Automatic Transcription of Bass Guitar Tracks Applied for Music Genre Classification and Sound Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Transcription of Bass Guitar Tracks Applied for Music Genre Classification and Sound Synthesis Automatic Transcription of Bass Guitar Tracks applied for Music Genre Classification and Sound Synthesis Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorlelegt der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Ilmenau von Dipl.-Ing. Jakob Abeßer geboren am 3. Mai 1983 in Jena Gutachter: Prof. Dr.-Ing. Gerald Schuller Prof. Dr. Meinard Müller Dr. Tech. Anssi Klapuri Tag der Einreichung: 05.12.2013 Tag der wissenschaftlichen Aussprache: 18.09.2014 urn:nbn:de:gbv:ilm1-2014000294 ii Acknowledgments I am grateful to many people who supported me in the last five years during the preparation of this thesis. First of all, I would like to thank Prof. Dr.-Ing. Gerald Schuller for being my supervisor and for the inspiring discussions that improved my understanding of good scientific practice. My gratitude also goes to Prof. Dr. Meinard Müller and Dr. Anssi Klapuri for being available as reviewers. Thank you for the valuable comments that helped me to improve my thesis. I would like to thank my former and current colleagues and fellow PhD students at the Semantic Music Technologies Group at the Fraunhofer IDMT for the very pleasant and motivating working atmosphere. Thank you Christian, Holger, Sascha, Hanna, Patrick, Christof, Daniel, Anna, and especially Alex and Estefanía for all the tea-time conversations, discussions, last-minute proof readings, and assistance of any kind. Thank you Paul for providing your musicological expertise and perspective in the genre classification experiments. I also thank Prof. Petri Toiviainen, Dr. Olivier Lartillot, and all the collegues at the Finnish Centre of Excellence in Interdisciplinary Music Research at the University of Jyväskylä for a very inspiring research stay in 2010. Many experiments described in this thesis would not have been possible without the support of other researches in the Music Information Retrieval community. I want to thank Justin Salamon, Matti Ryynänen, and Anssi Klapuri for providing me with their algorithms’ transcription results and Cory McKay for publishing the jSymbolic software. Finally, my biggest thanks go to my family, thank you Harald, Monika, Michel, Wolf for your support and thank you Franziska for your love and patience. Where words fail, music speaks. (Hans Christian Andersen) iii iv Abstract Music recordings most often consist of multiple instrument signals, which overlap in time and frequency. In the field of Music Information Retrieval (MIR), existing algorithms for the automatic transcription and analysis of music recordings aim to extract semantic information from mixed audio signals. In the last years, it was frequently observed that the algorithm performance is limited due to the signal interference and the resulting loss of information. One common approach to solve this problem is to first apply source separation algorithms to isolate the present musical instrument signals before analyzing them individually. The performance of source separation algorithms strongly depends on the number of instruments as well as on the amount of spectral overlap. In this thesis, isolated instrumental tracks are analyzed in order to circumvent the challenges of source separation. Instead, the focus is on the development of instrument-centered signal processing algorithms for music transcription, musical analysis, as well as sound synthesis. The electric bass guitar is chosen as an example instrument. Its sound production principles are closely investigated and considered in the algorithmic design. In the first part of this thesis, an automatic music transcription algorithm for electric bass guitar recordings will be presented. The audio signal is interpreted as a sequence of sound events, which are described by various parameters. In addition to the conventionally used score-level parameters note onset, duration, loudness, and pitch, instrument-specific parameters such as the applied instrument playing techniques and the geometric position on the instrument fretboard will be extracted. Different evaluation experiments confirmed that the proposed transcription algorithm outperformed three state-of-the-art bass transcription algorithms for the transcription of realistic bass guitar recordings. The estimation of the instrument-level parameters works with high accuracy, in particular for isolated note samples. In the second part of the thesis, it will be investigated, whether the sole analysis of the bassline of a music piece allows to automatically classify its music genre. Different score-based audio features will be proposed that allow to quantify tonal, rhythmic, and structural properties of basslines. Based on a novel data set of 520 bassline transcriptions from 13 different