This is an open access article under the CCBY-NC-SAThis Universidad NacionalAutónoma de México. Peer Reviewing under the responsibility of Manuscript January accepted: 23,2021 Corrected manuscript received: December10,2020 Manuscript received: 15,2020 September BSGM2021v73n2a250121 http://dx.doi.org/10.18268/A250121. de la Sociedad Geológica Mexicana, 73 (2), AcambayGraben, Central :Boletín the rupture along the central fault system of the 1912 earthquake Geophysical evidence of Lacan, P., Arango-Galván, C., 2021, How tocitethisarticle: [email protected] * Corresponding author:(P. Lacan) 04510, CiudaddeMéxico, México. Universitaria, Ciudad S/N, Científica gación Autónoma de México, Circuito de la Investi 2 76230, Juriquilla, Querétaro, México. Autónoma deMéxico, Blvd. Juriquilla, 3001, 1 Pierre Graben deAcambay,CentroMéxico Evidencias geofísicas de la ruptura del sismo de 1912 a lo largo del sistema de fallas central del Acambay Graben,CentralMexico Geophysical evidenceofthe1912 earthquake rupture of along the the centralfaultsystem (https://creativecommons.org/licenses/by-nc-sa/4.0/) Centro deGeociencias, Universidad Nacional Instituto de Geofísica, Universidad Nacional Lacan 1,* , Claudia Arango-Galván Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín - calcingo San Pedro fault, fault. induction, paleoseismology, Temas tivity tomography, electromagnetic characterization, electrical resis Keywords: active geophysical fault, in volcano-sedimentary environments. paleoseismological investigation purpose the pertinence to use such techniques for across the San Pedro fault trace, illustrate faults andatrench survey which cuts of between ERT imagery subsurface to deep the tectonic depressions. Goodcorrelation partially hidden by recent filling deposits face during the 1912earthquake andare structures that potentially broke the sur the defining location andorientation of these studies allow heic basin.Results of asmall endor fillingof cene sedimentary San Pedro fault, partially buried inaHolo a profile inorder todetect andlocalize the the electrical resistivity distribution along (ERT) technique wasused to characterize fice, the Electrical Resistivity Tomography On the other hand,withinavolcanic edi River. the Lerma in the alluvial plainof the fault surface rupture of ent resistivity inorder to detect the 1912 the appar map the horizontal variation of netic Induction (EMI) Method was used to trenching. Onthe onehand,Electromag late the data obtained with a paleoseismic ical investigation and(2)extrapo purpose identify favorable sites for paleoseismolog 1912 Acambay Earthquake, inorder to (1) suspected to break the surface during the buried faults was to localize segments of maingoal The the Acambay graben. of the active faults logical assessment of potential interest for paleoseismo of physical techniques intwo different areas In this work, we have applied two geo ABSTRACT 2 ------/73(2)A2501212021 localizar dos segmentos de fallas parcialmente localizar dos segmentos de Acambay.del graben principal es Elobjetivo paleosismológica de las fallasevaluación activas en dos áreas diferentes de potencial interés para la En este trabajo, dos técnicas geofísicas aplicamos RESUMEN San Pedro. fallamología, Temascalcingo, falla paleosis ción electromagnética, de resistividad eléctrica, induc acterización geofísica, tomografía Palabras clave: falla activa, car ambientes volcánico-sedimentarios. paleosismológica en plementar la investigación la pertinencia deusar tales técnicas para com cortando la traza de la falla de San Pedro, ilustra entrincherasdel subsuelo yun levantamiento entre las imágenes ERTLa buena correlación recientes tectónicas. que llenan las depresiones 1912 yestán parcialmente ocultas por depósitos rompieron de potencialmente durante elterremoto que la ubicación yorientación de las estructuras definir Los resultados de estos estudios permiten rio holoceno enuna pequeña cuencaendorreica. por unrellenoparcialmente sedimenta sepultada el finde detectar ylocalizar la falla San Pedro resistividad de unperfil con eléctrica a lolargo en inglés) para caracterizar la distribución de de Resistividad Eléctrica (ERT por sus siglas seutilizóla técnica de Tomografíavolcánico Por otro lado,río Lerma. dentro de unedificio la falla Temascalcingo enla llanura aluvial del de 1912de localizar ensubsuperficie la ruptura horizontal de la resistividad aparente conelfinde por sus siglas en inglés) para la variación mapear (EMI el método de Inducción Electromagnética paleosísmica. Porexcavación unlado, seutilizó los datos encontradoslógica y(2)extrapolar en propicios para paleosismo finesde investigación Acambay de 1912,para (1)identificar sitios rompieron de la superficie durante elterremoto por la sedimentación que posiblementeanegadas 1 ------

Geophysical evidence of the 1912 Acambay earthquake ABSTRACT INTRODUCTION / GEOLOGICAL Geophysical evidence of the 1912 Acambay earthquake SETTING AND RELATED ISSUES 1. Introduction 2 2 nipnal nlge o h nepeaino indispensable analogues for of the interpretation knowledge about recent earthquake ruptures is ing andevaluate hazard.the seismic Likewise, fault the modalitiesof essential to understand is earthquake-related surface ruptures studyThe of is also useful forgreateris tracing faults todepths lano better sites for further trenching ( tions, to image shallow structures andlocate the in buried fault area, or areas with diffuse deforma a reconnaissancecould beusedas tool cal imagery excavation, the place, before geophysifirst the In problemssome related to thetrenchingtechnique. geophysicalsometimes essential to solveimaging is (McCalpin, 2009). In such investigations, shallow adequate to have recorded the eventslast seismic the balance between erosion andsedimentation is excavated in areas across wherefaults escarpment, ancient earthquakes. Inpractice, trenches are of faults involved inthe1912earthquake. the specify and segments fault different the of ity studies were undertaken to characterize the activ theruptures, paleoseismological and thenature of To remove uncertainties regarding the mapping et al scientific community (Suter the by rupture the of interpretations different in and maps by Urbina and Camacho (1913) resulted text the in reported earthquake the of effects the tunately, inaccuraciesandcontradictions between styleinthisarea.rupture Unfor anddeformation can therefore allow the better us understanding TMVB (UrbinaandCamacho,event 1913).This rupture to have been properly described in the the last eventquake is associated withan surface Suárez several destructive historical eventsseismic ( whoserevealed activityis by the occurrence of systems fault different by crossed is (TMVB) Belt central Mexico, the Trans-Mexican Volcanic ( deformations paleoseismological the geological recording of / Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín Paleoseismologyfor looks records sedimentary ., 2000;Rodríguez Pascua et al et al ., 2021). Otherwise, geophysical imaging ., 2019). The 1912AcambayEarth ., 2019).The e.g. Fletcher Fletcher et al et al et al ., 1995; Langridge ., 1995;Langridge ., 2014;2020).In http://dx.doi.org/10.18268/BSGM2021v73n2a250121 e.g. ., 2012;2017). Aray Castel e.g. ------/73(2)A2501212021

