Infusing CAD and 3D Printing Into Curriculum to Enhance Instructional Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Infusing CAD and 3D Printing Into Curriculum to Enhance Instructional Strategy Infusing CAD and 3D Printing into Curriculum to Enhance Instructional Strategy BY JOEL TOMLINSON AND ETAHE JOHNSON Department of Technology • Undergraduate Programs • Construction Management Technology • Electrical/Electronics Engineering Technology • Technology and Engineering Education • Graduate Programs • Career and Technology Education • Cybersecurity Engineering Technology Computer Aided Design (CAD) • CAD, or computer-aided design and drafting (CADD), is technology for design and technical documentation, which replaces manual drafting with an automated process. (AutoCAD, 2019) • There many different types of software packages aimed at specific users and target audience. • Selecting the right software to meet your needs is very important. Basic Design Process for Using a CAD Software and 3D Printing Idea Print Design Prepare Industry Applications of CAD • CAD software can be utilized in many different industry applications. • Construction, Architecture, and Building Information Modeling • Engineering Design, Organization, and Simulation • Product and production development • Virtual Reality • Fashion Merchandise • Health and Biological Sciences • Fine Arts and Graphics Design • Hobbyist and Entrepreneurs Examples of Infusing CAD and 3D Printing Into Curriculum • One doesn’t have to be an engineer to utilize CAD in curriculum. • The Departments of Technology and Human Ecology held a six week workshop with fashion merchandise students. • The goal of the workshop was to teach the fashion students to utilize CAD and 3D printing to design fashion accessories for a fashion show. The instructor was knowledgeable in CAD and 3D printing. 15 12 10 4 5 0 0 0 0 Strongly Disagree Neither Disagree Agree Strongly Agree Disagree Nor Agree Learning a CAD software program improved my undestanding of apparel construction. 8 7 7 7 6 5 4 3 2 1 1 1 0 0 Strongly Disagree Disagree Neither Disagree Nor Agree Strongly Agree Agree Computer Aided Design (CAD) is relevant in the Fashion Industry. 10 9 9 8 7 6 6 5 4 3 2 1 1 0 0 0 Strongly Disagree Disagree Neither Disagree Nor Agree Strongly Agree Agree Identifying Your Need: Guided Questions • What application do you need CAD/3D printing for? • Modeling, Schematic, prototyping, tooling, 3D printing, virtual reality, architecture, project planning, etc. • What CAD software will best suit your needs? • Basic: For developing basic shapes, not extremely detailed orientated, direct application, limited design tools, and not a steep learning curve. • Intermediate: Developed for more specific applications and user specifications, has a more detailed design tool suite, might have a cost, may require user practice to master tool usage. • Advanced: Software designed for specific applications (building information modeling, architecture, simulation, project management etc), typically does have a cost, and does require mastery of tools for usage. Basic CAD Design Software • Tinker CAD is a very user friendly and free to use basic design software. The makers of Tinker CAD is Autodesk. (Often referred to as Baby AutoCAD) • AutoDesk created a design software for middle and high school students to start utilizing CAD and 3D printing/modeling in STEM programs. • This software has a lot of easy to use tools and is completely online. No need to download any software. Basic CAD Design Software Continued • 3D Slash is a basic design software that is free to use and allows the users to create or modify objects from basic geometric shapes. • 3D Slash is very easy to master and is quite fun! • This software allows the user to prepare 3D models for printing from inside the program. Intermediate CAD Software • On Shape is an integrative design platform that allows the user to design parts, drawings, assemblies. (Free to Educators) • On Shape has features such bill of materials (BOM), product data management (PDM) and other project management tools. (OnShape, 2014) • On Shape is commonly referred to as the “ Google Docs of CAD” • On Shape has a variety of online features like “setting up a class” with learning lessons and tutorials. • The tool list for designing models is vast and has quite the extensive library for specific applications. Intermediate CAD Software Continued • Google SketckUp is a CAD software that allows the user to develop their own design tools (or extensions), create 3D models quickly, and does not have steep learning curve. • You might have seen tv shows on HGTV utilize this software to show their customers a new home or kitchen! • The extensions on Google Sketchup allow the user to replicate models or assemblies in sketches such as rafters on a roof, fabric patterns, keys on a gear, design arrays, etc. • There is a free online version with limited tool sets. An education license is about 55 dollars a year per seat. Advanced CAD Software • AutoCADis computer-aided design (CAD) software that architects, engineers, and construction professionals rely on to create precise 2D and 3D drawings. (AutoCAD, 2019) • The specialized tool sets allow the users to create