music genres, three approaches for music genre classification were compared. A rule-based classification system could achieve a mean class accuracy of 64.8 % by only taking features into account that were extracted from the bassline of a music piece. The re-synthesis of a bass guitar recordings using the previously extracted note parameters will be studied in the third part of this thesis. Based on the physical modeling of string instruments, a novel sound synthesis algorithm tailored to the electric bass guitar will be presented. The algorithm mimics different aspects of the instrument’s sound production mechanism such as string excitement, string damping, string-fret collision, and the influence of the electro-magnetic pickup. Furthermore, a parametric audio coding approach will be discussed that allows to encode and transmit bass guitar tracks with a significantly smaller bit rate than conventional audio v vi coding algorithms do. The results of different listening tests confirmed that a higher perceptual quality can be achieved if the original bass guitar recordings are encoded and re-synthesized using the proposed parametric audio codec instead of being encoded using conventional audio codecs at very low bit rate settings. Zusammenfassung Musiksignale bestehen in der Regel aus einer Überlagerung mehrerer Einzelinstrumente. Die meisten existierenden Algorithmen zur automatischen Transkription und Analyse von Musikauf- nahmen im Forschungsfeld des Music Information Retrieval (MIR) versuchen, semantische Infor- mation direkt aus diesen gemischten Signalen zu extrahieren. In den letzten Jahren wurde häufig beobachtet, dass die Leistungsfähigkeit dieser Algorithmen durch die Signalüberlagerungen und den daraus resultierenden Informationsverlust generell limitiert ist. Ein möglicher Lösungsansatz besteht darin, mittels Verfahren der Quellentrennung die beteiligten Instrumente vor der Anal- yse klanglich zu isolieren. Die Leistungsfähigkeit dieser Algorithmen ist zum aktuellen Stand der Technik jedoch nicht immer ausreichend, um eine sehr gute Trennung der Einzelquellen zu ermöglichen. In dieser Arbeit werden daher ausschließlich isolierte Instrumentalaufnahmen un- tersucht, die klanglich nicht von anderen Instrumenten überlagert sind. Exemplarisch werden anhand der elektrischen Bassgitarre auf die Klangerzeugung dieses Instrumentes hin spezialisierte Analyse- und Klangsynthesealgorithmen entwickelt und evaluiert. Im ersten Teil der vorliegenden Arbeit wird ein Algorithmus vorgestellt, der eine automa- tische Transkription von Bassgitarrenaufnahmen durchführt. Dabei wird das Audiosignal durch verschiedene Klangereignisse beschrieben, welche den gespielten Noten auf dem Instrument entsprechen. Neben den üblichen Notenparametern Anfang, Dauer, Lautstärke und Tonhöhe werden dabei auch instrumentenspezifische Parameter wie die verwendeten Spieltechniken sowie die Saiten- und Bundlage auf dem Instrument automatisch extrahiert. Evaluationsexperimente anhand zweier neu erstellter Audiodatensätze belegen, dass der vorgestellte Transkriptionsalgo- rithmus auf einem Datensatz von realistischen Bassgitarrenaufnahmen eine höhere Erkennungs- genauigkeit erreichen kann als drei existierende Algorithmen aus dem Stand der Technik. Die Schätzung der instrumentenspezifischen Parameter kann insbesondere für isolierte Einzelnoten mit einer hohen Güte durchgeführt werden. Im zweiten Teil der Arbeit wird untersucht, wie aus einer Notendarstellung typischer sich wieder- holender Basslinien auf das Musikgenre geschlossen werden kann. Dabei werden Audiomerkmale extrahiert, welche verschiedene tonale, rhythmische, und strukturelle Eigenschaften von Basslinien quantitativ beschreiben. Mit Hilfe eines neu erstellten Datensatzes von 520 typischen Basslin- ien aus 13 verschiedenen Musikgenres wurden drei verschiedene Ansätze für die automatische Genreklassifikation verglichen. Dabei zeigte sich, dass mit Hilfe eines regelbasierten Klassifika- tionsverfahrens nur Anhand der Analyse der Basslinie eines Musikstückes bereits eine mittlere Erkennungsrate von 64,8 % erreicht werden konnte. Die Re-synthese der originalen Bassspuren basierend auf den extrahierten Notenparametern wird im dritten Teil der Arbeit untersucht. Dabei wird ein neuer Audiosynthesealgorithmus vorgestellt, der basierend auf dem Prinzip des Physical Modeling verschiedene Aspekte der für die Bassgitarre charakteristische Klangerzeugung wie Saitenanregung, Dämpfung, Kollision zwischen Saite und Bund sowie dem Tonabnehmerverhalten nachbildet. Weiterhin wird ein parametrischer vii viii Audiokodierungsansatz diskutiert, der es erlaubt, Bassgitarrenspuren nur anhand der ermittel- ten notenweisen Parameter zu übertragen um sie auf Dekoderseite wieder zu resynthetisieren. Die Ergebnisse mehrerer Hötest belegen, dass der vorgeschlagene
Recommended publications
  • The Science of String Instruments
    The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D.