2. Geological setting and relatedissues 2. Geologicalsetting ever, thetrendtowards is geophysicalintegrating How methods. electrical and potential-field with strongly magnetized lava flowsurrounding are easily observable and fill sedimentary between trasts faultsresulting from physicalcon signatures of while involcanicenvironments, the geophysical 2003; Audemard ( for these purposes geophysicalmost common techniques employed the are reflection seismic and (GPR) Radar ing use, Ground Penetrat their low costandease of Gally and Piscitelli, 2014; Arzate 2009; Bonorino Femina than can be reached by trenching (> 5–6 m) ( seismicity ( seismicity earthquakes despite apparently lowinstrumental faults has led to historical destructive activity of an intracontinental volcanic zone inwhich the Mexicoan example is of central regionThe of fault closingasmallendorheicbasin. the San Pedro at of to image the geometry depth applied been has ERT edifice, volcanic a within locally buried in analluvial plain. Subsequently, has been usedto localize the Temascalcingo fault, complete paleoseismological studies. Firstly, EMI order to localize buried paleosurface rupture and onthe Acambayies that Graben in we perform the two stud 2012). We present here the results of 2005, 2007;Fazzito (ERT) ( method and the Electrical Resistivity Tomography fault zone: Electromagnetic The (EMI) Induction efficient to locate and establishof the the geometry be fast,inexpensivecan the acquisition since and tool forsance paleoseismological characterization geophysical techniques already usedasreconnais and Sapia,2017;Onorato 2005; Cinti ( techniques different from data This paper deals with other twoThis very accessible e.g. et al LaFemina e.g. et al ,20;Wl ., 2002;Wolf Suárez ., 2015;Villani et al et al e.g. et al ., 2012;Lacan Stephenson and McBride, Stephenson ., 2006;McCalpin,2009) et al et al ., 2009;Terrizzano et al et al ., 2019; Zúñiga ., 2019;Zúñiga ., 2002;Nguyen ., 2019). ., 2006;McCalpin, et al e.g. et al ., 2015,Villani Nguyen ., 2018). For et al ., 2012; e.g. et al et al et al et al La ., ., ., ., - - - - - Figure 1 elevation model derived fromGeoMapApp. Belt; TTAFS:Tepuxtepec-Temascalcingo-AcambayVolcanic System. Modified from Fault Lacan life, extensive damage and surfacerupture along Langridge and Camacho, 1913;Abe, 1981;Suter Mw 7.0Acambay earthquake (Figure 1; Urbina MAFS inwhich occurred the November 19, 1912 the the major intra-arcof basins one of ben is 2001; Langridge Suter mm/a; (<0.3 rates low at extension characterized by NNE to NNW directed active 1990; Suter Harrison, up to 50 kminwidth(Figure 1B; Johnsonand (MAFS) that stretches over in length 200 km and dated through theMorelia-AcambayFault System the TMVB, extensional faulting is accommo of Ferrari ( Rivera plates beneath the North American plate and theCocos arc related of to the subduction Belt (TMVB), amiddleMiocenetoQuaternary faults located within the Trans-Mexican Volcanic 2020). Allthese earthquakes were produced by e.g. (a) Geodynamic location of the Trans-Mexican Volcanic Belt. (B) Tectonic map of the Acambay Graben. TMVB: Trans-Mexican TMVB: Graben. Acambay the ofmap Tectonic (B) Belt. Trans-Mexican Volcanic the location of Geodynamic (a) Demant, 1978; Nixon, 1982;Siebe et al et al ., 2012; Figure 1). In the central part ,20) hseetcue oso event ., 2000).This of caused loss et al ., 2000). The Acambay., 2000).The Gra et al Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín ., 1995). The MAFS is MAFS ., 1995).The http://dx.doi.org/10.18268/BSGM2021v73n2a250121 et al et al ., 1996; ., 2006; et al ., - - is precise andthere are no majordiscrepancies alongthefaultsborderingoccurring thegraben the ruptures 2017). In detail, the description of 2 (Suter figure in summarized the rupture published in recent years as tations of interpre and different maps resultin inaccuracies mostly related to the tools usedat the time. These in thisreport as well as errors inthe mapping, the textin andthesurfaceruptures mappresented discrepancies exist between the descriptions made and Camacho(1913). However, important some by Urbina reported and identified meticulously been have effects, geological the as well as tural, thegraben.The social, architecdifferent faults of the manuscript byUrbina andCamacho (1913) and ruptures cracks are relatively precise in of to more controversy(Figure descriptions 2).The are subject the graben tures on the central faults of the surface rup the precise location andnature of about their mapping andinterpretations, however, gridge gridge et al ., 2000;Rodriguez Pascua / 73(2)A2501212021 et al . (2018).30-m-resolution digital et al ., 1995;Lan et al ., 2012; 3 3 - - - -

GEOLOGICAL SETTING AND Geophysical evidence of the 1912 Acambay earthquake RELATED ISSUES GEOLOGICAL SETTING AND Geophysical evidence of the 1912 Acambay earthquake RELATED ISSUES derived from GeoMapApp. origin whilethe red dottedlinesindicate thedeformations interpreted as cracksintheground. 30-m-resolution digitalelevationmodel Rodriguez Pascua Figure 2 4 4 superficial cracks linked to shaking in the central the in shaking to linked cracks superficial could correspond totectonic ground ruptures or schematic which map reports surface deformations Temascalcingo andonlyanimprecise the town of written descriptions are more sporadicawayfrom ever, accessibilityat that time, maybe for lack of Temascalcingo.in andaround How the town of Acambay graben (FigureAcambay 2). graben / The1912earthquakerupture map of the Acambay Graben according to(A)Suter Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín et al . (2012;2017).Thered continuous linesindicate thedeformations interpreted asbeing surface breaks oftectonic http://dx.doi.org/10.18268/BSGM2021v73n2a250121 - /73(2)A2501212021 have been estimated in order them to integrate these studies uncertainties for2019). The mostof Sunye-Puchol gridge (Lan the Acambay graben the major faults of to characterizehazard the seismic of parameters paleoseismic studieshave out in order been carried different century, 21 the of beginning the Since et al ., 2000,2013;Lacan et al et al . (1995);(B)Langridge ., 2015;Ortuño et al ., 2013a,2018; et al et al . (2000);(C) ., 2015, - digital elevation modelderivedfrom GeoMapApp. Figure 3 precise location of faults in the sedimentary cover faults in the sedimentary precise location of essential for paleoseismicresearch (Figure 3).The is trenching where fillings sedimentary recent in or non-existent unclear but flows lava and rocks the faults is very clear on volcanic footprint of volcanic edifices and flows. The geomorphological deposits of volcanic and lacustrinesedimentssometimesoverlapped by a series by filled is Graben its opening during Miocene time, the Acambay of due to the geological context. Since the beginning difficult sometimes but necessary is investigation such paleoseismic implementation2017). The of hazardin seismic (Rodríguez-Pérez analysis Tectonic map of the Temascalcingo Volcano with location of the Temascalcingo (A) and Puerto Suelo (B) sites. 30 m resolution m 30 sites. (B) andPuertoSuelo (A) Temascalcingo the location of with VolcanoTemascalcingo the of map Tectonic Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 et al ., elling, allowed solvingthesechallenges. methods, inexpensive and easy to set up and mod at (McCalpin2009). tent with its geometry depth vertical forces and not be consis the weakness of by influenced be can In geometry superficial its depth. in fact, geometry its from different be can which geometry superficial its on fault the seeing Indeed, the trenchthe fault indepth. allows only atrench to extrapolate of the geometry opening of taking apaleoseismologicalstudy. before under arises that challenge first the then is Next, we show how EMIandERT geophysical Another challenge comes to light after the / 73(2)A2501212021 5 5 - - -

