A Model for Core Formation in Dark Matter Haloes and Ultra-Diffuse Galaxies by Outflow Episodes
MNRAS 491, 4523–4542 (2020) doi:10.1093/mnras/stz3306 Advance Access publication 2019 November 26 A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes Jonathan Freundlich ,1‹ Avishai Dekel,1,2 Fangzhou Jiang ,1 Guy Ishai,1 Nicolas Cornuault,1 Sharon Lapiner,1 Aaron A. Dutton 3 and Andrea V. Maccio` 3,4 1Centre for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel 2Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, USA 3New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates 4 Max Planck Institute fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany Downloaded from https://academic.oup.com/mnras/article/491/3/4523/5643939 by guest on 24 September 2021 Accepted 2019 November 20. Received 2019 November 20; in original form 2019 July 26 ABSTRACT We present a simple model for the response of a dissipationless spherical system to an instantaneous mass change at its centre, describing the formation of flat cores in dark matter haloes and ultra-diffuse galaxies (UDGs) from feedback-driven outflow episodes in a specific mass range. This model generalizes an earlier simplified analysis of an isolated shell into a system with continuous density, velocity, and potential profiles. The response is divided into an instantaneous change of potential at constant velocities due to a given mass-loss or mass- gain, followed by energy-conserving relaxation to a new Jeans equilibrium. The halo profile is modelled by a two-parameter function with a variable inner slope and an analytic potential profile, which enables determining the associated kinetic energy at equilibrium.
[Show full text]