Appendix 1: Spatial Distribution of Different Land Use Types

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1: Spatial Distribution of Different Land Use Types

Appendix 1: Spatial distribution of different land use types Land use types Area in ha Dry grassland 278 Extensively managed grassland 12694 Intensively managed grassland 7481 Scrub encroachment 60 Forest 49974 Arable land 32104

Settlement 16905 Total 119496 Appendix 2: Quantification and valuation of ecosystem services 5 Production We quantified food production based on the green fodder production (measured in decitons of dry matter per year) removed by mowing or grazing. The production is depending on the altitude and the cultivation-type (AGRIDEA Lindau 2010) (Table A1). The valuation combines the crop yield with the price of sale.

10 Tab. App.2.1: Annual yield (dry matter) and value according to altitude for dry grassland

Height dt DM/ha/a USD/ha/a above sea level (m)

500 27 724

600 25.5 684

700 24.5 657

800 22.5 603

900 21.5 577

1000 20 536

1100 19 510

1200 17.5 469

The maintenance costs for cultivation and maintenance of dry grassland depend especially on the slope of the meadow (AGRIDEA Lindau 2010; Pfeiffer et al 2002). Tab. App.2.2: Maintenance costs for dry grassland according to the slope in USD/ha/a 15 (without considering the impact of fragmentation)

Slope [%] USD/ha/a

50-80 1752

35-50 1376

25-35 1087

18-25 782

<18 732

Carbon sequestration We quantified carbon sequestration based on estimations of the change in biomass 20 (aboveground biomass, belowground biomass and soil) following the Switzerland’s Greenhouse Gas Inventory (Bundesamt für Umwelt 2010), the findings of Ammann et al (2007) and the IPCC-Guidelines (IPCC 2006) and adapted the values to the species-diversity according to the study of Tilman et al (2006). For quantification, we took into account the interest yield of the actual carbon-storage. The considered time period corresponds to a 25 scenario period, which is twenty years (2010 to 2030). We valued the service by current estimates of the social value of carbon sequestration according to Nelson et al (2009) and the IPCC (2007): Peer-reviewed estimates of the social cost of carbon for 2005 show an average value of US$ 43 per ton of carbon (Tol 2005). Inflation-adjusted, this corresponds to US$ 48 in 2010 (U.S. Bureau of Labor Statistics 2013). 30 The range around this mean is large but using standard assumptions about discounting and aggregation, the marginal damage costs of carbon dioxide emissions are unlikely to exceed US$50 per ton of carbon, and probably are much smaller (Tol 2005). Tab. App.2.3: Carbon sequestration and value according to altitude for dry grassland

height C above C root C soil C total CO2 total interest

above sea ground [t C/ha] [t C/ha] [t C/ha] [t CO2/ha] yield level [t C/ha] [USD/ha/ a]

500 2.2 5.7 62.0 69 256 133 600 2.1 5.7 67.5 75 275 145 700 2 5.7 67.5 75 275 145 800 1.8 5.7 67.5 75 275 145 900 1.7 5.7 67.5 74 275 143 1000 1.6 5.7 67.5 74 274 143 1100 1.5 5.7 67.5 74 274 143 1200 1.4 5.7 67.5 74 2714 143

35 Recreational experience The valuation of recreational experience is based on the willingness to pay of tourists for typical sceneries and land use types in Switzerland (Lindemann- Matthies et al 2010). Furthermore we included information on recreational preferences for species-rich, less intensively managed land use types such as dry grassland (Lamprecht et al 2009; Seco-Dienst 40 für Tourismus 2002; Nohl 2001; Lindemann-Matthies and Bose 2007; Lindemann-Matthies et al 2010). Following the findings of Lindemann- Matthies et al (2010) a total willingness to pay of USD 1095 per ha and year was assigned to the dry grassland due to the additional aesthetical value of their species richness.