GEOLOGICAL SETTING AND Geophysical evidence of the 1912 Acambay earthquake RELATED ISSUES ELECTROMAGNETIC INDUCTION Geophysical evidence of the 1912 Acambay earthquake (EMI) METHOD 3.1. BASIC THEORY method 3. ElectromagneticInduction(EMI) 6 6 paleoseismological purposes, the electromagneticpaleoseismological purposes, the electromagneticAmong methodsusedfor antcpreblt fvacuum, σ the electrical of magnetic permeability frequency, angular ω the field, secondary Where written as: be can fields secondary and primary the between coupling according toBeamish(2011)the ratio of antees the low-induction number condition.Thus, coils and the transmitting frequency, which guar as the separation between transmitter and receiver measured in the receiver but also on parameters relationship not depends only on the induced field conductivity. subsoil This the and field secondary a relativelylish simplerelationshipbetween the andcoilsspacing)to estab on the array geometry is ruling, andthe penetration is depending depth low-induction numbers ( operating at ments must satisfy the condition of sured on a receiver coil. However, these measure interaction with the conductive aresubsoil, mea the transmitter andthe second onegenerated by its by induced one the fields, both of superposition The field. magnetic secondary a generate rents these eddy cur interact with the ground. Inturn, which currents, induces field magnetic This law. nating current inthe coil according toFaraday’s erates an electromagnetic field ofby alter the flow a transmitter, which gen of domain andconsists cessing (McNeill,1980;Beamish,2011). in dataeasiness andquickness acquisitionandpro the relative isusefulbecause of methodology This level. depth fixed a conductivity,at electrical ent appar characterizing the horizontal variation of method at low(EMI), allows inductionnumbers us / Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín This method is classified into the frequency the into classified is method This H p s h piay antc field, magnetic primary the is     H is Hi p s = i.e.   induction assumption 4 0 http://dx.doi.org/10.18268/BSGM2021v73n2a250121 2

H μ 0 s the the ------/73(2)A2501212021 3.2. EMISTUDY AREA:THETEMASCALCINGO SITE fthe apparentat conductivity aconstantdepth of the distribution to obtain a horizontal section of betweenuse aconstantspacing coils,possible itis tion can be done in a very we easy way. only If technique is that data acquisition and interpreta thesubsoil. on themagneticcharacteristics of ceptibility,it willprovide so relevant information proportionalcomponent is to themagnetic sus the medium andthe in-phase of the conductivity the in-quadrature component is proportional to in-phase andinquadrature, respectively. Thus, into a real part, also called part and imaginary is a complex number, which canbe separated conductivity, and fthe Temascalcingo city,of at the intersection TemascalcingoThe located siteis at the border process.ated usingasimpleinterpolation the coils) canbe gener the spacing of depending or resistivityand in-phaseat ( aconstantdepth theapparent conductivity the distributionof maps during instrumentcalibration.From the results, deviate variation from ranges established normal values that but parameters theelimination of generate horizontal distributionfor maps these a continuous mode. Thus,purposes. measurementsbe acquired can in mid-point and an average for depth visualization the two coils. measure The is assignedto the located subsurface under andbetween volume of coplanar coils. Measured on a quantities depend horizontal or vertical of them either in apattern the ground,on withaconstantdistancebetween subsoil. the relatedis of to the magneticsusceptibility eter, measured in parts per thousand (ppt), which apparent resistivityand the called in phaseparam using EMI:apparent parameters or conductivity different two measure can we mentioned, already controlled byelectrical the subsoil conductivity. As The main advantage of this electromagnetic this mainadvantageThe of None additional processingis required to moving the sensors Dataof acquisition consists s is the coils spacing.the coils is ratio This i.e. - - - - Figure 4 floodplain of the Lerma river (Figure 4). theLerma floodplain of the ing which regularly reshapes the surface of and the Bañi volcanic edifices but erased by flood clear thefault in the Temascalcingois imprint of (Urbina andCamacho, topographic 1913).The the iron bridge” East-West fractures, (…) north of refershistorical documentandonly as “roughly the and flat, therupturepoorly is describedinthe location of perfectly is plain alluvial the site, Camacho (1913).However, at the Temascalcingo 1912were reported byUrbina and earthquake of the Temascalcingo fault during the Acambay of Ortuño Velazquez-Bucio and Garduño-Monroy, 2018; Sunye-Puchol the Altamirano volcano (Lacan of the Temascalcingo Volcano foot to the eastern N120º direction andextendsfrom thetopof fault, a 21 km long fault zone that trends inan river and the betweenTemascalcingo the Lerma GoogleEarth 3Dmodelof theTemascalcingo(Source site et al ., 2019,Figure 3).Ruptures along part et al ., 2015;LagunasOcon2017; Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 et al ., 2013b; - Google Earth THE MAPS 3.3. EMISURVEY,RESULTS INTERPRETATION AND OF h iyo Temascalcingo isnow expanding.the city of river the Lerma on which under the floodplain of the Temascalcingo fault buried cise location of 2000; Roldan-Quintana (Sánchez-Rubio,meters 1984;Aguirre-Díaz filling in the hanging wall could be several tens of the alluvial the fault while the thickness of of footwall the in edifice volcanic Bañi and calcingo Temascontinuously the dacitic volcanic rocks of dis overlap river Lerma the of floodplain the of In the Temascalcingo Site, the current sediments sen equal to 2 minorder to reach amaximum Instruments.between spacing cho The was coils GF meter a conductivityof October 2016, using during EMIdataThe performed acquisition was We focused on identifying at this site the pre ). / 73(2)A2501212021 et al ., 2011). et al 7 7 ., - - - -