    [Show full text]
  • A. Types of Chords in Tonal Music
    1 Kristen Masada and Razvan Bunescu: A Segmental CRF Model for Chord Recognition in Symbolic Music A. Types of Chords in Tonal Music minished triads most frequently contain a diminished A chord is a group of notes that form a cohesive har- seventh interval (9 half steps), producing a fully di- monic unit to the listener when sounding simulta- minished seventh chord, or a minor seventh interval, neously (Aldwell et al., 2011). We design our sys- creating a half-diminished seventh chord. tem to handle the following types of chords: triads, augmented 6th chords, suspended chords, and power A.2 Augmented 6th Chords chords. An augmented 6th chord is a type of chromatic chord defined by an augmented sixth interval between the A.1 Triads lowest and highest notes of the chord (Aldwell et al., A triad is the prototypical instance of a chord. It is 2011). The three most common types of augmented based on a root note, which forms the lowest note of a 6th chords are Italian, German, and French sixth chord in standard position. A third and a fifth are then chords, as shown in Figure 8 in the key of A minor. built on top of this root to create a three-note chord. In- In a minor scale, Italian sixth chords can be seen as verted triads also exist, where the third or fifth instead iv chords with a sharpened root, in the first inversion. appears as the lowest note. The chord labels used in Thus, they can be created by stacking the sixth, first, our system do not distinguish among inversions of the and sharpened fourth scale degrees.
    [Show full text]
  • Roger Sadowsky Interview, Bass Guitar Magazine UK
    ROGER THAT 028 BASS GUITAR MAGAZINE 028-030 Sadowsky_rev3JH.indd 28 13/07/2015 18:17 BASSISTS ROGER SADOWSKY Roger Sadowsky, one of the world’s leading bass luthiers, stopped by at the London Bass Guitar Show to talk to Mike Brooks about his bass building philosophy stroll around Olympia during the “I recommended a good fret job, shielding the London Bass Guitar Show can be electronics, a better bridge and a preamp – actually, a noisy experience to say the only the second bass preamp I had ever installed. I was least – yet on both days of this using a circuit by Stars Guitars from San Francisco, a year’s event back in March, group that had come out of the Alembic school. That’s A there was a tangible buzz: an what I gave Marcus – but within a year, they went out audible sound of hushed of business and Marcus’s preamp died! They told me mutterings between those in attendance. “It is him, when they were closing up that the closest thing to isn’t it?”... “Is that really him? Here in London?” what they were making was a Bartolini TCT preamp. Who could they have been talking about, you ask? I used that until 1990, when I wanted to create my Well, yes it was true – one of the premier luthiers outboard preamp box and Alex Aguilar [of Aguilar of the bass world was there at the London Bass fame] helped me to design my own circuit.” Guitar Show, and boy did Roger Sadowsky make a Back in those days, there was no internet or social splash.
    [Show full text]
  • Vapar Synth--A Variational Parametric Model for Audio Synthesis
    VAPAR SYNTH - A VARIATIONAL PARAMETRIC MODEL FOR AUDIO SYNTHESIS Krishna Subramani , Preeti Rao Alexandre D’Hooge Indian Institute of Technology Bombay ENS Paris-Saclay [email protected] [email protected] ABSTRACT control over the perceptual timbre of synthesized instruments. With the advent of data-driven statistical modeling and abun- With the similar aim of meaningful interpolation of timbre in dant computing power, researchers are turning increasingly to audio morphing, Engel et al. [4] replaced the basic spectral deep learning for audio synthesis. These methods try to model autoencoder by a WaveNet [5] autoencoder. audio signals directly in the time or frequency domain. In the In the present work, rather than generating new timbres, interest of more flexible control over the generated sound, it we consider the problem of synthesis of a given instrument’s could be more useful to work with a parametric representation sound with flexible control over the pitch. Wyse [6] had the of the signal which corresponds more directly to the musical similar goal in providing additional information like pitch, ve- attributes such as pitch, dynamics and timbre. We present Va- locity and instrument class to a Recurrent Neural Network to Par Synth - a Variational Parametric Synthesizer which utilizes predict waveform samples more accurately. A limitation of a conditional variational autoencoder (CVAE) trained on a suit- his model was the inability to generalize to notes with pitches able parametric representation. We demonstrate1 our proposed the network has not seen before. Defossez´ et al. [7] also model’s capabilities via the reconstruction and generation of approached the task in a similar fashion, but proposed frame- instrumental tones with flexible control over their pitch.
