A Brief History of Numbers by Leo Corry

Total Page:16

File Type:pdf, Size:1020Kb

A Brief History of Numbers by Leo Corry Reviews Osmo Pekonen, Editor A Brief History of Numbers by Leo Corry OXFORD: OXFORD UNIVERSITY PRESS, 2015, 336 PP., £24.99, ISBN: 9780198702597 REVIEWED BY JESPER LU¨TZEN he concept of number has an interesting and intriguing history and this is a highly recommendable TT book about it. When were irrational numbers (or negative numbers) introduced into mathematics? Such questions seem precise and simple, but they cannot be answered with a simple year. In fact, the years 2000 BC and AD 1872 and many years Feel like writing a review for The Mathematical in between could be a valid answer to the question about Intelligencer? Contact the column editor if you wish to irrational numbers, and many years between 1 and 1870 could be defended as an answer to the question about the submit an unsolicited review, or if you would welcome introduction of negative numbers. This is not just because modern mathematicians may consider pre-1870 notions of being assigned a book to review. numbers as nonrigorous but also because the historical actors were not in agreement about the nature and extent of the concept of number. Therefore the answer to the questions raised previously must necessarily be a long and contorted story. Many treatises and articles on the history of mathematics tell aspects of this story, and Corry’s book may be considered a synthesis of these more specialized works. Still, Corry also adds his own original viewpoints and results to the standard history. The last chapters of the book dealing with the modern foundations of the number system from the end of the 19th and the beginning of the 20th cen- turies obviously draw on Corry’s own research on the establishment of modern structural thinking that has con- tributed seminally to our understanding of the development of mathematics in this period. Moreover, Corry has also shed new light on the gradual merger of quantity, ratio, and number through a study of the transmission and edition of Euclid in the Renaissance. However, the book is not primarily a research mono- graph but rather a semipopular book addressed to an audience of college students and mathematics teachers as well as high-school students and professional mathemati- cians. It is written in a pleasant, captivating style characteristic of the best popular mathematics books, but, because it is based on the most up-to-date scholarship, it paints an historically honest picture of the development of the concept of number. Many popular books on the history â Submissions should be uploaded to http://tmin.edmgr.com of mathematics try to make the presentation more readable or to be sent directly to Osmo Pekonen, by simplifying the historical account. Corry, on the con- osmo.pekonen@jyu.fi trary, does not cut corners. He presents the historical Ó 2017 Springer Science+Business Media New York, Volume 39, Number 3, 2017 87 DOI 10.1007/s00283-017-9707-0 development in all its complexity, and that is exactly why surprisingly sophisticated story. For example, I was struck by the book is so captivating. the minute differences Corry can discern in the development The main plot of the book is a story of how the ancient of the concept of a fraction. Greeks distinguished between numbers (collections of In a book about the development of a mathematical units: 2,3,4,…), magnitudes (for example, line segments), concept, one has to distinguish between explicit definitions and ratios (between numbers or magnitudes) and how this of mathematical objects and the more implicit conceptual distinction was afterward gradually blurred, leading to our ideas that one can extract from the technical use of the modern concept of the real numbers. But this story is full of object. Corry repeatedly emphasizes the discrepancy twists and turns and it has many side stories involving between the two. For example, negative and complex aspects of the history of algebra, geometry, and analysis. In numbers could be handled in a consistent manner long addition to the real numbers, Corry also deals with the before the concepts had been properly defined or philo- development of complex numbers, quaternions, and the sophically grasped. Similarly, fractions or irrational ratios infinite cardinals and ordinals. Infinitesimals, on the other were treated as numbers long before the definition of a hand, are only mentioned in passing. Number symbols and number as a collection of units had been replaced by a new mathematical notation are discussed, but mostly only definition that would allow fractions to be considered as insofar as they have had an impact on the concept of numbers. By insisting on contrasting the technical mathe- number. Corry primarily deals with Western mathematics matical practice and the more foundational or philosophical and the mathematics in cultures that have had an impact on aspects of a concept at a given time, Corry draws a richer Western