ELECTROMAGNETIC INDUCTION Geophysical evidence of the 1912 Acambay earthquake (EMI) METHOD ELECTROMAGNETIC INDUCTION Geophysical evidence of the 1912 Acambay earthquake (EMI) METHOD location of theTemascalcingotrace around fault Temascalcingo cityinterpreted from the presentEMI study. site. Thered arrows indicate theorientationof themain lineament markedonthetwoimages byanincreased gradient.C) Precise Figure 5 8 8 Saey 1980; Sudduth and theabout 70%( planeat is depth surface the between region the in flowing current investigationreached is depth when the total thatthe assumption tion basedon themaximum 3.2 maccording to estima investigation of depth to the EMI acquisitionsysteminorder to obtain Magellan ProMark 3RTK GPS was attached / A)ApparentresistivityandB)in-phase componenthorizontal mapsinferred fromEMI technique performed attheTemascalcingo Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín et al ., 2011, 2012; Smedt et al ., 2001; Callegary ., 2001;Callegary http://dx.doi.org/10.18268/BSGM2021v73n2a250121 et al e.g. ., 2012). A et al McNeill, ., 2007; - /73(2)A2501212021 resistivity andthein-phaseparameter(Figure 5). the apparent to show the horizontal variation of computed in Surfer from Golden Software in order this data clean-up, procedure an interpolation was the measurement. After at the verybeginning of range since acalibration procedure was performed the expected removing any isolated data out of of eachmeasured point.Data processingconsisted continuousand higherprecision coordinates of 4.1. BASIC THEORY (ERT) method 4. ElectricalResistivityTomography lacustrine sedimentary filling of the hanging wall. hanging the of filling sedimentary lacustrine the footwall, and relatively resistive alluvial and of the volcanic bedrock resulting from the erosion of to the contactbetween conductive sediments, we corresponds can infer that this highgradient at For depth. lithology ofthe itslinearity andorientation, properties electromagnetic of differences Figures contrast results 5Aand5B). These from the to the river (red course arrowsperpendicular on trast, the lineament is oriented WNW-ESE, almost under the Temascalcingo alluvial plain. Incon paleovalley a buried resistiveand of filling alluvial contact between the conductive volcanic bedrock this curve, as a it is interpreted of dering geometry east). Considering theorientation andthemean unit (to the west) and a more resistive unit (to the corresponds to a contact between a conductive (blackFiguresdashed lineon and 5B) 5A NNW-SSE, almost parallel to the river channel curve slightcurvelineament. and The oriented is slight resistivityand in-phasethat determine of ponent. It is possible to appreciate slight contrasts apparent electrical resistivityand in-phasecom of Figures 5Aand5Bshow the horizontal variation the resistivitydistribution within thesubsurface has beencovered by recent sediments. a fault that could berelated to theoccurrence of could beusefultodetect lateral discontinuities that Meju, 2002). In thissense, surveying thisproperty uration, porosity, permeability,or faults( cracks by manytexture, likecomposition, parameters sat In the subsoil, the electrical resistivity is influenced volcanic-origin materials (Figure 5B). valuesmagnetic susceptibility are expected from higher a since component, in-phase the by firmed river. theLerma behaviour This con is of deposits the fault displacement acrossthe Quaternary theresult of be could resistivity in difference This The most common methods for most common measuring The Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 e.g. - - - - -

4.2. ERT STUDY AREA:THEPUERTO SUELO SITE on the electrode arrangement, Where xlrto ehiu ognrt mgso the exploration technique to generate images of and face (Keller andFrischknecht, 1966). through the potential established onthe subsur response generated by thiscurrent is measured electrodes, andthe is injected between a pair of current). For these measurements, a direct current bymainly the subsoil contact ( galvanic are thosewhere thecurrenttransmitted is into quently, bymoving the basement, thefault plane valleyby the San Pedro fault (Figure 6).Conse a generatedendorheic basin bythe closure of Puerto Suelo site corresponds to a small 6). The Temascalcingo city, to the west (Figures. 1,3and of river north floodplain, Lerma the to east the to direction and extends from the Santa Lucía dome a 14-km-long fault zone that trends inanN120º Temascalcingo volcano, along the San Pedro fault, the Puerto Suelo site is locatedThe at the top of that isused. onthe regularizationsince it depends operator but anestimation,not unique andthesolutionis the resistivitysubsoil not provide the true value of mate the resistivity parameters. inversion The does are modeled using an inversion algorithm to esti along a profile. Subsequently, these measurements switchingously injection and potential electrodes wheresystem measurements are madesimultane a multi-electrode acquisition procedureof consists fiths with geological structures or discontinuities (Grif resistivitydistribution, which maybe associated erated images areor volumes sections showingthe profile.a gen along The manypoints in potential the mentionedelectrical measurementbased on of the electrical resistivity subsurface distribution of Electrical resistivitytomography isa useful I et al istheinjectedcurrent. K ., 1990; Griffiths and Barker, 1993). The Barker, 1993). and Griffiths 1990; ., is the geometric is factor which willdepend / 73(2)A2501212021 r = K U I ë é W . m U û ù

isthe potential i.e. direct 9 9 ------

ELECTROMAGNETIC INDUCTION (EMI) Geophysical evidence of the 1912 Acambay earthquake METHOD / ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) METHOD ELECTRICAL RESISTIVITY Geophysical evidence of the 1912 Acambay earthquake TOMOGRAPHY (ERT) METHOD origin, D)Trench log of thePuerto Suelotrenchasinterpreted byLagunas Ocon(2017). location of thePuerto Suelotrenchillustratedin Dand theresistivity profile,C)diagramillustrating theendorheic basinoftectonic Figure 6 10 10 h aesimlg ftheSanPedro fault (Figure of the paleoseismology the endorheic basin to study in the sediments of by colluvial and alluvial deposits, a trench wasdug coveredvalleyfilled is the partially surface and on Although 6C). (Figure wall hanging the of filling the footwall and the sedimentary canic rocksof contactbetween the volto a sharp corresponds 6D; LagunasOcon,2017). / A)GoogleEarth 3DmodelofthePuerto(Source Suelosite Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 - /73(2)A2501212021 Google Earth are displaced 65cmby avertical fault while the ash,pumiceandpaleosols levelsinterspersed of the trench of the alternation its. At the bottom of depos lake flow, and debris paleosols, wind and levelsvolcaniclastic (mostlysecondary deposits), and pumice ash of respondsto analternation m deep. record sedimentary The exposed cor trenchThe is24mlong, 6mwideandupto 6 ), B)aerial viewofthePuertoshowing Suelosite the - - Volcano: (A)measured (C)Inverted (B)calculated apparent resistivitysection, apparentresistivitysection, resistivitymodel. Figure 7 of the trench (the first 4 to 5 m of the ground). the of m 5 to 4 first (the trench the of the two blocks separated by the fault on the scale between contrast lithological significant a not is 65cm,wasrecorded in thistrench, sothere of Only oneevent, associated with adisplacement a fault propagation folds (LagunasOcon,2017). upper units record the same displacement along However, at the cumulative depth, displacements Resistivity distribution image inferred from ERT measured at the Puerto Suelo site, close to the top of the Temascalcingo of the top close to distribution imageinferredthe Puertosite, measuredResistivity ERT Suelo at from Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 cover. the basement under the sedimentary of depth thestructure at andestimate depth the the dipof theendorheicbasin. fillingof tary the volcanic edifice (basement) and the sedimen into contact the massive andesitic rocksforming over severalcycles seismic couldhave brought The mainobjectiveThe in thissite was to verify / 73(2)A2501212021 11 11 -