floor plans, 3D building models, piping, electrical circuitry, and allows for users to create custom work flows, timelines, and useable data. • There is a free thirty license seat for Higher Education Institutions. • AutoCAD has various specialization packages for mechanical, electrical, construction, and 3D. Advanced CAD Software Continued • Solid Works is a 3D modeling software that integrates industry applications to form a solid object, model operation or simulation, . • Solid works has an extensive 3D modeling tool selection. The use of tools requires practice to reach a mastery level. • Typical higher education technology and engineering programs require at least one to two semesters of training to utilize this software. • Like AutoCAD, Solid Works has various software packages and design suites to meet an industry or specific application need. https://www.solidworks.com/ Basic Design Process for Using a CAD Software and 3D Printing Idea Print Design Prepare How Does 3D Printing Work? 3dprinting.com (2019) states: “3D printing or additive manufacturing is a process of making three dimensional solid objects from a digital file. The creation of a 3D printed object is achieved using additive processes. In an additive process an object is created by laying down successive layers of material until the object is created.” Preparing Your Model for 3D Printing • The CAD software and 3D printer do not communicate directly. The file types are typically incompatible. • The CAD file must exported to a file type that can be read by the 3D printer or 3D printer software. • A standard file format is Stereo lithograph or commonly referred to as a STL file. • Once the model has been exported to a STL file or other readable format, the model must be prepped to print using a 3D printer preparation software. 3D Printing an Object. • After preparation has been completed, the user is ready to print their model or object. • The preparation software allows the user to verify dimensions, position, build parameters of an object before being printed. • It is important to double check all parameters • Build speed • Raft or supports • Filament extrusion thickness • Type of filament • Position on the build tray (make sure the object is sitting on the build tray) • Object orientation (if an object has a flat side, place that side on the build tray) • Make sure enough material is there to complete the job. • Verify time to build. Resources for CAD and 3D Printing • Thingiverse.com is a free share website with millions of objects already created and free to modify and print. • Tinker CAD has various learning tutorials on their website. • Google SketchUp has free tutorials. • Many software vendors have free tutorials or instructional content online. • YouTube is a great source for figuring out how to utilize a tool. If you ever get stuck, YouTube it! • Many CAD vendors offer educators curriculum guides and lesson planning for free. They want you to utilize their software in the classroom! Thank you! Questions or Comments? References 3Printing.com (2019) What is 3D printing? Retrieved May 10, 2019, from https://3dprinting.com/what-is-3d- printing/ Autodesk Inc.(2019) What is CAD? Retrieved May 10, 2019, from https://www.autodesk.com/solutions/cad- software Autodesk Inc. (2019) What is AutoCAD? Retrieved May 10, 2019, from https://www.autodesk.com/products/autocad/overview OnShape Inc. (2014) Onshapte Education, Retrieved May 10, 2019 from https://www.onshape.com/products/education.
Recommended publications
  • Openscad User Manual (PDF)
    OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic
    [Show full text]
  • CAD for College: Switching to Onshape for Engineering Design Tools
    Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship Faculty & Staff Scholarship 6-2020 CAD for College: Switching to Onshape for Engineering Design Tools Kate N. Leipold Rochester Institute of Technology Follow this and additional works at: https://scholarworks.rit.edu/other Part of the Computer-Aided Engineering and Design Commons Recommended Citation Leipold, K. N. (2020, June), CAD for College: Switching to Onshape for Engineering Design Tools Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line. This Conference Paper is brought to you for free and open access by the Faculty & Staff Scholarship at RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Paper ID #30072 CAD for College: Switching to Onshape for Engineering Design Tools Ms. Kate N. Leipold, Rochester Institute of Technology (COE) Ms. Kate Leipold has a M.S. in Mechanical Engineering from Rochester Institute of Technology. She holds a Bachelor of Science degree in Mechanical Engineering from Rochester Institute of Technology. She is currently a senior lecturer of Mechanical Engineering at the Rochester Institute of Technology. She teaches graphics and design classes in Mechanical Engineering, as well as consulting with students and faculty on 3D solid modeling questions. Ms. Leipold’s area of expertise is the new product development process. Ms. Leipold’s professional experience includes three years spent as a New Product Development engineer at Pactiv Corporation in Canandaigua, NY. She holds 5 patents for products developed while working at Pactiv.