mathematics, such as ancient Egypt and Babylon and more complex picture than one customarily sees in as well as Medieval Arab (Islamic) mathematics. Far Eastern popular books on the history of mathematics. and South American concepts of number are not discussed. The book begins with a simple nonhistorical chapter on Because Corry wants to display the conceptual com- ‘‘The System of Numbers’’ that presents the various sets of plexities in the history of numbers, he needs to handle a lot numbers. It continues with a chapter on the idea of a of technical mathematics. However, the technicalities are positional system, illustrating the idea with the Egyptian, kept to a minimum and they are presented in a very ped- Babylonian, and Greek number signs. agogical way, making them understandable to a good high- Chapter 3 introduces the main dichotomy that must be school student. Corry often engages in a dialog with his kept in mind throughout the book, namely the Greek dis- readers to urge them to delve into important mathematical tinction between discrete numbers and continuous arguments. For example, as an introduction to Cantor’s geometric magnitudes. The problem of incommensurability diagonal argument for the uncountability of the real num- that necessitated this distinction is explained in a simple bers, Corry writes: ‘‘I want to present Cantor’s proof now. It manner, and Corry explains how geometric magnitudes is not particularly lengthy, and understanding its details were not measured but compared in the Greek pure math- does not require any specific mathematical background. If ematical texts. He also explains the basic idea behind you find my explanation somewhat difficult to follow, I Eudoxos’s theory of proportion (details in an appendix) and urge you to carry on bravely nonetheless to the end, if only the Greek use of fractional numbers in more applied texts. for the sake of coming close to grasping the main ideas Chapter 4 deals with ‘‘Construction Problems and behind the famous argument.’’ Some of the most techni- Numerical Problems in the Greek Mathematical Tradition.’’ cally demanding arguments have been relegated to Euclid’s number theory and Diophantus’s numerical prob- appendices after each chapter. This holds, for example, for lems are discussed and are contrasted with Greek geometric p the proof of the irrationality of 2, Euclid’s discussion of problem solving. It is important to insist on this contrast the area of a circle, Khayyam’s geometric solution of the because modern students will have encountered a different cubic equation, Dedekind’s theory of cuts compared with style of geometry in which the problems mostly concern Eudoxos’s theory of proportions, and the proof that the set finding the length of certain line segments or the measure of of algebraic numbers is countable. certain angles; that is, the problems ask for numbers and the When presenting old mathematical texts and ideas, an solutions mostly involve calculation. As explained by Corry, historian of mathematics must take into account the mathe- classical Greek geometric problems ask for the construction matical background of his/her modern reader. The historian (with ruler and compass or otherwise) of geometric objects. may find it convenient to translate the old mathematics into They involve no numbers or calculations. A modern reader modern terminology and symbolism to show the similarity of will be tempted to translate many of the Greek geometric the old ideas with more familiar modern ideas. To a mathe- problems and their solutions into algebra (geometric alge- matician for whom sameness (isomorphism) is important, bra), but as pointed out by Corry one must keep in mind that such translations are appealing. For an historian of mathe- such a translation only developed gradually during the matics, however, the development of mathematical ideas subsequent two millennia. only shows itself when one focuses on the minute differ- The following chapter on the Medieval Islamic tradition ences among different texts. Corry is very much aware of this does not handle the spread of the Hindu–Arabic decimal problem. He often presents the old ideas in a modern number system but mainly the emergence of algebraic translation or notation but he insists on the conceptual dif- techniques, the treatment of fractions, and Abu Kamil’s and ferences between this translation and the old original. In this Al-Khayyam’s uneasy attempts to merge numbers with way he shows subtle conceptual differences among different geometric magnitudes. About Al-Khwarizmi’s treatment of mathematical texts, and consequently he is able to tell a fractions, Corry concludes: 88 THE MATHEMATICAL INTELLIGENCER ‘‘All of this can be seen as direct evidence of how the and Hamilton’s invention of quaternions are the main arithmetic of fractions was practiced in the early stages of subjects discussed in Chapter 9. Islamic mathematics and how fractions were conceptual- In Chapter 10, Corry has reached the late 19th century ized.