ELECTRICAL RESISTIVITY Geophysical evidence of the 1912 Acambay earthquake TOMOGRAPHY (ERT) METHOD ELECTRICAL RESISTIVITY Geophysical evidence of the 1912 Acambay earthquake TOMOGRAPHY (ERT) METHOD 4.3. ERT SURVEY, MODELINGANDINTERPRETATION red dashed lines represent themaximum and minimumcalculated fromtheprofile. dips of See figure thefault 7 forlegend. for legendand interpretation. (B)PresentERT studyacrossthe SanPedro Fault.Location of theprofile and trench infigure 6B.Thetwo Figure 8 12 12 (2017). The ERT profile was acquired during acquired October 2016, using a SYSCAL PRO device was from profile ERT The (2017). logical trench already reported in LagunasOcon the paleoseismo sured withthe trace coinciding of mea was profile length m ERT,92 Regarding a can note that measured andcalculated apparent outputs from theinversionscheme are shown.You around 50mV. InFigure 7, the typical resistivity cycles, inorder to guarantee a potential value injected current was set variable in onesecond fault. In total, 47 electrodes were involved, the the lateral change generated bythe presence of have enough horizontal resolution to detect any 2minorder to 2014). Electrodeof spacing was vertical and horizontal resistivity variations (Loke, dipole-dipole since it shows goodsensitivityboth in Iris Instruments. selected ERT The arraywas / (A)Overlaydatafrom thetrenchlogof thePuerto SuelotrenchasinterpretedbyLagunas Ocon (2017),seeFigure 6and text Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 - - /73(2)A2501212021 gradient, fromgradient, 100to 500 Ohm.m,over the entire ( the resistivityanomalies of the geometry errorsin processthe verticalsince variations couldinclude electrode position wasincluded in the inversion each a very control accurate topographical of variations along the profile up to 22 m depth. Also, and Barker, 1996)to image the electrical resistivity algorithm based ona quasi-Newton scheme (Loke was computed usingthe RES2DINV inversion sured values duringacquisition.ERT modeling closelyreproducing the mea capablemodel is of means that This the response from the inverted resistivity are very similar, is1.42. sincethe rms northeastern part of the profile is characterized is profile the of part northeastern horizon, a strong lateral contrast is evident. The layers(orange to green in Figure 7C).Beneath this depth m 3 almost and surface the between profile e.g. Figure 7Cshowsa relatively resistivity uniform Fox Fox et al ., 1980;Tsourlos et al ., 1999). - 5. Discussionandconclusions paleoseismological trench. the than the bottom of fault up to 20 mdeeper the tracking us resistivity. allows profile this Thus, ferent lithological units showing different electrical originated bythe fault thatcontact two putin dif in Figure 8) couldbe related to the displacement discontinuityFigure in (represented 7C). This ers values to blue lower lay than 40 Ohm.m (purple a conductive feature is detected showing resistivity aresistive region, beneath insteadof depth, 9m resistivity lateral block, contrast is detected. In the southwestern a strong where fiducial, m 50 conductive feature dramatically changes about the distal quadrupoles at Incontrast, this depth. measuring several attribution pointscalculated for the profile,of where the geometrical array allowed feature 7C). This inferred isfrom central portion beneath (yellow 20mdepth to red layersin Figure increase to reachgradually about 600 Ohm.m layers inFigure 7C) and then, the resistivity values to blue Ohm.m between (purple 3 and 9 m deep by lower resistivity values ranging from 10to 40 Lorca earthquake or more recently duringthe Teil as shown, for example, duringthe 11 May2011, 5.1Mw damage significant cause could 4.5) the city, even a moderate under earthquake (Mw > location superficial its to Due represents. that therisk fault this earthquake remindsof us Temascalcingo duringthe 1912 the townof of development planning. Indeed, the destruction hazardbe takenintoaccountinurban andshould the subsidence and seismic for the assessment of Temascalcingodirect has consequences the city of fault thisunder the otherlocationhand, of tion for future paleoseismological trenching. On the fault provide essential informa of geometry and location precise The 5C). (Figure floodplain Temascalcingo river fault trace under the Lerma defin and the 1912 rupture alongthe tracking ing the location of allows method Induction On theTemascalcingo sitetheElectromagnetic Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 - - - - amplification, or site effect, as observed for exam observed for as effect, site or amplification, meters can localize hundreds significantof seismic water-saturated materials over several tens or even unconsolidated and accumulationsedimentary of rera-Hernandez the region ( water over exploitationobservedcommonly as in causedby ground deformations ground origin of the fault could be at the located on both sides of lithologies the between compaction in difference other geological hazards. Indeed, the the cause of thefault could be of both sides on lithology trast in the fault, the con associated with the activity of Ritz earthquake (Martinez-Díaz (70 to 80º SW), compatible with the topographic that the fault has a strong diptowards the south indicates mdepth, 3 beneath and fiducial m 50 approximately at profile geoelectrical the on ible fault observedthe trench in the contrastsvis using the potential. its seismogenic Extrapolation of with neighboring faults and indirectly, estimating the fault, its relationship of terizing the geometry important result to take into accountincharac of m 25 the structure and estimating its inclination isan first the imaging of possibility The 3). the fault at (McCalpin,2009;Chapter depth of vertical stresses anddonotrepresent the actual dip in the trench may be related to the relaxation of the fault ures vertical 6Dand8).The of geometry (Fig exposed basement of meters four first the in in the trench to be vertical andthe fault appears centimeters. volcanic The bedrockdoes notappear the fault,displaced by simply afewtensof side of on either units fluvio-lacustrine same the shows the San Pedro fault the paleoseismic activity of many lives. resources, infrastructures andpotentially save planning couldallow better management of Temascalcingo built filling. onthesedimentary could have disastrous consequencesfor the part of al ple in Mexico City(Singh ., 2019).Inthiscase, even adistant earthquake On the Puerto Suelo site the trench dug to study such studiesfor urban generalizationThe of et al ., 2020).Inadditionto hazardthe seismic e.g. / 73(2)A2501212021 Figueroa Miranda et al ., 2021).Inthe same way, the et al et al ., 2018;Mayoral ., 2012a, 2012b; et al ., 2018; Car 13 13 et ------

