assessed by the quality of general movements improvement in mortality, the rates of BPD, or in-home oxygen (GMs) until 3 months after term. dependence (9). As yet, no consensus exists regarding the most RESULTS: We found no difference in the quality of GMs between optimal therapy for preterm infants at risk for BPD. HC and DXM infants until term age. At 3 months, HC infants had The qualitative assessment of general movements (GMs) a higher median motor optimality score (MOS) than DXM infants from video recordings is a sensitive, noninvasive method to (25 vs. 21, P = 0.015). In the DXM group, MOS on the first day of investigate the integrity of the young infant’s brain (10,11). This treatment was lower than before treatment (10 vs. 11, P = 0.030). method is based on visual Gestalt perception of GM quality DISCUSSION: MOS decreased in DXM infants on the first day up to 5 months after term. Normal GMs are characterized by following treatment and at 3 months after term. This was not the complexity, variability, and fluency, whereas in abnormal GMs, case in HC infants. Our study suggests that neurological func- these are reduced (12). The quality of the fidgety general move- tioning at 3 months after term is better in infants treated with HC ments (FMs), present between 9 and 20 weeks after term and than in infants treated with DXM. defined as continuous small movements of moderate speed in METHODS: We performed a longitudinal, observational study all directions, is a particularly accurate marker for neurological including 56 preterm infants (n = 17 HC, n = 17 DXM, n = 22 outcome: most infants (96%) with normal FMs have normal controls). GM quality, videoed before and after treatment, neurological outcomes, whereas most infants (95%) in whom was assessed. In addition, a MOS was assigned to details of the FMs are absent during this period develop cerebral palsy (13). GMs. Recent studies reported that detailed aspects of GMs, expressed as a motor optimality score (MOS), also have predictive value mproved neonatal intensive care over recent decades has led for mild motor abnormalities later on (14,15). Ito significantly increased survival of preterm infants. The inci- Previously, DXM treatment was associated with the presence dence of bronchopulmonary dysplasia (BPD), however, is still of abnormal GMs, which correlated with the severity of brain approximately 30% (1). Previous studies investigating the effect lesions and the occurrence of cerebral palsy (16,17). The influ- of postnatal corticosteroid therapy showed that dexamethasone ence of HC therapy on short-term neurological outcome as (DXM) therapy facilitates extubation and reduces the rate of assessed by the quality of GMs is unknown. BPD at 28 days after birth and at 36 weeks postmenstrual age This led to our aim of determining the effects of HC and (2). Furthermore, there is a reduction in the need for late rescue DXM therapy in preterm infants on neurological functioning as with corticosteroids (3). Unfortunately, postnatal DXM therapy assessed by the quality of GMs until 3 months after term. is associated with short-term adverse effects and an increased risk of motor disorders, including cerebral palsy (3,4), particu- RESULTS larly if therapy is started within the first week of life (5). Various Patient Characteristics studies on postnatal hydrocortisone (HC) therapy reported an Table 1 shows the most important patient characteristics. equal reduction in oxygen dependency and fewer short-term The HC group differed from the DXM group in that the for- adverse effects than DXM, and no long-term adverse effects on mer infants had lower birth weights, had higher Apgar scores 1Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 2Department of Pediatrics, Wilhelmina Children’s Hospital Utrecht, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands.Correspondence: Marrit M. Hitzert ([email protected]) Received 15 April 2011; accepted 3 August 2011. doi:10.1038/pr.2011.15 100 Pediatric RESEArCH Volume 71 | Number 1 | January 2012 Copyright © 2012 International Pediatric Research Foundation, Inc. General movements after corticosteroids Articles at 5 min, and received lower mean and cumulative equivalent between the HC group and the controls nor between the HC doses of cortisol. Although not significantly different, HC group and the DXM group. At 3 months after term, 18 control infants were treated more often with sedative, anticonvulsant, infants showed normal FMs and in one infant, FMs were absent. or muscle-relaxant drugs during corticosteroid treatment than In the DXM group, the quality of FMs was abnormal in more the DXM group (94% and 67%, respectively). infants as compared to the controls (P = 0.013). Again, we found Brain ultrasound scans of three DXM infants deteriorated no differences in the quality of FMs between the HC group and after initiating DXM treatment. In one infant, the density of the controls, and between the HC and DXM groups. periventricular white matter increased, which was followed by a leukomalacia