    [Show full text]
  • CAD for VEX Robotics
    CAD for VEX Robotics (updated 7/23/20) The question of CAD comes up from time to time, so here is some information and sources you can use to help you and your students get started with CAD. “COMPUTER AIDED DESIGN” OR “COMPUTER AIDED DOCUMENTATION”? First off, the nature of VEX in general, is a highly versatile prototyping system, and this leads to “tinkerbots” (for good or bad, how many robots are truly planned out down to the specific parts prior to building?). The team that actually uses CAD for design (that is, CAD is done before building), will usually be an advanced high school team, juniors or seniors (and VEX-U teams, of course), and they will still likely use CAD only for preliminary design, then future mods and improvements will be tinkered onto the original design. The exception is 3d printed parts (U-teams only, for now) which obviously have to be designed in CAD. I will say that I’m seeing an encouraging trend that more students are looking to CAD design than in the past. One thing that has helped is that computers don’t need to be so powerful and expensive to run some of the newer CAD software…especially OnShape. Here’s some reality: most VEX people look at CAD to document their design and create neat looking renderings of their robots. If you don't have the time to learn CAD, I suggest taking pictures. Seriously though, CAD stands for Computer Aided Design, not Computer Aided Documentation. It takes time to learn, which is why community colleges have 2-year degrees in CAD, or you can take weeks of training (paid for by your employer, of course).
    [Show full text]
  • Digital Data Processing Strategies for Large Area Maskless Photopolymerization Anirudh Rudraraju, Suman Das , Georgia Institute of Technology
    Digital Data Processing Strategies for Large Area Maskless Photopolymerization Anirudh Rudraraju, Suman Das , Georgia Institute of Technology Abstract: Large Area Maskless Photopolymerization (LAMP) utilizes scanning spatial light modulators that require layer slice data in the form of high ‐resolution bitmaps. Three different strategies have been implemented to fill this need. First, bitmaps were generated by direct slicing of CAD models using Spatial Technology’s ACIS kernel. Second, bitmaps were generated from STL files through ray ‐tracing. Finally, an approach involving reconstruction of topological information from STL files for efficient slicing and image generation is being developed. This paper gives a brief description and implementation details of each of these strategies as well as data compression techniques being pursued by the authors. This work is sponsored by DARPA grant HR0011 ‐08 ‐1‐0075. Introduction: Large Area Maskless Photopolymerization (LAMP) technique is an integral rapid manufacturing process which uses a spatial light modulator to expose whole areas in a single flash. The spatial light modulator in our case is a Digital Micro-mirror Device (DMD) chip developed by Texas Instruments. It is essentially a small chip with millions of tiny mirrors that can be turned on and off by feeding an 'exposure bitmap'. Light from the UV-source is shone onto the DMD chip and the various mirrors turn on and off accordingly to project the input image on to the photocurable resin surface. The head, consisting of the light source and the DMD chip, raster scans the entire exposure region which gives much higher speeds than conventional prototyping processes where typically a laser beam is used to raster scan the exposure region line by line.