Geophysical evidence of the 1912 Acambay earthquake (ERT) METHOD / DISCUSSION AND CONCLUSIONS DISCUSSION AND CONCLUSIONS / Geophysical evidence of the 1912 Acambay earthquake ACKNOWLEDGMENTS / REFERENCES Acknowledgements 14 14 footwall, the volcanic base is revealed on the profile and at least 20 minthe hanging wall. Below, inthe in the footwall thickness important with 10mof Figures(<40 Ohm.m, the basin quite 7and8)is profile also shows that the of fluviolacustrine filling Puerto Suelo (Figure electrical 6A). The west of east and visible in the morphology escarpment fieldwork. This study was funding by UNAM funding was study This fieldwork. Diego Ruíz Aguilar for their valuable help during Joséthank authors The and LuisSalas Corrales the graben. be accurately mapped along the central faults of the Acambayearthquake to enable the rupture of newtrenches, willultimately of interpretation study,this associated with the excavation and the fault. Finally, the basement on either side of of characteristics the of approach first a have to the rupture and of on the geometry information they are buried by younger sediments, to obtain faults, despite it possible to locate the trace of made methods two these ruptures, superficial of About the knowledgeseismological interpretation. observationsnecessary to establish a proper paleo the all integrate to sufficient not is trench the of segments) is expected and where the local scale in sites where a large fault zone (with various fault the trench. tools are These particularly interesting faults or to extrapolate local scale observations of could beusedbefore trenching tolocalisethe and easyto set up along large distances andareas, fully evident onthesurface. the fault are notclear or traces of morphological be usefultolocate potential excavation siteswhen important to note that such technique couldalso very dense and unaltered volcanic basement. It is a the presence100 to 600 Ohm.m,suggesting of footwallThe showing is resistivities rangingfrom since resistivityvalues are lower than 40Ohm.m. lying the basement aresaturated mostly materials, over sediments filling that confirms it site, Suelo showing lowervalues. conductivity Inthe Puerto / Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín These twoThese geophysicaltechniques, inexpensive http://dx.doi.org/10.18268/BSGM2021v73n2a250121 - - /73(2)A2501212021 References Aguirre-Díaz, G.J., Urútia-Fucugauchi,J., large shallow earthquakes Abe, K.,1981,Magnitude of thisissue. Audemard, invited of editors anonymousreviewers, Laura Perucca andFranck improved by from commentsandsuggestions three IN108220 projects.manuscript greatly was This DGAPA-PAPIIT program through IA101615and Audemard, F., Ollarves, R.,Díaz,G., Bechtold, Arzate, J., Lacan, P., Corbo-Camargo, F., Arango- ArayCastellano, J.C., Lacan,P., GarduñoMonroy, Soler-Arechalde, MS., McDowell, F.W., https://doi. org/10.1016/0031-9201(81)90088-1 72-92. 27, Interiors, Planetary the Earth and from 1904to1980:Physicsof U.C.V., 21(4),57-70. Revista delaFacultad de Ingeniería de la fallas falla de Boconó,Estado Mérida,Venezuela: de definición activas: aplicación en el sector central de la la para herramienta M., Cataldi, A., 2006,El geo-radar como 228-239. Mexicana de Ciencias Geológicas, 35-3, from geophysical integrated data: Revista Acambay Graben (Central Mexico) eastern the León Loya, structure R., 2018,Deep of Galván, C.,Maldonado, R.F., Pacheco, J., http://dx.doi.org/10.18268/ BSGM2021v73n2a040121 A040121. de laSociedad Geológica Mexicana, 73(2), micro-graben, Los Azufres, México:Boletín a potentially active fault in the Agua Fría of Bandy W., 2021, Geophysical characterization Audemard MennessierF., Lázaro MancillaO., V.H., ÁvilaGarcía, J., GómezCortés, J., https://doi. 167-178. org/10.1130/0-8137-2334-5.167 334, Paper, Special America Mexico: Geological Society of of (eds.), Cenozoic Tectonics and Volcanism Granados, H.,Aguirre-Díaz, G.J., Stock,J., central Mexican Volcanic Belt, In Delgado- theAcambaygraben, magnetostratigraphyof 2000, Stratigraphy, K-Arages, and Carrera-Hernández J.,Carrera-Hernández Levresse G., Aranda- Callegary, J.B., Ferré, T.P.A., Groom, R.W., Bonorino, G.G., Rinaldi, V., DelValle Abascal, Beamish, D., 2011,Low inductionnumber, ground Fazzito, S.Y., Rapalini, A.E., Cortés, J.M., Demant, A., 1978,ElEje Neovolcanico Cinti, F.R., Pauselli, C., Livio, F., Ercoli, M., L., Alvarado, P., Bujalesky, G.G., Güell, A., doi.org/10.1016/j.jappgeo.2011.07.005 https:// 244-253. 75, Geophysics, Applied magnetic in effects:the absence of Journal of A correction procedure meters: conductivity oorpyi h nenpeodleao tomography in the andean precordillera of faults by quaternary electric resistivity of Terrizzano, C.M.,2009,Characterization Geológicas, 2(2),172-187. Revistainterpretacion: Mexicana de Ciencias Transmexicano;problemas sus de https://doi.org/10.1093/gji/ggv404 Journal 203, 1847-1863. International, Calabria, Italy): Geophysicalfault (Northern geophysical data to image the Castrovillari multidisciplinary, multiscale geological and R., Michetti, A.M.,2015,Integrating P.M., Ventura, G., Alfonsi,L., Gambillara, Civico, R.,Pantosti, D., Pinzi,S., deMartini, Brunori, C.A.,Ferrario, M.F., Volpe, R., 792574 https://doi.org/10.1080/01431161.2020.1 Remote Sensing, 42,1,20-38. Journal of and Structure-from-Motion: International through alight unmanned aerial vehicle maar’sactive on a dry deformation bottom Gomez J., LacanP., 2021,Quantifying doi.org/10.2136/vzj2006.0120 https:// 158-167. 6, Journal, Zone Vadose electromagnetic-induction instruments: low-induction-number exploration of depth 2007, Vertical spatial sensitivity and s11069-011-9917-2 https://doi.org/10.1007/ 337-349. (2), 61 Fagnano fault: Natural Hazards, transform the Magallanes- 50°-55°S) and the role of Patagoniain southern (Argentina-Chile; 2012, Paleoseismicityhazardand seismic Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 Figueroa-Miranda, S., Tuxpan-Vargas, J., Ferrari, L., Orozco-Esquivel, T., Manea, V., Fox, R.C., Hohman, G.W., Killpack,T.J., Fletcher, J.M.,Teran, O.J., Rockwell, T.K.,Oskin, Fletcher, J.M., Teran, O.J., Rockwell, T.K., Oskin, mexico: Areview: Engineering Geology, central from intectonic valleys aquifers of bysubsidence over-exploitationgroundwater V. M.,Villaseñor-Reyes, C.I.,2018,Land Ramos-Leal, J. A.,Hernández-Madrigal, tecto.2011.09.018 https://doi.org/10.1016/j. 122-149. 523, zone:subduction Tectonophysics, 522- Trans-Mexican Volcanic Belt and theMexico the of dynamicManea, M., 2012,The history org/10.1016/j.jsames.2009.06.001 https://doi. 217-228. 28(3), Sciences, Earth South American argentina: Journalwestern of epyis 4() 7-3 https://doi. 75-93. org/10.1190/1.1441041 45(1), in Geophysics, effects Topographic resistivity and induced-polarization surveys: 1980, L., Rijo, https://doi.org/10.1130/B35308.1 America Bulletin, 132(9-10), 2084-2104. to regional stress:Geological Society of fault orientation relative importance of control fault zone architecture and the that the factors D.K.,of 2020,Ananalysis Hinojosa-Corona,Peña-Villa, A., I., Lynch, T.M., Akciz,S.O., A.P., Hernandez-Flores, P., Dorsey, M.T., Ostermeijer, G., Mitchell, M.E., Hudnut, K.W., Spelz, R.M., Lacan, https://doi.org/10.1130/GES00933.1 Mw 7.2earthquake: Geosphere, 10,797–827. 2010ElMayor-Cucapahthe 4April (Mexico) fault system: Surface rupture kinematics of alarge earthquake from acomplex Assembly of Corona, A.,González-García, J., 2014, Liu-Zeng, J., A.,Hinojosa- González-Ortega, Stock, J., Lynch, D.K., Elliott, A.J., Gold,P., Fielding, E.J., Leprince, S., Morelan, A.E., R.M., Akciz,S.O., Masana,E.,Faneros, G., M.E., Hudnut, K.W., Mueller, K.J., Spelz, https://doi.org/10.1016/j. enggeo.2018.09.023 91-106. 246, / 73(2)A2501212021 15 15