    [Show full text]
  • Year 11 Music Revision Guide
    Year 11 Music Revision Guidance Name the musical instrument In the exam you will be asked to name different instruments that you can hear playing. If you do not play one of these instruments it can sometimes be quite difficult to pick out what each one sounds like. You will need to know what the different instruments of the orchestra sound like, what popular musical instruments sound like and what some world instruments sound like (sitar). It is worth you visiting www.dsokids.com or www.compositionlab.co.uk where you will be able to hear these instruments individually. Describing musical sounds For some questions in the exam you will need to describe what is happening in the music, in detail! If you are asked to comment on what is happening in the music you may need to describe what a particular instrument is doing, for example: ‘The left hand of the piano is playing ascending arpeggios’. The more detail you can provide, the better! Melodic movement You may be asked to describe what is happening in the melody of a song. Remember, this means the main tune. In popular music this is often the vocal line or in instrumental music it can be described as the instrument that has the main tune (the bit that you could whistle). It could move by STEP; this means it moves to the note next to it. It could move by LEAP; this means that the melody jumps from one note to another but misses some notes out in between. This could be a low note jumping to a high note or vice versa.
    [Show full text]
  • A Comparison of Viola Strings with Harmonic Frequency Analysis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research, Creative Activity, and Performance - School of Music Music, School of 5-2011 A Comparison of Viola Strings with Harmonic Frequency Analysis Jonathan Paul Crosmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/musicstudent Part of the Music Commons Crosmer, Jonathan Paul, "A Comparison of Viola Strings with Harmonic Frequency Analysis" (2011). Student Research, Creative Activity, and Performance - School of Music. 33. https://digitalcommons.unl.edu/musicstudent/33 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research, Creative Activity, and Performance - School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS by Jonathan P. Crosmer A DOCTORAL DOCUMENT Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Musical Arts Major: Music Under the Supervision of Professor Clark E. Potter Lincoln, Nebraska May, 2011 A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS Jonathan P. Crosmer, D.M.A. University of Nebraska, 2011 Adviser: Clark E. Potter Many brands of viola strings are available today. Different materials used result in varying timbres. This study compares 12 popular brands of strings. Each set of strings was tested and recorded on four violas. We allowed two weeks after installation for each string set to settle, and we were careful to control as many factors as possible in the recording process.