grade III. Two infants in whom periventricular MOSs in HC- and DXM-Treated Infants echodensities had normalized before DXM therapy developed In the first week after treatment had commenced, the median ventriculomegaly. All three of these infants had abnormal GMs MOS was higher in controls as compared to infants treated before therapy. At 2 years of age, six of the DXM-treated chil- with corticosteroids (Figure 2a). This difference was significant dren had developed cerebral palsy vs. none of the HC-treated between the DXM group and control infants (median 10 vs. 14, infants (P = 0.018). P = 0.010) only on day 1. We found no differences between Data on neurodevelopmental outcome at 2 years are pre- the two treatment groups, except for MOS at 3 months after sented in Table 2. In each group, test results of three infants term (Figure 2b). MOS of controls (median 24) was higher were missing either due to loss of follow-up or an insufficiently as compared to the DXM group (median 21, P = 0.010), and cooperating infant. it was higher for the infants in the HC group (median 25) as compared to the infants in the DXM group (P = 0.015). Quality of GMs In addition, we analyzed the change in MOS from day 0 to The results on the quality of GMs are shown in Figure 1. In the day 1, with each infant serving as his or her own control. Hypo- control group, nine infants showed normal GMs on day 0 and 13 kinetic infants were given 8 points, i.e., the lowest MOS. In the showed abnormal GMs. We found no difference in the quality HC group, two infants were hypokinetic before treatment. One of GMs between the HC and DXM groups and the controls on of these infants showed poor-repertoire GMs on day 1 whereas day 0. On day 7 after therapy had commenced, we found more for the other infant, no recording was available for day 1. None infants in the DXM group in whom the quality of GMs was of the infants in the DXM group was hypokinetic before corti- abnormal as compared to the controls. This finding just reached costeroid administration, whereas two infants became hypoki- statistical significance (P = 0.017). We found differences neither netic on day 1. As shown in Figure 3, we found the median MOS Table 1. Patient characteristics Hydrocortisone (n = 17) Dexamethasone (n = 17) Controls (n = 22) P value Boys/girls 11/6 13/4 12/10 NS Twins or triplets 4/17 8/17 9/22 NS Birth weight (g) 800 (630−1,700) 970 (700−1,800) 930 (595−1,290) 0.047* Gestational age (wk) 27.1 (24.9−31) 27.9 (26−30.3) 27.2 (26−29.6) NS NBRS-revised 6 (3−8) 6 (3−13) 4 (1−12) 0.036§ Apgar score at 5 min 8 (4−10) 5 (1−10) 9 (4−10) 0.009* § Mean equivalent cortisol dose (mg/d) 3.1 ± 0.8 9.8 ± 5.1 — <0.001* Cumulative equivalent cortisol dose (mg/kg) 108 ± 70 170 ± 69 — 0.006* Treatment duration (d) 22 (13−84) 24 (7−69) — NS Postnatal day of start therapy (d) 16 (7−44) 16 (4−25) 17 (9−30) NS Grade III−IV IVH 1/16 1/17 3/22 NS Grade III−IV PVL 0/17 0/17 0/22 NS Sedative or anticonvulsant drugs 16/17 12/18 6/22 <0.001†,§ Sepsis (positive blood culture) 3/17 4/16 9/22 NS Seizures (confirmed by EEG) 1/17 3/17 1/22 NS Corticosteroids mother 15/17 12/17 17/22 NS BPD 16/17 16/17 8/22 <0.001†,§ Cerebral palsy 0/17 6/17 0/22 0.001*,§ Variables represent frequencies (n/total), median (range), or mean (± SD).
Recommended publications
  • This Fact Sheet Provides Information to Patients with Eczema and Their Carers. About Topical Corticosteroids How to Apply Topic
    This fact sheet provides information to patients with eczema and their carers. About topical corticosteroids You or your child’s doctor has prescribed a topical corticosteroid for the treatment of eczema. For treating eczema, corticosteroids are usually prepared in a cream or ointment and are applied topically (directly onto the skin). Topical corticosteroids work by reducing inflammation and helping to control an over-reactive response of the immune system at the site of eczema. They also tighten blood vessels, making less blood flow to the surface of the skin. Together, these effects help to manage the symptoms of eczema. There is a range of steroids that can be used to treat eczema, each with different strengths (potencies). On the next page, the potencies of some common steroids are shown, as well as the concentration that they are usually used in cream or ointment preparations. Using a moisturiser along with a steroid cream does not reduce the effect of the steroid. There are many misconceptions about the side effects of topical corticosteroids. However these treatments are very safe and patients are encouraged to follow the treatment regimen as advised by their doctor. How to apply topical corticosteroids How often should I apply? How much should I apply? Apply 1–2 times each day to the affected area Enough cream should be used so that the of skin according to your doctor’s instructions. entire affected area is covered. The cream can then be rubbed or massaged into the Once the steroid cream has been applied, inflamed skin. moisturisers can be used straight away if needed.