Geophysical evidence of the 1912 Acambay earthquake REFERENCES Geophysical evidence of the 1912 Acambay earthquake REFERENCES 16 16 / Keller, G.V., Frischknecht, F.C., 1966,Electrical Johnson, C.G.A.,C.A., Harrison, 1990, A.I., J., Olayinka, Turnbull, D.H., Griffiths, Two- 1993, R.D., Barker, D.H., Griffiths, Galli, P., Piscitelli, S., 2014, Surface breaks Lacan, P., Ortu Lacan P., Nivière B., Rousset D., Sénéchal La Femina, P.C., Connor, C.B., Stamatakos, J.A., Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín Upper Pleistocene to Holocene earthquakes L., Aguirre-Díaz, G., F.R., Zúiga, 2013a, https://doi.org/10.1016/j. tecto.2012.03.022. 57-68. 543, Pyrenees (France): Tectonophysics, 541- North-Westernthe MailArrouyThrust, P., 2012,Late Pleistocene folding above https://doi.org/10.2113/8.3.193 and Engineering Geoscience, 8(3),193-207. and electromagnetic surveys:Environmental fault in alluviumby high-resolution magnetic Farrell, D.A., 2002,Imaginganactive normal Pergamon Press Inc.,Oxford. 527p. methods in geophysical prospecting: https://doi. 187-210. org/10.1016/0031-9201(90)90037-X 64, Interiors, the Earth and Planetary Physicsof central Neotectonics in Mexico: https://doi. 121-129. 8, org/10.3997/1365-2397.1990008 Break, First https://doi. with a computer- controlled array: 1990, Two-dimensional resistivity mapping 211-226. (3-4), org/10.1016/0926-9851(93)90005-J 29 Geophysics, Applied Journal of complex geology: modelling in areas of dimensional resistivity imaging and https://doi. 291-313. org/10.1007/s11069-013-0914-5 71(1), Hazards, and paleoseismological insights: Natural Italy): GeophysicalCalabria, southern Cirò (Ionian along the coastal plain of and Slow Active Faults: Aachen, Germany, (eds.),K Hazard, Seismic Critical Facilities A,Perez-Lopez R, Reicherter Rudersdorf (central Mexico), InGrutzner C, graben the Venta de Bravo fault Acambaysystem, of recorded termination at the western no, M., Perea, H., Baize, S., Audin, http://dx.doi.org/10.18268/BSGM2021v73n2a250121 /73(2)A2501212021 Lacan, P., Ortuño, M.,Audin, L.,Perea, H., Baize, Lacan, P., F.R., Zúiga, Ortuño, M., Persaud, Loke,2014, Tutorial: M.H., 2-D and3-D Langridge, R.M.,Persaud, F.R., M.,Zúiga, Langridge, R.M.,Weldon, R.I., Moya, J.C., Lagunas Ocon, A.D., 2017, Estudio eietr vdneo historical and evidenceSedimentary of S., Aguirre-Díaz, G., F.R., Zúñiga, 2018, Geophysical Union,94,T23C–2591. Mexico): Eos, Transactions, American (central the Acambay graben of history T.F., Rendón, A.,2013b, Paleoseismological Corominas, O., Audin, L., Baize, S., Lawton, P.,Carreón, D., Cerca, M.,Suñe Puchol, I., Štěpančíková, H., Perea, P., Villamor, M., Aguirre-Díaz, G.J., Langridge, R.M., and Archeoseismology (PATA), 133-136. Meeting on Paleoseismology, Active Tectonics INQUA the 4th International Proceedings of 23, 2020). www.geotomosoft.com (accessed November electrical imaging surveys. Revisedversion: 463-481. Mexicana deCiencias Geológicas, 30(3), Mexican Volcanic Belt, Mexico: Revista Trans- theAcambaygraben, hazard of the Pastores Fault and itsrole intheseismic 2013, Preliminarypaleoseismic results from Aguirre-Díaz, G.J., Villamor, P., Lacan, P., org/10.1029/1999JB900239 https://doi. 3019-3037. (B2), Research,105 GeophysicalVolcanic Belt: Journal of Acambay-Tixmadejé Fault, Trans-Mexican the 1912 Acambayearthquake andthe Suaréz, G., 2000,Paleoseismology of Tesis deLicenciatura, 53p. de la Universidad Autónoma de Guerrero, Académica Regional de laTierra deCiencias Trans-Mexicano: Guerrero, México, Unidad Graben de Acambay, Cinturón Volcánico paleosismológico delafalla San Pedro enel https://doi.org/10.1016/j. sedgeo.2017.12.008 62–77. 365, (Central Mexico):Geology, Sedimentary de Bravo Fault System, Acambay Graben prehistorical earthquakes along the Venta Mayoral, J.M.,D., Asimaki, Tepalcapa, S., Wood, Martínez-Díaz, J.J., Bejar-Pizarro, M.,Álvarez- Martínez-Díaz, J.J., Masana, E.,Ortuño, M., Loke,Barker, M.H., R.D., 1996,Rapidleast- Nguyen, F., Garambois, S., Chardon, D., Nguyen, F., Garambois, S., Jongmans, D., Pirard, 2002, GeoelectromagneticMeju, M.A., McNeill, J.D., 1980,Electromagnetic terrain McCalpin, J.P., 2009,Paleosesmology(second tb00142.x https://doi.org/10.1111/j.1365-2478.1996. GeophysicalProspecting, 44(1), 131-152. pseudosections by a quasi-Newton method: apparent resistivity squares inversion of Hermitte, D.,Hermitte, Bellier, O., Jongmans, D., 2007, doi.org/10.1016/j.jappgeo.2005.02.001. Applied Geophysics, 57(4), 260-277. https:// resistivitydata for imagingfaults:Journal of 2D E., Loke, M.H.,2005,Image processingof https://doi. 133-205. org/10.1023/A:1015052419222 23, Geophysics, case studiesandchallenges: Surveysin exploration for natural resources: Models, ON,Limited. Mississauga, Canada. numbers: Technical Note TN-6, Geonics measurementsconductivity at low induction Elsevier, 848p. edition): Amsterdam, Academic Press- http://dx.doi. 369–82. org/10.1016/j.soildyn.2019.02.028. (March): 121 Soil EarthquakeDynamic Engienering; in Mexico City basin: Past and present: effects Site 2019, G., Montalva, K., Franke, C., Roman-de la Sancha, A.,Hutchinson,T., tecto.2012.04.010 https://doi.org/10.1016/j. 28-37. 546-547, 5.2 Lorca, Spain, earthquake: Tectonophysics rupture: damaging May The 11th 2011 Mw anintersegment implicationsand seismic of Herrera, G., Morales, J., 2012b, Tectonic Gómez, J.A., Mancilla,FdL,,Stich, D., n1.39218 dx.doi.org/10.5209/rev_JIGE.2012.v38. http:// 269-286. 38-1, Geology, Iberian of murcia fault, Betic Cordillera, Spain:Journal the Alhamade 2012a, Active tectonics of Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 Onorato, M.R.,Prezzi, C., Orgeira, M., Perucca, Nixon, G.T., relationship 1982,The between Rodríguez-Pascua, M.A.,Garduño-Monroy, Ritz, J-F., Baize, S., Ferry, M.,Larroque, Ortuño, M.,Corominas, O., Villamor, P., Zúñiga, Ortuño, F.R., M.,Zúiga, Aguirre-Díaz, G.J., I., 2019,Geophysicalcharacterization L., Coronato, A.,López,R.,Magneres, QVI>2.0.CO;2 org/10.1130/0016-7606(1982)93<514:TRB https://doi. 514-523. 93, Bulletin, America ocean lithosphere: Geological Society of subducted the and structureseismicity of volcanismin central MexicoQuaternary and https://doi. 338-353. org/10.1016/j.jappgeo.2007.03.003 62, Geophysics, fault, Provence, Applied France: Journal of reverse active slow a by affected formations anisotropic Subsurface electrical imaging of V.H., Pérez-López, R.,Perucha-Atienza, org/10.1038/s43247-020-0012-z https://doi. 10. 1, Environment, and Earth Teil earthquake, France: Communications reactivation4.9 Le duringthe 2019 Mw 2020, Surface rupture and shallow fault C., Audin, L.,DelouisB., Mathot, E., https://doi.org/10.1016/j. geomorph.2018.07.010 17–37. 326, Graben (central Mexico): Geomorphology, the Acambay in the central faults of Ramírez-Herrera, P.,M.T., recent ruptures 2019,Evidenceof Štěpančíková, H., F.R., Lacan, P., Aguirre-Díaz, G., Perea, GES01071.1 https://doi.org/10.1130/ 160-184. (1), 11 (Trans- Mexican Volcanic Belt): Geosphere, faults: the Pastores and Venta de Bravo faults two major recorded at the transfer zone of M., 2015,Holocene paleo-earthquakes Carreón-Freyre, D., Cerca,Roverato, M., https://doi.org/10.1016/j. quaint.2019.06.025 67-79. 523, International, fault system: Quaternary activity along Magallanes-Fagnano tectonic basin associated to quaternary Udaeta Lake asapossible pull-apart of / 73(2)A2501212021 17 17

