CHEM 342. Spring 2002. Problem Set #2. Answers

CHEM 342. Spring 2002. Problem Set #2. Answers

<p>CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p>Orthogonality  x   2x  1. Prove that the functions 1  Asin  and  2  Asin  are orthogonal  a   a  0  x  a. sinn  mx sinn  mx Hint: sin nx sin mxdx    C  2n  m 2n  m</p><p> a a a *  x   2x  2  x   2x  1 2 dx  Asin Asin dx  A sin sin dx  0 0  a   a  0  a   a  a     2     2         3   sin x sin x sin a sin a 2  a   a  2  a   a   A     A         2     2      2   6    2  2           a   a   0   a   a     sin  sin3  A2     0    2   6           a   a  </p><p>2. Give a mathematical definition for the Kronnecker delta  nm . What is the numerical value of the Kronnecker delta when the two eigenfunctions are orthogonal? What is the numerical value of the Kronnecker delta when n and m are the same eigenfunction (i.e. n = m)? In addition to these two values, can the Kronnecker delta be equal to any other numerical values? *  nm    n  m d</p><p>The eigenfunctions  n and  m are orthogonal when  nm  0 . The other possible value of the Kronnecker delta is 1, and it occurs when n = m. The Kronnecker delta can only equal zero or one; no other values are possible.</p><p>Operators   d    d  3. Find the result of operating with A  y    and B  y    on the function  dy   dy  2 f y  e  y / 2 . Is f(y) an eigenfunction of Aˆ or of Bˆ ?  2 d 2 A f y  ye  y / 2  e  y / 2  dy</p><p> 2 2 A f y  ye  y / 2  e  y / 2  y</p><p> 2 A f y  2ye  y / 2</p><p>1 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p>This function is not an eigenfunction of Aˆ .</p><p> 2 d 2 B f y  ye  y / 2  e  y / 2  dy</p><p> 2 2 B f y  ye  y / 2  e  y / 2  y</p><p> 2 2 B f y  ye  y / 2  ye  y / 2</p><p> 2 2 B f y  y  ye  y / 2  0e  y / 2  This function is an eigenfunction of Bˆ with eigenvalue of zero.</p><p>4. Find the following commutators for any function f(x). </p><p>(a)   2  dˆ, x   </p><p>(b)   2  d , xˆ  </p><p> 2 ˆ d 2 d  Hint: d  , d  , xˆ  x , and 2 2 . dx dx 2 x  x</p><p>(a)     2  2 2 dˆ, x  f x  dˆ x f x  x dˆf x     2  d 2  df x 2 dˆ, x  f x  x f x  x   dx  dx   2  2  dx  2 df x  df x 2 dˆ, x  f x  f x  x    x   dx dx  dx    2  dˆ, x  f x  2xf x  </p><p>  2  Therefore dˆ, x   2x  </p><p>(b)</p><p>2 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p>    2  2 2 d , xˆ f x  d xˆf x xˆ d f x      d 2 d 2 f x d 2 , xˆ f x  xf x  x     2    2   dx dx    d  dx df x d 2 f x d 2 , xˆ f x  f x  x  x         2   dx  dx dx  dx    d  df x d 2 f x d 2 , xˆ f x  f x  x  x         2   dx  dx  dx    df x dx df x d 2 f x d 2 f x d 2 , xˆ f x    x  x     2 2   dx dx dx dx dx   2  df x df x d , xˆ f x     dx dx   2   df x d , xˆ f x  2     dx </p><p>  2   d  Therefore d , xˆ  2     dx </p><p> 1  d   d  2 5. Find the result of operating with the operator O   r 2    on the function r 2  dr   dr  r br     Ae . What values must the constants have for to be an eigenfunction of O ?  1  d   d  2 O Ae br  r 2 Ae br  Ae br   2        r  dr   dr  r  br 1  d  2 br  2 br OAe   r  bAe   Ae  r 2  dr   r  1 2 OAe br   bAr 2  be br  2re br  Ae br  r 2 r  br br  br 2e  2 br OAe  bA be    Ae   r  r  2Abe br 2 OAe br  Ab 2e br   Ae br  r r  br br  2 2b 2 OAe  Ae b     r r </p><p>3 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p> For  to be an eigenfunction of O , the constant b must equal 1, while A can be any real number. In this case, the eigenvalue is 1. </p><p>6. Find the result of operating with the operator  2 on the function x 2  y 2  z 2 . Is it an eigenfunction?  2  2  2  2    x 2 y 2 z 2 2 2 2 2 2 2 2  2 2 2  2 2 2  2 2 2  x  y  z  x  y  z y,z  x  y  z x,z  x  y  z x, y x 2 y 2 z 2     2 x 2  y 2  z 2  2x 2y 2z x y z  2 x 2  y 2  z 2  2  2  2  2 x 2  y 2  z 2  6 This is not an eigenfunction of  2 .