    [Show full text]
  • 4. Antibacterial/Steroid Combination Therapy in Infected Eczema
    Acta Derm Venereol 2008; Suppl 216: 28–34 4. Antibacterial/steroid combination therapy in infected eczema Anthony C. CHU Infection with Staphylococcus aureus is common in all present, the use of anti-staphylococcal agents with top- forms of eczema. Production of superantigens by S. aureus ical corticosteroids has been shown to produce greater increases skin inflammation in eczema; antibacterial clinical improvement than topical corticosteroids alone treatment is thus pivotal. Poor patient compliance is a (6, 7). These findings are in keeping with the demon- major cause of treatment failure; combination prepara- stration that S. aureus can be isolated from more than tions that contain an antibacterial and a topical steroid 90% of atopic eczema skin lesions (8); in one study, it and that work quickly can improve compliance and thus was isolated from 100% of lesional skin and 79% of treatment outcome. Fusidic acid has advantages over normal skin in patients with atopic eczema (9). other available topical antibacterial agents – neomycin, We observed similar rates of infection in a prospective gentamicin, clioquinol, chlortetracycline, and the anti- audit at the Hammersmith Hospital, in which all new fungal agent miconazole. The clinical efficacy, antibac- patients referred with atopic eczema were evaluated. In terial activity and cosmetic acceptability of fusidic acid/ a 2-month period, 30 patients were referred (22 children corticosteroid combinations are similar to or better than and 8 adults). The reason given by the primary health those of comparator combinations. Fusidic acid/steroid physician for referral in 29 was failure to respond to combinations work quickly with observable improvement prescribed treatment, and one patient was referred be- within the first week.
    [Show full text]
  • Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
    Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid.
    [Show full text]
  • Etats Rapides
    List of European Pharmacopoeia Reference Standards Effective from 2015/12/24 Order Reference Standard Batch n° Quantity Sale Information Monograph Leaflet Storage Price Code per vial Unit Y0001756 Exemestane for system suitability 1 10 mg 1 2766 Yes +5°C ± 3°C 79 ! Y0001561 Abacavir sulfate 1 20 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001552 Abacavir for peak identification 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001551 Abacavir for system suitability 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0000055 Acamprosate calcium - reference spectrum 1 n/a 1 1585 79 ! Y0000116 Acamprosate impurity A 1 50 mg 1 3-aminopropane-1-sulphonic acid 1585 Yes +5°C ± 3°C 79 ! Y0000500 Acarbose 3 100 mg 1 See leaflet ; Batch 2 is valid until 31 August 2015 2089 Yes +5°C ± 3°C 79 ! Y0000354 Acarbose for identification 1 10 mg 1 2089 Yes +5°C ± 3°C 79 ! Y0000427 Acarbose for peak identification 3 20 mg 1 Batch 2 is valid until 31 January 2015 2089 Yes +5°C ± 3°C 79 ! A0040000 Acebutolol hydrochloride 1 50 mg 1 0871 Yes +5°C ± 3°C 79 ! Y0000359 Acebutolol impurity B 2 10 mg 1 -[3-acetyl-4-[(2RS)-2-hydroxy-3-[(1-methylethyl)amino] propoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! acetamide (diacetolol) Y0000127 Acebutolol impurity C 1 20 mg 1 N-(3-acetyl-4-hydroxyphenyl)butanamide 0871 Yes +5°C ± 3°C 79 ! Y0000128 Acebutolol impurity I 2 0.004 mg 1 N-[3-acetyl-4-[(2RS)-3-(ethylamino)-2-hydroxypropoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! butanamide Y0000056 Aceclofenac - reference spectrum 1 n/a 1 1281 79 ! Y0000085 Aceclofenac impurity F 2 15 mg 1 benzyl[[[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxy]acetate
    [Show full text]
  • St John's Institute of Dermatology