45 Pollination Visitation by pollinators was estimated based on the distance between potential nesting habitats and arable land. Land use classes including dry meadows (below the specified threshold), forest edges, and shrub land assumed to provide sufficient habitat for pollinators. Visitation by pollinators was estimated using the functional relationship provided in Ricketts 50 et al. (2008). To single out the effect of dry meadows the model was run twice: first for all suitable land use classes (habitats) and in a second run for all habitats but dry meadows. The difference between the two raster maps was used as a conservative estimate of the pollination service provided by functional dry meadows. Monetary values for the pollination supply by dry meadows were assigned based on the average pollination dependent value of crops in the 55 Canton Aargau. Values for the pollination dependency of the different crops were taken from Klein et al. (2007). The economic value of crop production was taken from Bundesamt für Statistik (BFS) (2012). 60 Appendix 3: Transition probabilities of the different scenarios used to modify the multi-logistic regression for estimating land use changes in the Swiss Canton Aargau. From To Open forest Fores S Extensively Intensiv Dry grassland Arable t cr managed grassland ely Land ub manage d grasslan d (%) (%) ( (%) (%) (%) (%) % ) (a) Business as usual Closed forest <0.5 < <0.5 <0.5 0 0 0. 5 Open forest 90 < 1.5 0.7 0 0 0. 5 Forest Scrub 4 8 0.8 <0.5 0 0 7 Extensively managed grassland 0.6 1. 97 0.6 0 0 6 Intesively managed grassland <0.5 < 2.5 97 0 0 0. 5 (b) Liberalisation (lowlands (<900 m asl), tourist areas) Closed forest 0 0 0 0 0 0 0 Open forest 100 0 0 0 0 0 0 Forest 0 100 0 0 0 0 0 Scrub 0 0 1 0 0 0 0 00 Non-intensive open land 0 0 5 14.75 70 0.25 10 Intensive open land 0 0 0 10 80 0 10 Dry grassland 0 10 10 60 10 10 Arable land 0 0 10 10 0 80 (c) Lowered agricultural production Closed forest 0 0 0 0 Open forest 100 0 0 0 Forest 100 0 0 0 0 0 Scrub 5 5 9 0 0 0 0 5 Non-intensive open land 0 0 5 94 0 1 0 Intensive open land 10 10 1 14,5 60 0,5 0 0 Dry grassland 0 5 0 0 95 0 Arable land 10 0 15 15 0 70 Appendix 4: Land use area in the case study area under the different scenarios in ha Dry Extensively Intensively Arable land Scrub En- Forest grassland managed managed croachment grassland grassland 2000 242 10921 8002 33328 40 48982 2010 278 12694 7481 32104 60 49974 business as 282 15009 5388 30270 79 46118 usual 2030 reduced agr. 865 19102 9769 13557 3561 51635 prod. 2030 liberalization 35 5461 23005 24054 750 45183 2030

65 Appendix 5: Fragmentation of dry grassland under the different land use change scenarios Fragmentation Fragmentation Total area of Number of Average size index (mean, index (mean, dry grassland dry meadow of dry based on area weighted) [ha] patches meadow number of patches [ha] patches) 2000 677 564 242 206 1.13 2010 695 579 278 295 0.87 business as 731 586 282 539 0.56 usual 2030 reduced agr. 767 670 865 4369 0.22 prod. 2030 liberalization 781 743 35 303 0.13 2030 70 Appendix References AGRIDEA Lindau (2010) Landwirtschaftliches Handbuch Pflanzen und Tiere 2011. Wirz Verlag, Basel Ammann C, Flechard C, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agriculture, Ecosystems 75 and Environment 121:5–20 Bundesamt für Statistik (BFS) (2012) Regionale Landwirtschaftliche Gesamtrechnung. (Eurostat-Methodik). Neuchâtel. Bundesamt für Umwelt (BAFU) (2010) Swiss Greenhouse Gas Inventory 1990-2008. National Inventory Report 2010. including reporting elements under the Kyoto Protocol, Bern

80 IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Volume 4 - Agriculture, Forestry and Other Land Use. Institute for Global Environmental Strategies (ed.), Hayama, Kanagawa, Japan IPCC (2007) Climate change 2007: Summary for Policymakers. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 85 Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C and Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274:303–313.

90 Lamprecht M, Fischer A, Stamm H (2009) Wandern in der Schweiz 2008. Bericht zur Sekundäranalyse von «Sport Schweiz 2008» und zur Befragung von Wandernden in verschiedenen Wandergebieten. Materialien Langsamverkehr. Bundesamt für Strassen (ASTRA), Bern Lindemann-Matthies P, Bose E (2007) Species richness, structural diversity and species 95 composition in meadows created by visitors of a botanical garden in Switzerland. Landscape and Urban Planning 79(3-4):298–307 Lindemann-Matthies P, Junge X, Matthies D (2010) The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biological Conservation 143(1):195–202

100 Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7(1):4–11 Nohl W (2001) Landschaftsplanung. Ästhetische und rekreative Aspekte ; Konzepte, 105 Begründungen und Verfahrensweisen auf der Ebene des Landschaftsplans. Patzer, Berlin Pfeiffer W, Straub U, Schick M, Zürcher D, Goldenberger M (2002) Naturnahe Lebenräume. Leitfaden zur Berechnung von Pflegeleistungen und Einkommensausfällen. Landwirtschaftliche Beratungszentrale LBL (ed.), Lindau Ricketts TH, Regetz J, Steffan I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren 110 B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, and Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecology Letters 11:499–515. Seco-Dienst für Tourismus (2002) Naturnaher Tourismus in der Schweiz. Angebot, Nachfrage und Erfolgsfaktoren. Im Auftrag des Staatssekretariats für Wirtschaft, Zürich

115 Tilman D, Hill J, Lehman C (2006) Carbon-Negative Biofuels from Low-Input High- Diversity Grassland Biomass. Science 314(5805):1598–1600 Tol RSJ (2005) The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties. Energy Policy 33(16):2064–2074 U.S. Bureau of Labor Statistics (2013) Inflation Calculator. 120 http://www.bls.gov/data/inflation_calculator.htm. (Accessed Apr 2013)

Recommended publications