Recommended publications
  • What's Love Got to Do With
    Aaron Brown What’s Love Got to Do With It? Edward Frenkel is writing a protracted Dear John letter to popular misconceptions about math and mathema- ticians… he great popular science and science fiction author Isaac Asimov told a story about a university committee meeting in which there was much laughter and joking about a student named “Milton” flunkingT English literature, but no one noticed when a student named “Gauss” was failing in mathematics. I wish I could find the reference to this, but I read it long ago in childhood, and some Internet searching proved fruitless. I may have the details wrong – especially the name of the student date are smaller than Asimov’s. They also have cians, and writers. With these people, screenwriters flunking English literature – but I remember the a different slant. Asimov tried to show every- often assume they must be tortured to be authentic. point. Asimov complained that a scientist would be one how mathematics and science could be fun. But there are plenty of exceptions – movies built thought a Philistine if he expressed no interest in Frenkel instead celebrates the passion and inten- around well-rounded, friendly, artistic genius- music or philosophy, but that an artist could boast sity of mathematics at the highest level. He has es. And, even when artists are a bit crazy, it is an about not knowing enough arithmetic to balance done this through lectures which are a sensation excess of passion, “agony and ecstasy,” not some his checkbook. on YouTube, an erotic film, and, most recently, a incomprehensible twisted obsession from another Edward Frenkel is one of the great mathema- book, Love and Math: The Heart of Hidden Reality.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Measuring Fractals by Infinite and Infinitesimal Numbers
    MEASURING FRACTALS BY INFINITE AND INFINITESIMAL NUMBERS Yaroslav D. Sergeyev DEIS, University of Calabria, Via P. Bucci, Cubo 42-C, 87036 Rende (CS), Italy, N.I. Lobachevsky State University, Nizhni Novgorod, Russia, and Institute of High Performance Computing and Networking of the National Research Council of Italy http://wwwinfo.deis.unical.it/∼yaro e-mail: [email protected] Abstract. Traditional mathematical tools used for analysis of fractals allow one to distinguish results of self-similarity processes after a finite number of iterations. For example, the result of procedure of construction of Cantor’s set after two steps is different from that obtained after three steps. However, we are not able to make such a distinction at infinity. It is shown in this paper that infinite and infinitesimal numbers proposed recently allow one to measure results of fractal processes at different iterations at infinity too. First, the new technique is used to measure at infinity sets being results of Cantor’s proce- dure. Second, it is applied to calculate the lengths of polygonal geometric spirals at different points of infinity. 1. INTRODUCTION During last decades fractals have been intensively studied and applied in various fields (see, for instance, [4, 11, 5, 7, 12, 20]). However, their mathematical analysis (except, of course, a very well developed theory of fractal dimensions) very often continues to have mainly a qualitative character and there are no many tools for a quantitative analysis of their behavior after execution of infinitely many steps of a self-similarity process of construction. Usually, we can measure fractals in a way and can give certain numerical answers to questions regarding fractals only if a finite number of steps in the procedure of their construction has been executed.
    [Show full text]
  • Complex Numbers Sigma-Complex3-2009-1 in This Unit We Describe Formally What Is Meant by a Complex Number
    Complex numbers sigma-complex3-2009-1 In this unit we describe formally what is meant by a complex number. First let us revisit the solution of a quadratic equation. Example Use the formula for solving a quadratic equation to solve x2 10x +29=0. − Solution Using the formula b √b2 4ac x = − ± − 2a with a =1, b = 10 and c = 29, we find − 10 p( 10)2 4(1)(29) x = ± − − 2 10 √100 116 x = ± − 2 10 √ 16 x = ± − 2 Now using i we can find the square root of 16 as 4i, and then write down the two solutions of the equation. − 10 4 i x = ± =5 2 i 2 ± The solutions are x = 5+2i and x =5-2i. Real and imaginary parts We have found that the solutions of the equation x2 10x +29=0 are x =5 2i. The solutions are known as complex numbers. A complex number− such as 5+2i is made up± of two parts, a real part 5, and an imaginary part 2. The imaginary part is the multiple of i. It is common practice to use the letter z to stand for a complex number and write z = a + b i where a is the real part and b is the imaginary part. Key Point If z is a complex number then we write z = a + b i where i = √ 1 − where a is the real part and b is the imaginary part. www.mathcentre.ac.uk 1 c mathcentre 2009 Example State the real and imaginary parts of 3+4i.