    St John’s Institute of Dermatology Topical steroids This leaflet explains more about topical steroids and how they are used to treat a variety of skin conditions. If you have any questions or concerns, please speak to a doctor or nurse caring for you. What are topical corticosteroids and how do they work? Topical corticosteroids are steroids that are applied onto the skin and are used to treat a variety of skin conditions. The type of steroid found in these medicines is similar to those produced naturally in the body and they work by reducing inflammation within the skin, making it less red and itchy. What are the different strengths of topical corticosteroids? Topical steroids come in a number of different strengths. It is therefore very important that you follow the advice of your doctor or specialist nurse and apply the correct strength of steroid to a given area of the body. The strengths of the most commonly prescribed topical steroids in the UK are listed in the table below. Table 1 - strengths of commonly prescribed topical steroids Strength Chemical name Common trade names Mild Hydrocortisone 0.5%, 1.0%, 2.5% Hydrocortisone Dioderm®, Efcortelan®, Mildison® Moderate Betamethasone valerate 0.025% Betnovate-RD® Clobetasone butyrate 0.05% Eumovate®, Clobavate® Fluocinolone acetonide 0.001% Synalar 1 in 4 dilution® Fluocortolone 0.25% Ultralanum Plain® Fludroxycortide 0.0125% Haelan® Tape Strong Betamethasone valerate 0.1% Betnovate® Diflucortolone valerate 0.1% Nerisone® Fluocinolone acetonide 0.025% Synalar® Fluticasone propionate 0.05% Cutivate® Hydrocortisone butyrate 0.1% Locoid® Mometasone furoate 0.1% Elocon® Very strong Clobetasol propionate 0.1% Dermovate®, Clarelux® Diflucortolone valerate 0.3% Nerisone Forte® 1 of 5 In adults, stronger steroids are generally used on the body and mild or moderate steroids are used on the face and skin folds (armpits, breast folds, groin and genitals).
    [Show full text]
  • Connecticut Medicaid
    ACNE AGENTS, TOPICAL ‡ ANGIOTENSIN MODULATOR COMBINATIONS ANTICONVULSANTS, CONT. CONNECTICUT MEDICAID (STEP THERAPY CATEGORY) AMLODIPINE / BENAZEPRIL (ORAL) LAMOTRIGINE CHEW DISPERS TAB (not ODT) (ORAL) (DX CODE REQUIRED - DIFFERIN, EPIDUO and RETIN-A) AMLODIPINE / OLMESARTAN (ORAL) LAMOTRIGINE TABLET (IR) (not ER) (ORAL) Preferred Drug List (PDL) ACNE MEDICATION LOTION (BENZOYL PEROXIDE) (TOPICAL)AMLODIPINE / VALSARTAN (ORAL) LEVETIRACETAM SOLUTION, IR TABLET (not ER) (ORAL) • The Connecticut Medicaid Preferred Drug List (PDL) is a BENZOYL PEROXIDE CREAM, WASH (not FOAM) (TOPICAL) OXCARBAZEPINE TABLET (ORAL) listing of prescription products selected by the BENZOYL PEROXIDE 5% and 10% GEL (OTC) (TOPICAL) ANTHELMINTICS PHENOBARBITAL ELIXIR, TABLET (ORAL) Pharmaceutical and Therapeutics Committee as efficacious, BENZOYL PEROXIDE 6% CLEANSER (OTC) (TOPICAL) ALBENDAZOLE TABLET (ORAL) PHENYTOIN CHEW TABLET, SUSPENSION (ORAL) safe and cost effective choices when prescribing for HUSKY CLINDAMYCIN PH 1% PLEGET (TOPICAL) BILTRICIDE TABLET (ORAL) PHENYTOIN SOD EXT CAPSULE (ORAL) A, HUSKY C, HUSKY D, Tuberculosis (TB) and Family CLINDAMYCIN PH 1% SOLUTION (not GEL or LOTION) (TOPICAL)IVERMECTIN TABLET (ORAL) PRIMIDONE (ORAL) Planning (FAMPL) clients. CLINDAMYCIN / BENZOYL PEROXIDE 1.2%-5% (DUAC) (TOPICAL) SABRIL 500 MG POWDER PACK (ORAL) • Preferred or Non-preferred status only applies to DIFFERIN 0.1% CREAM (TOPICAL) (not OTC GEL) (DX CODE REQ.) ANTI-ALLERGENS, ORAL SABRIL TABLET (ORAL) those medications that fall within the drug classes DIFFERIN
    [Show full text]
  • Advice for Patients Who Take Replacement Steroids (Hydrocortisone, Prednisolone, Dexamethasone Or Plenadren) for Pituitary/Adrenal Insufficiency
    Advice for patients who take replacement steroids (hydrocortisone, prednisolone, dexamethasone or plenadren) for pituitary/adrenal insufficiency A number of you have been in touch looking for advice relating to the global coronavirus (also known as COVID-19) outbreak. If you are on steroid replacement therapy for pituitary or adrenal disease, or care for someone who is, and you’re worried about coronavirus, we’ve brought together a number of resources that we hope you will find useful. Coronavirus Adrenal Insufficiency Advice for Patients Primary adrenal insufficiency refers to all patients with loss of function of the adrenal itself, mostly either due to autoimmune Addison’s disease, or other causes such as congenital adrenal hyperplasia, bilateral adrenalectomy and adrenoleukodystrophy. The overwhelming majority of primary adrenal insufficiency patients suffer from both glucocorticoid and mineralocorticoid deficiency and usually take hydrocortisone (or prednisolone) and fludrocortisone. Our guidance similarly applies to patients with secondary adrenal insufficiency mostly due to pituitary tumours or previous high-dose