    [Show full text]
  • Overview Guitar Models
    14.04.2011 HOHNER - HISTORICAL GUITAR MODELS page 1 [54] Image Category Model Name Year from-to Description former retail price Musima Resonata classical; beginners guitar; mahogany back and sides Acoustic 129 (730) ca. 1988 140 DM (1990) with celluloid binding; 19 frets Acoustic A EAGLE 2004 Top Wood: Spruce - Finish : Natural - Guitar Hardware: Grover Tuners BR CLASSIC CITY Acoustic 1999 Fingerboard: Rosewood - Pickup Configuration: H-H (BATON ROUGE) electro-acoustic; solid spruce top; striped ebony back and sides; maple w/ abalone binding; mahogany neck; solid ebony fingerboard and Acoustic CE 800 E 2007 bridge; Gold Grover 3-in-line tuners; shadow P7 pickup, 3-band EQ; single cutaway; colour: natural electro-acoustic; solid spruce top; striped ebony back and sides; maple Acoustic CE 800 S 2007 w/ abalone binding; mahogany neck; solid ebony fingerboard and bridge; Gold Grover 3-in-line tuners; single cutaway; colour: natural dreadnought western guitar; Gruhn design; 20 nickel silver frets; rosewood veneer on headstock; mahogany back and sides; spruce top, Acoustic D 1 ca. 1991 950 DM (1992) scalloped bracings; mahogany neck with rosewood fingerboard; satin finish; Gotoh die-cast machine heads dreadnought western guitar; Gruhn design; rosewood back and sides; spruce top, scalloped bracings; mahogany neck with rosewood Acoustic D 2 ca. 1991 1100 DM (1992) fingerboard; 20 nickel silver frets; rosewood veneer on headstock; satin finish; Gotoh die-cast machine heads Top Wood: Sitka Spruce - Back: Rosewood - Sides: Rosewood - Guitar Acoustic
    [Show full text]
  • Timbre Perception
    HST.725 Music Perception and Cognition, Spring 2009 Harvard-MIT Division of Health Sciences and Technology Course Director: Dr. Peter Cariani Timbre perception www.cariani.com Friday, March 13, 2009 overview Roadmap functions of music sound, ear loudness & pitch basic qualities of notes timbre consonance, scales & tuning interactions between notes melody & harmony patterns of pitches time, rhythm, and motion patterns of events grouping, expectation, meaning interpretations music & language Friday, March 13, 2009 Wikipedia on timbre In music, timbre (pronounced /ˈtæm-bər'/, /tɪm.bər/ like tamber, or / ˈtæm(brə)/,[1] from Fr. timbre tɛ̃bʁ) is the quality of a musical note or sound or tone that distinguishes different types of sound production, such as voices or musical instruments. The physical characteristics of sound that mediate the perception of timbre include spectrum and envelope. Timbre is also known in psychoacoustics as tone quality or tone color. For example, timbre is what, with a little practice, people use to distinguish the saxophone from the trumpet in a jazz group, even if both instruments are playing notes at the same pitch and loudness. Timbre has been called a "wastebasket" attribute[2] or category,[3] or "the psychoacoustician's multidimensional wastebasket category for everything that cannot be qualified as pitch or loudness."[4] 3 Friday, March 13, 2009 Timbre ~ sonic texture, tone color Paul Cezanne. "Apples, Peaches, Pears and Grapes." Courtesy of the iBilio.org WebMuseum. Paul Cezanne, Apples, Peaches, Pears, and Grapes c. 1879-80); Oil on canvas, 38.5 x 46.5 cm; The Hermitage, St. Petersburg Friday, March 13, 2009 Timbre ~ sonic texture, tone color "Stilleben" ("Still Life"), by Floris van Dyck, 1613.
    [Show full text]
  • Figured-Bass.Pdf
    Basic Theory Quick Reference: Figured Bass Figured bass was developed in the Baroque period as a practical short hand to help continuo players harmonise a bass line at sight. The basic principle is very easy: each number simply denotes an interval above the bass note The only complication is that not every note of every chord needed is given a figure. Instead a convention developed of writing the minimum number of figures needed to work out the harmony for each bass note. The continuo player presumes that the bass note is the root of the chord unless the figures indicate otherwise. The example below shows the figuring for common chords - figures that are usually omitted are shown in brackets: Accidentals Where needed, these are placed after the relevant number. Figures are treated exactly the same as notes on the stave. In the example below the F# does not need an accidental, because it is in the key signature. On the other hand, the C# does to be shown because it is not in the key signature. An accidental on its own always refers to the third above the bass note. 33 For analytical purposes we will combine Roman Numerals (i.e. I or V) with figured bass to show the inversion. Cadential 6/4 Second inversion chords are unstable and in the Western Classical Tradition they tend to resolve rather than stand as a proper chord on their own. In the example below, the 6/4 above the G could be described as a C chord in second inversion. In reality, though, it resolves onto the G chord that follows and can better be understood as a decoration (double appoggiatura) onto this chord.