Geophysical evidence of the 1912 Acambay earthquake REFERENCES Geophysical evidence of the 1912 Acambay earthquake REFERENCES 18 18 Saey, T., Smedt, P., Islam, M.M.,Meerschman, Saey, T., Van Meirvenne, M.,Smedt, P., Cockx, Roldán-Quintana, J., Aguirre-Díaz, G., Rodríguez- Rodriguez-Pérez, Q., F.R., Zúñiga, Lacan, Rodríguez-Pascua,Pérez-López,M.A., R., / Boletín de la Sociedad Geológica Mexicana Geológica Sociedad la de Boletín meeting: , Mexico, 3rd INQUA- Paleoseismology andarchaeosesimology V.H., Suárez, G., Reicherter, K.(eds.) Rodríguez-Pascua,Garduño-Monroy, M.A., years after, InPérez-López, R., Silva, P.G., 1912, revisited 100 Acambay earthquake of M.A., Israde-Alcántara, I., 2012, The org/10.1016/j.geoderma.2012.06.010 https://doi. 514-521. 189-190, Geoderma, contrasting subsoil features: delineation of receiver EMI measurements to enhance the multi- Meirvenne, slicingof M.,2012,Depth E., Van DeVijver,A., Van E.,Lehouck, https://doi.org/10.1016/j. geoderma.2011.01.015 151-158. of curves a proximal 162, response EMIsensor:Geoderma, depth multiple fitted F., 2011, Mappingdepth-to-clay using L., Meerschman, E.,Islam,M.M.,Meeuws, 28, 118-131. Revista Mexicana deCienciasGeológicas, de Acambay,el graben Estadode México: de escombros del volcán Temascalcingo en Castañeda, J.L., de avalancha 2011,Depósito https://doi.org/10.22201/ igeof.00167169p.2017.56.3.1816 255-268. 56-3, Mexico: GeofísicaInternacional, estimation inthe Acambay region, Central https://doi.org/10.1016/j. P., 2017,Paleoseismological uncertainty quaint.2017.06.045 74-86. 451, International, scale: Quaternary macroseismic the ESI07 and (EAE) effects from the earthquake archaeological earthquake (M 6.9,Mexico) determined the 1912 Acambay areathe epicentral of Israde-Alcántara, I., 2017,Estimation of Garduño-Monroy, V.H.,Perucha, M.A., Tectonics, Proceedings, 157-160. WorkshopIGCP-567 International on Active http://dx.doi.org/10.18268/BSGM2021v73n2a250121 /73(2)A2501212021 Singh, S.K., Reinoso, E.,Arroyo, D., Ordaz, Siebe, C., Macías, J.L., Aguirre-Díaz, G.J., 2006, Sánchez-Rubio, G., 1984, Cenozoic volcanism Sudduth, K.A., Drummond,S.T., Kitchen, N.R., Suárez, G., Caballero-Jiménez, G. V., Novelo- W.J.,Stephenson, McBride, J.H., 2003, Smedt, P., Saey, T., Lehouck, A., Stichebaut, B., intraslab Mexico earthquake of 19 september 19september intraslab Mexico earthquake of Iglesias, A., Hjörleifsdóttir, X., V., 2018,Deadly Pérez-Campos, V., Cruz-Atienza, M., SPE402 https://doi.org/10.1130/ 329. 402, Paper, America,Special Geological Society of volcanism: Aperspective from Mexico: continental margin Neogene-Quaternary thesis, 275p. Technology, London,Ph.D. University of Science and Mexico: Imperial College of in the -Amealco region, central 1 2924 https://doi.org/10.1016/ S0168-1699(00)00185-X 239-264. 31, and Electronics Computers in Agriculture, forconductivity precision agriculture: electrical soil of sensing induction in electromagneticissues 2001, Accuracy https://doi. 3544-3562. org/10.1029/2019TC005601 38, Tectonics, Earthquakes During the Last 450Years: Volcanic Belt as Evidencedby Historical the Trans-Mexican in Deformation Casanova, D.A., 2019,Active Crustal https://doi. 1-5. org/10.1016/S0040-1951(03)00226-9 368, Tectonophysics, hazard from shallow geophysicalimaging: Contributions to neotectonics andseismic org/10.1016/j.geoderma.2012.07.019 https://doi. 30-36. 199, Geoderma, dataset: for geoarcheaological prospection: A90ha multi-receiversurvey EMI the potential of E., Van Meirvenne, M.,2012,Exploring Meerschman,E., Islam,M.M.,Van DeVijver, doi.org/10.1785/0220180159 Research Letters, 89, 6, 2193–2203. https:// Mexicoin City: Seismological pattern 2017 (Mw7.1):Ground motionanddamage Suter, M.,López-Martínez, M.,Quintero-Legorreta, Suter, M., Quintero M.,Carrillo-Martínez, Suter, M.,Quintero, O.,Aguirre, López,M., G., Sunye-Puchol, I., Lacan, P., Ortuño, M., Villamor, Tsourlos, P.I.,J.E., Szymanski, Tsokas, G.N., Terrizzano,Fazzito, C.M., S. Y., Cortés, J. Mexicana deCienciasGeológicas, 32(3), de Acambay,el graben México: Revista paleosismológicas de fallamiento activo en La falla San Mateo: Nuevas evidencias R.M., Aguirre-Diaz, G., Lawton, T., 2015, P., Audin, F.R., L.,Zúñiga, Langridge, org/10.1190/1.1444640 https://doi. 1357-1363. 64(5), Geophysics, topography terrain of used resistivityon commonly arrays: effect The 1999, https://doi.org/10.1016/j. 47-60. jsames.2011.10.002 34, South AmericanEarth Sciences, Journal of argentina: precordillera sur, central andes of neotectonic structures, northwestern of resistivity tomography applied to the study M., &Rapalini, A. E.,2012,Electrical AEIT>2.0.CO;2 org/10.1130/0016-7606(2001)113<0693:QI America Bulletin, 113(6), 693-703. https://doi. Mexican Volcanic Belt: Geological Society of intra-arc extension in the central Trans- O., M.,2001,Quaternary Carrillo-Martínez, 86, 1952-1963. AmericaBulletin, Seismological Society of the Trans-Mexican Volcanicparts of Belt: earthquakes inthe central and eastern of Legorreta, O., 1996,Macroseismicstudy 1262. https://doi.org/10.1029/95TC01930 volcanic belt, Mexico: Tectonics, 14,1245- intra arc extension in the trans-Mexican Farrar, Active Acambaygraben: E.,1995,The http://dx.doi.org/10.22201/ cgeo.20072902e.2015.3.589 361-376. Boletín de la Sociedad Geológica Mexicana Mexicana Geológica Sociedad la de Boletín http://dx.doi.org/10.18268/BSGM2021v73n2a250121 Villani, F., Tulliani, V., Sapia, V., Fierro, E., Velázquez-Bucio, M.M.,Garduño-Monroy, V.H., Urbina, F., Camacho, H.,1913,Zona Zúñiga, F.R.,Zúñiga, Lacan,P., Rodríguez-Pérez, Q., Wolf, L.W., Tuttle, M.P., Browning, S., Park, S., Villani, F., Sapia, V., shallowstructure 2017, The active normal fault (central Italy) byactive high- normal the Piano diPezza subsurface imaging of Civico, R.,Pantosti, D., 2015,Shallow https://doi.org/10.22201/ cgeo.20072902e.2018.1.530 35(1),28–40. Revista Mexicana de Ciéncias Geólogicas el Altoarea, Mexico: Acambay graben, induced byactivity inthe San Pedro seismic structures 2018, Soft-sediment deformation Secretaria deFomento, 230pp. de México: Instituto Geológico de México, Acambay-Tixmadeje,Megaseismica Estado cecs 8 129. https://doi. 102390. 98, org/10.1016/j.jsames.2019.102390 Sciences South American Earth Belt: Journal of seismicity inthe Trans-Mexican Volcanic instrumented and spatial evolution of https://doi. Márquez-Ramírez, V.H., 2020,Temporal B223-B230. (6), org/10.1190/1.2353801 71 New zone:Madrid seismic Geophysics, inthe induced liquefaction deposits earthquake- 2006, Geophysical surveysof tecto.2017.08.001 https://doi.org/10.1016/j. 771,628-644. Italy earthquake casestudy:Tectonophysics, data: 30October 2016 Mw6.5central The fromdeposits multi-scale electrical resistivity asurface-rupturing fault unconsolidatedin of org/10.1093/gji/ggv399 https://doi. 1482-1494. 203. International, electromagnetic data: GeophysicalJournal tomographycoupled with time-domain resolution refraction and electrical resistivity / 73(2)A2501212021 19 19

Geophysical evidence of the 1912 Acambay earthquake REFERENCES