</p><p>7. The function   Ax1 x is a well-behaved wave function in the interval 0  x 1 . Calculate the normalization constant (A), and the average value of a series of measurements of x (i.e find the expectation value:  x  ). 1 *dx  1 0 1 A2 x 2 1 x2 dx  1 0 1 A2 x 2 1 2x  x 2 dx  1 0 1 A2 x 2  2x 3  x 4 dx  1 0 13 214 15  A2      1  3 4 5   1  A2    1  30  A  30</p><p>4 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p>1  xˆ  * xˆdx 0 1  xˆ  x*dx 0 1  xˆ  x30x 2 1 x2 dx 0 1  xˆ  30 x 3  2x 4  x 5 dx 0 14 215 16   xˆ  30     4 5 6  1  xˆ  2</p><p>Expectation Values 8. For the wave function  and the operatorˆ , give an expression that could be used to calculate the average value obtained from repeated measurements (i.e. show an expression for  ˆ  ). * ˆ d  ˆ    *d or  ˆ   * ˆ d , where  is normalized.</p><p>Particle In a Box nx 9. Calculate the value of A so that   Asin is normalized in the region 0  x  a . n a x  1  Hint: sin 2 bxdx    sin2bx C  2  4b </p><p>5 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p> a *  n  n dx 1 0 2 a  nx  Asin  dx 1 0  a  a nx A2 sin 2 dx  1 0 a a 2  x a  2nx  A   sin   1 2 4n  a  0</p><p>2 a a  A   sin2n sin 0 1 2 4n   a  A2   1  2  2 Therefore, A  a Note: sin2n  0 for n = integer. </p><p>10. For a particle in a one-dimensional box 0  x  a, we used eigenfunctions of the form   Asinkx . Explain why we could not use (a)   Ae kx (b)   Acoskx</p><p>(a) The wave function must be zero for x = a. If k is a real number, then e kx cannot fit this boundary condition. (b) The boundary conditions also require that   0 when x = 0. This cannot be true for the cosine function because cos 0 = 1. Therefore, the allowed eigenfunction must be of the form   Asinkx . </p><p>11. The ground-state wave function for a particle confined to a one-dimensional box of 1/ 2  2   x  length L is     sin  . The box is 10.0 nm long. Calculate the probability that the  L   L  x  1  particle is between 4.95 nm and 5.05 nm. Hint: sin 2 bxdx    sin2bx C  2  4b </p><p>6 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p>5.05 P  *dx 4.95 5.05  2  2  x  P   sin  dx 4.95  L   L  5.05  2   2  x  P    sin  dx  L 4.95   L  5.05  2  x L  2x  P     sin   L 2 4  L  4.95 5.05  x 1  2x  P    sin   L 2  L  4.95 5.05  4.95 1  25.05 24.95 P   sin  sin  10.0 2  10.0 10.0  P  0.020</p><p>12. What is the ground state energy (i.e. n = 1) for an electron that is confined to a box 34 which is 0.2 nm wide. [Hint: Planck's constant, h,is 6.62610 J s; the mass of an electron, me, is 9.1091031 kg] h 2 n 2 E  8ma 2 2 6.626 1034 J s 12 E    2 89.109 1031 kg0.2 10 9 m E 1.506 1018 J</p><p>Uncertainty 13. The speed of a certain proton is 4.5  105 m/s along the x-axis. If the uncertainty in its momentum along the x-axis is 0.010 %, what is the maximum uncertainty in its location along the x-axis (i.e. x )? </p><p>p x  0.010%p0</p><p>p x  0.00010mv</p><p>7 CHEM 342. Spring 2002. Problem Set #2. Answers. </p><p> h xp  x 4 h x  4p x h x  40.00010mv 6.6261034 J s x    40.000101.67310 27 kg4.5105 m s 1  x  7.0110 10 m</p><p>Tunneling 14. The wave function inside an infinitely long barrier of height V is   Ae kx . Calculate (a) the probability that the particle is inside the barrier; and (b) the average penetration depth of the particle into the barrier (i.e. the expectation value  x  ). Because the barrier is n! infinitely long, this wave function is valid for 0  x   . Hint: x ne ax dx   a n1</p><p>   2kx 2 * 2 2kx 2 e  2  1  A P   dx  A e dx  A    A 0    0 0  2k  2k 2k   0     A2  x  x*dx  xA2e 2kx dx  2 0 0 4k</p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us