    [Show full text]
  • 1.1 the Real Number System
    1.1 The Real Number System Types of Numbers: The following diagram shows the types of numbers that form the set of real numbers. Definitions 1. The natural numbers are the numbers used for counting. 1, 2, 3, 4, 5, . A natural number is a prime number if it is greater than 1 and its only factors are 1 and itself. A natural number is a composite number if it is greater than 1 and it is not prime. Example: 5, 7, 13,29, 31 are prime numbers. 8, 24, 33 are composite numbers. 2. The whole numbers are the natural numbers and zero. 0, 1, 2, 3, 4, 5, . 3. The integers are all the whole numbers and their additive inverses. No fractions or decimals. , -3, -2, -1, 0, 1, 2, 3, . An integer is even if it can be written in the form 2n , where n is an integer (if 2 is a factor). An integer is odd if it can be written in the form 2n −1, where n is an integer (if 2 is not a factor). Example: 2, 0, 8, -24 are even integers and 1, 57, -13 are odd integers. 4. The rational numbers are the numbers that can be written as the ratio of two integers. All rational numbers when written in their equivalent decimal form will have terminating or repeating decimals. 1 2 , 3.25, 0.8125252525 …, 0.6 , 2 ( = ) 5 1 1 5. The irrational numbers are any real numbers that can not be represented as the ratio of two integers.
    [Show full text]
  • A Tutorial on Euler Angles and Quaternions
    A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weizmann Institute of Science http://www.weizmann.ac.il/sci-tea/benari/ Version 2.0.1 c 2014–17 by Moti Ben-Ari. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Chapter 1 Introduction You sitting in an airplane at night, watching a movie displayed on the screen attached to the seat in front of you. The airplane gently banks to the left. You may feel the slight acceleration, but you won’t see any change in the position of the movie screen. Both you and the screen are in the same frame of reference, so unless you stand up or make another move, the position and orientation of the screen relative to your position and orientation won’t change. The same is not true with respect to your position and orientation relative to the frame of reference of the earth. The airplane is moving forward at a very high speed and the bank changes your orientation with respect to the earth. The transformation of coordinates (position and orientation) from one frame of reference is a fundamental operation in several areas: flight control of aircraft and rockets, move- ment of manipulators in robotics, and computer graphics. This tutorial introduces the mathematics of rotations using two formalisms: (1) Euler angles are the angles of rotation of a three-dimensional coordinate frame.
    [Show full text]
  • Outline of Mathematics
    Outline of mathematics The following outline is provided as an overview of and 1.2.2 Reference databases topical guide to mathematics: • Mathematical Reviews – journal and online database Mathematics is a field of study that investigates topics published by the American Mathematical Society such as number, space, structure, and change. For more (AMS) that contains brief synopses (and occasion- on the relationship between mathematics and science, re- ally evaluations) of many articles in mathematics, fer to the article on science. statistics and theoretical computer science. • Zentralblatt MATH – service providing reviews and 1 Nature of mathematics abstracts for articles in pure and applied mathemat- ics, published by Springer Science+Business Media. • Definitions of mathematics – Mathematics has no It is a major international reviewing service which generally accepted definition. Different schools of covers the entire field of mathematics. It uses the thought, particularly in philosophy, have put forth Mathematics Subject Classification codes for orga- radically different definitions, all of which are con- nizing their reviews by topic. troversial. • Philosophy of mathematics – its aim is to provide an account of the nature and methodology of math- 2 Subjects ematics and to understand the place of mathematics in people’s lives. 2.1 Quantity Quantity – 1.1 Mathematics is • an academic discipline – branch of knowledge that • Arithmetic – is taught at all levels of education and researched • Natural numbers – typically at the college or university level. Disci- plines are defined (in part), and recognized by the • Integers – academic journals in which research is published, and the learned societies and academic departments • Rational numbers – or faculties to which their practitioners belong.