    [Show full text]
  • HOW to PREPARE AEC FILES for 3D PRINTING and Start Producing Physical 3D Models in Hours Instead of Weeks > > HOW to PREPARE AEC FILES for 3D PRINTING 2
    HOW TO PREPARE AEC FILES FOR 3D PRINTING And Start Producing Physical 3D Models in Hours Instead of Weeks > > HOW TO PREPARE AEC FILES FOR 3D PRINTING 2 TABLE OF CONTENTS Introduction ............................3 How do AEC professionals use 3D printed models? . 4 Preparation for 3D printing ...................6 Decide what would you like to print . 6 Choose your scale . 6 Give your model form . 7 Choose a file format . 8 Print it...........................10 Summary .............................10 HOW TO PREPARE AEC FILES FOR 3D PRINTING 3 INTRODUCTION As every designer knows, there’s magic in transforming a great idea For a primer on 3D printing, into a tangible and useful object you can hold in your hand. read our white paper: Architects, engineers and construction (AEC) professionals are How 3D Printing Works fast discovering the myriad benefits of 3D printing, including: The Vision, Innovation and Technologies • unleashing creativity Behind Inkjet 3D Printing • shortening project timelines • lowering costs • improving communication • securing quick approvals Firms are discovering a new ability to print physical 3D models in hours instead of the weeks needed for handcrafting, while reducing costs and improving model accuracy. The new capability is enabling more productive design reviews; accelerating design phases; and reducing the time and money necessary to create models for review, presentation and marketing. Plus, more accurate models clarify designs for clients and officials, facilitating the approval process and ultimately resulting in more beautiful, higher-quality building designs. Just as with building information modeling (BIM) software, 3D printing is becoming a strategic necessity for AEC firms. The question is no longer “should we do it?”, it is “how do we implement 3D printing into our practice today?”.
    [Show full text]
  • 2021-2022 Recommended Formats Statement
    Library of Congress Recommended Formats Statement 2021-2022 For online version, see Recommended Formats Statement - 2021-2022 (link) Introduction to the 2021-2022 revision ....................................................................... 3 I. Textual Works ...................................................................................................... 5 i. Textual Works – Print (books, etc.) ........................................................................................................... 5 ii. Textual Works – Digital ............................................................................................................................ 7 iii. Textual Works – Electronic serials .......................................................................................................... 9 II. Still Image Works ............................................................................................... 12 i. Photographs – Print ................................................................................................................................ 12 ii. Photographs – Digital............................................................................................................................. 13 iii. Other Graphic Images – Print (posters, postcards, fine prints) ............................................................ 14 iv. Other Graphic Images – Digital ............................................................................................................. 15 v. Microforms ...........................................................................................................................................
    [Show full text]
  • Onshape College Lesson 10: Design for Manufacturing: CNC Machining
    Onshape College Lesson 10: Design for Manufacturing: CNC Machining ● Using the Hole Tool ● Using FeatureScript for spur gears ● Importing Solidworks Pack/Go files Concepts ● Direct editing an existing part (modify fillet, delete/move/replace face) ● An introduction to the Onshape App Store (through a look at a CAM app) Models ● Chopper - Drivetrain completed Mini Chopper Continued In this lesson, we are going to focus on the “guts” of our Chopper - the rotating motor drive assembly, the frame that it all mounts to, and all of the related gears, bushings, and shafts. In doing so, we will use the Hole Feature, and additional FeatureScript features to design the gear train, including a cool double gear. We will import new external files types, and then apply some Direct Modeling techniques to them. And finally, we will discuss design techniques for Computer Numerically Controlled (CNC) manufacturing processes, and then take a look at the Computer Aided Manufacturing (CAM) apps in the App Store. Design Intent Check: We’re going to start by making a Drivetrain Frame, highlighted below. The Drivetrain Frame houses the gears and hooks onto the Main Body. In the steps that follow, notice how we reference the Main Body when creating the Drivetrain Frame. 1. Start by creating a new sketch (rename it “Drivetrain Layout”) on the inside surface of the Main Body (highlighted in orange). The sketch is shown here twice, in the “Bottom” orientation; with and without the Main Body. Note the (blue) references between the screw bosses on the Main Body, and the circles in the sketch.