    [Show full text]
  • ICA 2010 Paper
    Proceedings of the International Symposium on Music Acoustics (Associated Meeting of the International Congress on Acoustics) 25-31 August 2010, Sydney and Katoomba, Australia Experimental Approaches on Vibratory and Acoustic Characterization of Harp-Guitars Enrico Ravina (1) (1) University of Genoa, MUSICOS Centre of Research, Genoa, Italy PACS: 43.75.- z; 43.75.Gh ABSTRACT The paper describes the results of a research activity, still under development, oriented to the vibratory and acoustic characterization of harp-guitars. Vibration analyses show interesting differences between harp-guitars and classical guitars about displacements detected on the soundboard and on the bridge and their dependence to frequencies. Acoustic analyses detect very different responses of harp-guitars to various frequencies, showing also the different acoustic emission at sound holes. Comparisons between signals detected by external and surface internal micro- phones allow estimating effects of the acoustic damping in these particular instruments. INTRODUCTION later two designs are technically harp guitars with open strings. They were smaller in size as was fashionable at the Harp-guitars represent a separate and distinct category within time. Barry and Harley of London, excellent craftsmen, built the guitar family, are those most commonly and popularly these instruments for Light. Many of these table harp lutes, as referred to today as harp guitars. This particular category of they were called, are still around today. The desire for ex- instruments includes guitars with any number of additional tended range on a guitar was evident as composers, such as unstopped strings that can accommodate individual plucking. Fernando Sor (1778-1839) and Matteo Carcassi (1792-1853) The word "harp" is a specific reference to the unstopped open wrote music on a three necked, 21 strung guitar, called a strings, and is not specifically a reference to the tone, pitch hypolyre.
    [Show full text]
  • Bass Guitar Owner's Manual Bass Guitar Configuration
    Bass Guitar Owner's Manual Bass Guitar Configuration 4 5 6 3 11 7 8 9 10 3 12 1. Volume 7. Position Markers 2. Tone Controls 8. Fret 3. Strap Button 9. Fingerboard 4. Bridge 10. Nut 1 5. Bridge Pickup 11. Tuning Keys 2 6. Neck Pickup 12. String Retainer Control Configuration blend treble tone bass volume bridge volume treble tone neck volume neck volume bridge volume tone Congratulations So, you are the owner of a new Peavey Bass Guitar. Congratulations! Your purchase proves your taste in musical instruments is superb. Peavey offers a wide variety of bass guitars for beginners to professionals, each with unique qualities and features. While our professional luthiers have carefully inspected your guitar, every model requires some initial setup, and periodic maintenance is required for peak performance. To ensure proper care of your quality instrument, visit www.peavey.com/accessories for Peavey-recommended accessories, parts and cleaning supplies. Cleaning & Care When properly cared for, your Peavey bass will offer you years of pleasure. Playing your bass means that you will need to perform regular, general maintenance, such as cleaning and proper storage, to keep it looking and sounding great. Every time you play your bass, body oils and perspiration are transferred to the body, back of the neck, headstock, fingerboards, strings, tuners, pickups and bridge. After you finish performing, but before you put your bass away, take a moment to remove these contaminants. Cleaning - Wood To clean and care for the major wood parts of your bass guitar (body, headstock and the back of the neck), Peavey recommends that you use a clean, soft, lint-free, dry cotton cloth and the specially formulated guitar polish available at www.peavey.com/acces- sories.
    [Show full text]
  • Figured-Bass Notation
    MU 182: Theory II R. Vigil FIGURED-BASS NOTATION General In common-practice tonal music, chords are generally understood in two different ways. On the one hand, they can be seen as triadic structures emanating from a generative root . In this system, a root-position triad is understood as the "ideal" or "original" form, and other forms are understood as inversions , where the root has been placed above one of the other chord tones. This approach emphasizes the structural similarity of chords that share a common root (a first- inversion C major triad and a root-position C major triad are both C major triads). This type of thinking is represented analytically in the practice of applying Roman numerals to various chords within a given key - all chords with allegiance to the same Roman numeral are understood to be related, regardless of inversion and voicing, texture, etc. On the other hand, chords can be understood as vertical arrangements of tones above a given bass . This system is not based on a judgment as to the primacy of any particular chordal arrangement over another. Rather, it is simply a descriptive mechanism, for identifying what notes are present in addition to the bass. In this regime, chords are described in terms of the simplest possible arrangement of those notes as intervals above the bass. The intervals are represented as Arabic numerals (figures), and the resulting nomenclatural system is known as figured bass . Terminological Distinctions Between Roman Numeral Versus Figured Bass Approaches When dealing with Roman numerals, everything is understood in relation to the root; therefore, the components of a triad are the root, the third, and the fifth.
    [Show full text]