    [Show full text]
  • Popularising Mathematics
    Popularising Mathematics Philipp Legner August 2013 Abstract Mathematics has countless applications in science, engineering and technology, yet school mathematics is one of the most unpopular subjects, perceived as difficult, boring and not useful in life. ‘Popularisation’ projects can help bridge this gap, by showing how exciting, applicable and beautiful mathematics is. Some popularisation projects focus on telling the wider public about mathematics, including its history, philosophy and applications; other projects encourage you to actively do mathematics and discover surprising relationships and beautiful results using mathematical reasoning and thinking. In this report I will develop a framework to classify and evaluate popularisation, and analyse a wide range of existing projects – ranging from competitions to websites, movies, exhibitions, books and workshops. I also reflect upon my personal experiences in designing popularisation activities. I would like to thank Professor Dave Pratt for his advise while writing this report. Table of Contents Introduction 1 Part 1: A Framework for Mathematics Popularisation The Value of Mathematics ........................................................................... 2 Defining Mathematics Popularisation ...................................................... 4 Designing Mathematics Popularisation ................................................... 8 Evaluating Popularisation Projects ............................................................ 11 Part 2: Case Studies of Popularisation Projects
    [Show full text]
  • MATH 0601 Pre-College Math 1 A. COURSE DESCRIPTION 1. Credits
    Common Course Outline for: MATH 0601 Pre-college Math 1 A. COURSE DESCRIPTION 1. Credits: 3 2. Class Hours per Week: 3 hours 3. Prerequisites: Placement in MATH 0601 4. Preparation for: MATH 0630, 0990, 1020, 1050, 1080 or 1100 based on the number of learning objectives mastered. 5. MnTC Goals: None MATH 0601 offers a complete review of pre-college level mathematics. Topics include polynomials, equation solving, systems of linear equations, graphing, data analysis, rational expressions and equations, radicals and radical equations, quadratic equations, functions, variation, logarithmic and exponential equations. The number of new topics that each student will study and the number of courses that each student will need in the MATH 0601, 0602, 0603 sequence will vary based on the results of an initial assessment and the pathway that the student intends to follow. B. DATE LAST REVISED: (March 2017) C. OUTLINE OF MAJOR CONTENT AREAS 1. Solving Equations and Inequalities 2. Operations on Polynomials 3. Factoring of Polynomials 4. Graphs and Equations of Lines 5. Systems of Equations 6. Rational Expressions and Equations 7. Radical Expressions and Equations 8. Quadratic Equations and Functions 9. Exponential and Logarithmic Equations and Functions D. LEARNING OUTCOMES 1. Solve linear equations and inequalities in one variable. 2. Convert verbal expressions into algebraic form; solve applied problems. 3. Determine slope of a line from its graph, equation, or two points on the line. 4. Graph linear equations given a point and the slope. 5. Apply the rules for exponents. 6. Add, subtract, multiply, and divide polynomials. 7. Factor polynomials. 8. Solve rational equations.
