CHEM 342. Spring 2002. Problem Set #2. Answers
Total Page:16
File Type:pdf, Size:1020Kb
CHEM 342. Spring 2002. Problem Set #2. Answers.
Orthogonality x 2x 1. Prove that the functions 1 Asin and 2 Asin are orthogonal a a 0 x a. sinn mx sinn mx Hint: sin nx sin mxdx C 2n m 2n m
a a a * x 2x 2 x 2x 1 2 dx Asin Asin dx A sin sin dx 0 0 a a 0 a a a 2 2 3 sin x sin x sin a sin a 2 a a 2 a a A A 2 2 2 6 2 2 a a 0 a a sin sin3 A2 0 2 6 a a
2. Give a mathematical definition for the Kronnecker delta nm . What is the numerical value of the Kronnecker delta when the two eigenfunctions are orthogonal? What is the numerical value of the Kronnecker delta when n and m are the same eigenfunction (i.e. n = m)? In addition to these two values, can the Kronnecker delta be equal to any other numerical values? * nm n m d
The eigenfunctions n and m are orthogonal when nm 0 . The other possible value of the Kronnecker delta is 1, and it occurs when n = m. The Kronnecker delta can only equal zero or one; no other values are possible.
Operators d d 3. Find the result of operating with A y and B y on the function dy dy 2 f y e y / 2 . Is f(y) an eigenfunction of Aˆ or of Bˆ ? 2 d 2 A f y ye y / 2 e y / 2 dy
2 2 A f y ye y / 2 e y / 2 y
2 A f y 2ye y / 2
1 CHEM 342. Spring 2002. Problem Set #2. Answers.
This function is not an eigenfunction of Aˆ .
2 d 2 B f y ye y / 2 e y / 2 dy
2 2 B f y ye y / 2 e y / 2 y
2 2 B f y ye y / 2 ye y / 2
2 2 B f y y ye y / 2 0e y / 2 This function is an eigenfunction of Bˆ with eigenvalue of zero.
4. Find the following commutators for any function f(x).
(a) 2 dˆ, x
(b) 2 d , xˆ
2 ˆ d 2 d Hint: d , d , xˆ x , and 2 2 . dx dx 2 x x
(a) 2 2 2 dˆ, x f x dˆ x f x x dˆf x 2 d 2 df x 2 dˆ, x f x x f x x dx dx 2 2 dx 2 df x df x 2 dˆ, x f x f x x x dx dx dx 2 dˆ, x f x 2xf x
2 Therefore dˆ, x 2x
(b)
2 CHEM 342. Spring 2002. Problem Set #2. Answers.
2 2 2 d , xˆ f x d xˆf x xˆ d f x d 2 d 2 f x d 2 , xˆ f x xf x x 2 2 dx dx d dx df x d 2 f x d 2 , xˆ f x f x x x 2 dx dx dx dx d df x d 2 f x d 2 , xˆ f x f x x x 2 dx dx dx df x dx df x d 2 f x d 2 f x d 2 , xˆ f x x x 2 2 dx dx dx dx dx 2 df x df x d , xˆ f x dx dx 2 df x d , xˆ f x 2 dx
2 d Therefore d , xˆ 2 dx
1 d d 2 5. Find the result of operating with the operator O r 2 on the function r 2 dr dr r br Ae . What values must the constants have for to be an eigenfunction of O ? 1 d d 2 O Ae br r 2 Ae br Ae br 2 r dr dr r br 1 d 2 br 2 br OAe r bAe Ae r 2 dr r 1 2 OAe br bAr 2 be br 2re br Ae br r 2 r br br br 2e 2 br OAe bA be Ae r r 2Abe br 2 OAe br Ab 2e br Ae br r r br br 2 2b 2 OAe Ae b r r
3 CHEM 342. Spring 2002. Problem Set #2. Answers.
For to be an eigenfunction of O , the constant b must equal 1, while A can be any real number. In this case, the eigenvalue is 1.
6. Find the result of operating with the operator 2 on the function x 2 y 2 z 2 . Is it an eigenfunction? 2 2 2 2 x 2 y 2 z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 x y z x y z y,z x y z x,z x y z x, y x 2 y 2 z 2 2 x 2 y 2 z 2 2x 2y 2z x y z 2 x 2 y 2 z 2 2 2 2 2 x 2 y 2 z 2 6 This is not an eigenfunction of 2 .