glucocorticoid treatment. These patients take hydrocortisone for glucocorticoid deficiency As you will be aware it is important for patients with adrenal insufficiency to increase their steroids if unwell as per the usual sick day rules. Please ensure you have sufficient supplies to cover increased doses if you become unwell and an up to date emergency injection of hydrocortisone 100mg. Patients who suffer from a suspected or confirmed infection with coronavirus usually have high fever for many hours of the day, which results in the need for larger than usual steroid doses, so we advise slightly different sick day rules, which are listed below.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • Differential Effects of Hydrocortisone, Prednisone, And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Nebesio et al. International Journal of Pediatric Endocrinology (2016) 2016:17 DOI 10.1186/s13633-016-0035-5 RESEARCH Open Access Differential effects of hydrocortisone, prednisone, and dexamethasone on hormonal and pharmacokinetic profiles: a pilot study in children with congenital adrenal hyperplasia Todd D. Nebesio1*, Jamie L. Renbarger2,3, Zeina M. Nabhan1, Sydney E. Ross2, James E. Slaven4, Lang Li5, Emily C. Walvoord1 and Erica A. Eugster1 Abstract Background: Little is known about the comparative effects of different glucocorticoids on the adrenal and growth hormone (GH) axes in children with congenital adrenal hyperplasia (CAH). We sought to compare the effects of hydrocortisone (HC), prednisone (PDN), and dexamethasone (DEX) in children with classic CAH and to investigate a potential role of pharmacogenetics. Methods: Subjects were randomly assigned to three sequential 6-week courses of HC, PDN, and DEX, each followed by evaluation of adrenal hormones, IGF-1, GH, and body mass index (BMI). Single nucleotide polymorphism (SNP) analysis of genes in the glucocorticoid pathway was also performed. Results: Nine prepubertal subjects aged 8.1 ± 2.3 years completed the study. Mean ACTH, androstenedione, and 17-hydroxyprogesterone (17-OHP) values were lower following the DEX arm of the study than after subjects received HC (p ≤ 0.016) or PDN (p ≤ 0.002). 17-OHP was also lower after HC than PDN (p < 0.001). There was no difference in IGF-1, GH, or change in BMI. SNP analysis revealed significant associations between hormone concentrations, pharmacokinetic parameters, and variants in several glucocorticoid pathway genes (ABCB1, NR3C1, IP013, GLCCI1).
    [Show full text]
  • Medrol® Methylprednisolone Tablets, USP
    Medrol® methylprednisolone tablets, USP DESCRIPTION MEDROL Tablets contain methylprednisolone which is a glucocorticoid. Glucocorticoids are adrenocortical steroids, both naturally occurring and synthetic, which are readily absorbed from the gastrointestinal tract. Methylprednisolone occurs as a white to practically white, odorless, crystalline powder. It is sparingly soluble in alcohol, in dioxane, and in methanol, slightly soluble in acetone, and in chloroform, and very slightly soluble in ether. It is practically insoluble in water. The chemical name for methylprednisolone is pregna-1,4-diene-3,20-dione, 11,17,21­ trihydroxy-6-methyl-, (6α,11β)-and the molecular weight is 374.48. The structural formula is represented below: Each MEDROL Tablet for oral administration contains 2 mg, 4 mg, 8 mg, 16 mg or 32 mg of methylprednisolone. Inactive ingredients: 2 mg 4 mg and 8 mg Calcium Stearate Calcium Stearate Corn Starch Corn Starch Erythrosine Sodium Lactose Lactose Sucrose Mineral Oil Sorbic Acid Sucrose 16 mg and 32 mg Calcium Stearate Corn Starch Lactose Mineral Oil Sucrose 1 Reference ID: 4296332 ACTIONS Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogs are primarily used for their potent anti-inflammatory effects in disorders of many organ systems. Glucocorticoids cause profound and varied metabolic effects. In addition, they modify the body’s immune responses to diverse stimuli. INDICATIONS AND USAGE MEDROL Tablets are indicated in the following conditions: 1. Endocrine Disorders Primary or secondary adrenocortical insufficiency (hydrocortisone or cortisone is the first choice; synthetic analogs may be used in conjunction with mineralocorticoids where applicable; in infancy mineralocorticoid supplementation is of particular importance).