    [Show full text]
  • Ever Heard of a Prillionaire? by Carol Castellon Do You Watch the TV Show
    Ever Heard of a Prillionaire? by Carol Castellon Do you watch the TV show “Who Wants to Be a Millionaire?” hosted by Regis Philbin? Have you ever wished for a million dollars? "In today’s economy, even the millionaire doesn’t receive as much attention as the billionaire. Winners of a one-million dollar lottery find that it may not mean getting to retire, since the million is spread over 20 years (less than $3000 per month after taxes)."1 "If you count to a trillion dollars one by one at a dollar a second, you will need 31,710 years. Our government spends over three billion per day. At that rate, Washington is going through a trillion dollars in a less than one year. or about 31,708 years faster than you can count all that money!"1 I’ve heard people use names such as “zillion,” “gazillion,” “prillion,” for large numbers, and more recently I hear “Mega-Million.” It is fairly obvious that most people don’t know the correct names for large numbers. But where do we go from million? After a billion, of course, is trillion. Then comes quadrillion, quintrillion, sextillion, septillion, octillion, nonillion, and decillion. One of my favorite challenges is to have my math class continue to count by "illions" as far as they can. 6 million = 1x10 9 billion = 1x10 12 trillion = 1x10 15 quadrillion = 1x10 18 quintillion = 1x10 21 sextillion = 1x10 24 septillion = 1x10 27 octillion = 1x10 30 nonillion = 1x10 33 decillion = 1x10 36 undecillion = 1x10 39 duodecillion = 1x10 42 tredecillion = 1x10 45 quattuordecillion = 1x10 48 quindecillion = 1x10 51
    [Show full text]
  • A Brief History of Mathematics a Brief History of Mathematics
    A Brief History of Mathematics A Brief History of Mathematics What is mathematics? What do mathematicians do? A Brief History of Mathematics What is mathematics? What do mathematicians do? http://www.sfu.ca/~rpyke/presentations.html A Brief History of Mathematics • Egypt; 3000B.C. – Positional number system, base 10 – Addition, multiplication, division. Fractions. – Complicated formalism; limited algebra. – Only perfect squares (no irrational numbers). – Area of circle; (8D/9)² Æ ∏=3.1605. Volume of pyramid. A Brief History of Mathematics • Babylon; 1700‐300B.C. – Positional number system (base 60; sexagesimal) – Addition, multiplication, division. Fractions. – Solved systems of equations with many unknowns – No negative numbers. No geometry. – Squares, cubes, square roots, cube roots – Solve quadratic equations (but no quadratic formula) – Uses: Building, planning, selling, astronomy (later) A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Papyrus created! – Pythagoras; mathematics as abstract concepts, properties of numbers, irrationality of √2, Pythagorean Theorem a²+b²=c², geometric areas – Zeno paradoxes; infinite sum of numbers is finite! – Constructions with ruler and compass; ‘Squaring the circle’, ‘Doubling the cube’, ‘Trisecting the angle’ – Plato; plane and solid geometry A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Aristotle; mathematics and the physical world (astronomy, geography, mechanics), mathematical formalism (definitions, axioms, proofs via construction) – Euclid; Elements –13 books. Geometry,
    [Show full text]
  • Middle School Course Outline Sixth Grade Subject: Mathematics
    Middle School Course Outline Sixth Grade Subject: Mathematics Introduction: The sixth grade math curriculum is based on the National Standards of the National Council of Teachers of Mathematics (NCTM), and reinforces concepts and computational skills learned in the previous grades. The stimulating curriculum promotes critical thinking and problem solving, and builds respect for the wide variety of successful strategies. Emphasis is placed on cooperative learning, as well as individual exploration, development, and mastery. Content: Numeration: Students will learn to recognize place value in numerals for whole numbers and decimals, expressing numbers in scientific notation, base ten, and finding factors of numbers. Students will order and compare fractions, decimals, and percents. Operations and Computation: Students will develop and master algorithms for addition, subtraction, multiplication, and division over whole numbers, integers, and rational numbers. Students will engage fractions, decimals and percents in problem solving activities. Statistics and Probability: Students will collect, organize, and analyze data using line plots, bar graphs, line graphs, circle graphs, and step graphs. In addition, they will identify landmarks of data sets which include mean, median, and range. Students will also calculate and experiment with simple and compound probability. Geometry: Students will study the construction and properties of two and three dimensional figures including congruence and similarity. Measurements: Students will study conventional measurements of distance, area, and volume in both US and Metric measurements. Students will be introduced to the Cartesian Plane. Patterns, Functions and Algebra: Students will create number models, working with scientific calculators and explore variables in formulas. Materials: Everyday Math Student Journals, Student Reference Book, Study Links, student tool kit, Connected Mathematics Program resources (CMP), John Hopkins Talented Youth Descartes’ Cove Math Computer Series, and other math manipulatives are used as needed.
    [Show full text]