7. The function Ax1 x is a well-behaved wave function in the interval 0 x 1 . Calculate the normalization constant (A), and the average value of a series of measurements of x (i.e find the expectation value: x ). 1 *dx 1 0 1 A2 x 2 1 x2 dx 1 0 1 A2 x 2 1 2x x 2 dx 1 0 1 A2 x 2 2x 3 x 4 dx 1 0 13 214 15 A2 1 3 4 5 1 A2 1 30 A 30
4 CHEM 342. Spring 2002. Problem Set #2. Answers.
1 xˆ * xˆdx 0 1 xˆ x*dx 0 1 xˆ x30x 2 1 x2 dx 0 1 xˆ 30 x 3 2x 4 x 5 dx 0 14 215 16 xˆ 30 4 5 6 1 xˆ 2
Expectation Values 8. For the wave function and the operatorˆ , give an expression that could be used to calculate the average value obtained from repeated measurements (i.e. show an expression for ˆ ). * ˆ d ˆ *d or ˆ * ˆ d , where is normalized.
Particle In a Box nx 9. Calculate the value of A so that Asin is normalized in the region 0 x a . n a x 1 Hint: sin 2 bxdx sin2bx C 2 4b
5 CHEM 342. Spring 2002. Problem Set #2. Answers.
a * n n dx 1 0 2 a nx Asin dx 1 0 a a nx A2 sin 2 dx 1 0 a a 2 x a 2nx A sin 1 2 4n a 0
2 a a A sin2n sin 0 1 2 4n a A2 1 2 2 Therefore, A a Note: sin2n 0 for n = integer.
10. For a particle in a one-dimensional box 0 x a, we used eigenfunctions of the form Asinkx . Explain why we could not use (a) Ae kx (b) Acoskx
(a) The wave function must be zero for x = a. If k is a real number, then e kx cannot fit this boundary condition. (b) The boundary conditions also require that 0 when x = 0. This cannot be true for the cosine function because cos 0 = 1. Therefore, the allowed eigenfunction must be of the form Asinkx .
11. The ground-state wave function for a particle confined to a one-dimensional box of 1/ 2 2 x length L is sin . The box is 10.0 nm long. Calculate the probability that the L L x 1 particle is between 4.95 nm and 5.05 nm. Hint: sin 2 bxdx sin2bx C 2 4b
6 CHEM 342. Spring 2002. Problem Set #2. Answers.
5.05 P *dx 4.95 5.05 2 2 x P sin dx 4.95 L L 5.05 2 2 x P sin dx L 4.95 L 5.05 2 x L 2x P sin L 2 4 L 4.95 5.05 x 1 2x P sin L 2 L 4.95 5.05 4.95 1 25.05 24.95 P sin sin 10.0 2 10.0 10.0 P 0.020
12. What is the ground state energy (i.e. n = 1) for an electron that is confined to a box 34 which is 0.2 nm wide. [Hint: Planck's constant, h,is 6.62610 J s; the mass of an electron, me, is 9.1091031 kg] h 2 n 2 E 8ma 2 2 6.626 1034 J s 12 E 2 89.109 1031 kg0.2 10 9 m E 1.506 1018 J
Uncertainty 13. The speed of a certain proton is 4.5 105 m/s along the x-axis. If the uncertainty in its momentum along the x-axis is 0.010 %, what is the maximum uncertainty in its location along the x-axis (i.e. x )?
p x 0.010%p0
p x 0.00010mv
7 CHEM 342. Spring 2002. Problem Set #2. Answers.
h xp x 4 h x 4p x h x 40.00010mv 6.6261034 J s x 40.000101.67310 27 kg4.5105 m s 1 x 7.0110 10 m
Tunneling 14. The wave function inside an infinitely long barrier of height V is Ae kx . Calculate (a) the probability that the particle is inside the barrier; and (b) the average penetration depth of the particle into the barrier (i.e. the expectation value x ). Because the barrier is n! infinitely long, this wave function is valid for 0 x . Hint: x ne ax dx a n1
2kx 2 * 2 2kx 2 e 2 1 A P dx A e dx A A 0 0 0 2k 2k 2k 0 A2 x x*dx xA2e 2kx dx 2 0 0 4k
8