    [Show full text]
  • Rectal Corticosteroids Versus Alternative Treatments in Ulcerative Colitis: a Meta-Analysis Gut: First Published As 10.1136/Gut.40.6.775 on 1 June 1997
    Gut 1997; 40: 775-781 775 Rectal corticosteroids versus alternative treatments in ulcerative colitis: a meta-analysis Gut: first published as 10.1136/gut.40.6.775 on 1 June 1997. Downloaded from J K Marshall, E J Irvine Abstract medication consistently to the splenic Background-Clear strategies to optimise flexure,49 and a larger volume seems to allow the use of corticosteroids in ulcerative more proximal delivery.10 11 Rectal foam dis- colitis are lacking. seminates medication to the rectum and distal Aim-A meta-analysis was undertaken to descending colon,'2-16 whereas suppositories examine critically the role of rectal corti- coat only the rectum.'7 18 costeroids in the management of active Although studies of rectally administered distal ulcerative colitis. corticosteroids have reported fewer systemic Methods-AJl reported randomised con- adverse effects than with oral preparations, trolled trials were retrieved by searching plasma concentrations of prednisolone were the Medline and EMBASE databases and similar after administration of identical oral or the bibliographies of relevant studies. rectal doses.'9 20 Suppression of the hypo- Trials which met inclusion criteria were thalamic-pituitary-adrenal axis in association assessed for scientific rigour. Data were with rectal therapy has also been shown.2' 26 extracted by two independent observers Newer topically active corticosteroids such according to predetermined criteria. as tixocortol, beclomethasone, prednisolone Results-Of 83 trials retrieved, 33 met metasulphabenzoate, and budesonide, with inclusion criteria. Pooled odds ratios restricted absorption or rapid hepatic metab- (POR) showed conventional rectal corti- olism have been developed to reduce the costeroids and rectal budesonide to be adverse effects associated with conventional clearly superior to placebo.
    [Show full text]
  • Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회
    REVIEW J Neurocrit Care 2017;10(2):53-59 https://doi.org/10.18700/jnc.170035 eISSN 2508-1349 Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회 Sophie Samuel, PharmD1, Thuy Nguyen, PharmD1, H. Alex Choi, MD2 1Department of Pharmacy, Memorial Hermann Texas Medical Center, Houston, TX; 2Department of Neurosurgery and Neurology, The University of Texas Medical School at Houston, Houston, TX, USA Corticosteroids (CSs) are used frequently in the neurocritical care unit mainly for their anti- Received December 7, 2017 inflammatory and immunosuppressive effects. Despite their broad use, limited evidence Revised December 7, 2017 exists for their efficacy in diseases confronted in the neurocritical care setting. There are Accepted December 17, 2017 considerable safety concerns associated with administering these drugs and should be limited Corresponding Author: to specific conditions in which their benefits outweigh the risks. The application of CSs in H. Alex Choi, MD neurologic diseases, range from traumatic head and spinal cord injuries to central nervous Department of Pharmacy, Memorial system infections. Based on animal studies, it is speculated that the benefit of CSs therapy Hermann Texas Medical Center, 6411 in brain and spinal cord, include neuroprotection from free radicals, specifically when given Fannin Street, Houston, TX 77030, at a higher supraphysiologic doses. Regardless of these advantages and promising results in USA animal studies, clinical trials have failed to show a significant benefit of CSs administration Tel: +1-713-500-6128 on neurologic outcomes or mortality in patients with head and acute spinal injuries. This Fax: +1-713-500-0665 article reviews various chemical structures between natural and synthetic steroids, discuss its E-mail: [email protected] pharmacokinetic and pharmacodynamic profiles, and describe their use in clinical practice.
    [Show full text]