    [Show full text]
  • Forrest Z. Shooster
    Forrest Z. Shooster Phone: (954) 309-7960 Portfolio: https://portfolium.com/Argzero/portfolio Email: [email protected] ​ ​ Academics Rochester Institute of Technology – 3.76 GPA Magna Cum Laude » Majors: Biomedical Engineering & Game Design and Development Dean’s List every semester/quarter » Minors: Electrical Engineering & Japanese Student of the Honors Program Skills Software Tools Lab Skills or tools / Robot Control Experience » MATLAB, LabView, C#, python, C++, Ruby, Java, » Suspension, adherent, and 3D tissue growth, chicken embryo JavaScript, C, Apex, HTML/CSS, PHP, SQLite databases primary cell cultures (cardiomyocytes, neurons), mammalian » Unity and Unreal Game Engines, Qt (python and C++) cell transfection (CHO), western blotting, » Electronic and Mechanical CAD tools » Cell counting, hemocytometer, aseptic technique, E. coli (KiCAD, LTSPICE, Solidworks, OrCAD, OnShape) pGLO transformation, SDS/PAGE, DNA extraction, PCR, DNA » Microsoft Office (Excel, Word, Powerpoint), Overleaf, agarose gel electrophoresis, cell freezing Arduino, Energia, Visual Studio, Eclipse, Minitab, JMP » Light and fluorescent microscopy Hardware Design and Engineering Skills » Anatomy, quantitative physiology, histology, genetics » Machine Learning, Numerical Methods, and Biorobotics » Fluid mechanics, bioanalytical microfluidics, potentiostat » AC and DC circuit design and analysis, analog » Sensor characterization and evaluation, step response electronics, classical controls, analog and digital filters characterization, PID controllers,
    [Show full text]
  • PRESS KIT Onshape
    PRESS KIT Onshape ABOUT ONSHAPE (Brief) Onshape is the only company in the world 100% focused on cloud and mobile CAD, offering the first professional 3D CAD system that lets everyone on a design team work together using any web browser, phone, or tablet. Onshape was built from scratch for the way today’s engineers, designers and manufacturers really work, giving them secure and simultaneous access to a single master version of their CAD data without the hassles of software licenses or copying files. Based in Cambridge, Massachusetts, Onshape includes key members of the original SolidWorks team plus elite engineers from the cloud, data security and mobile industries. For more information, visit Onshape.com/press-room. ONSHAPE PRESS KIT 2 Onshape ABOUT ONSHAPE (Detailed) Onshape is the only company in the world 100% focused on cloud Companies worldwide rely on Onshape today to speed up the and mobile CAD, offering the first professional 3D CAD system that design of consumer electronics, mechanical machinery, medical lets everyone on a design team simultaneously work together using devices, machine parts, industrial equipment, and many other any web browser, phone, or tablet. Breaking away from the traditio- products. Onshape’s Free Plan also makes it the ideal CAD choice nal model of desktop-installed CAD, Onshape has data management for students and educators to collaborate inside and outside the and collaboration built in at its core. classroom. For the first time, the CAD system and CAD data live in one place Based in Cambridge, Massachusetts, Onshape includes key mem- in the cloud, and are never copied anywhere.
    [Show full text]
  • ABOUT 3D PRINTING FILE FORMATS Prof.Phd Cătălin Iancu, Constantin
    Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2018 ABOUT 3D PRINTING FILE FORMATS Prof.PhD Cătălin Iancu, Constantin Brâncuşi University of Târgu-Jiu, ROMANIA ABSTRACT: In this paperwork is presented the situation existing in 2018 regarding the four most common 3D printing file formats, which are STL, OBJ, AMF and 3MF. There are presented also some characteristics of these formats, some limitation and the future perspective of these formats. KEY WORDS: 3D printing, STL, OBJ, AMF, 3MF. 1. INTRODUCTION In [1] it has been presented the situation This file format is supported by many other existing in 2010 regarding 3D printing using software packages and it is widely used for STL file format, as a most common and well rapid prototyping and computer-aided known format and therefore supported by manufacturing. STL native files describe only most software and hardware for 3D printing. the surface geometry of a three dimensional Also in [1] has been concluded that”In recent object without any representation of color, years 3D printing and 3D printers have texture or other common CAD model become financially accessible to small and attributes. The STL format specifies both medium sized business, thereby taking ASCII and Binary representations. Binary prototyping out of the heavy industry and into files are more common, since they are more the office environment. The technology of compact. rapid prototyping also finds use from A STL file describes a raw unstructured industrial design to dental and medical triangulated surface by the unit normal and industries”. vertices (ordered by the right-hand rule) of the Also was stated that STL files used to transfer triangles using a three-dimensional Cartesian data from CAD package to 3D printers have a coordinate system.
    [Show full text]
  • Interactive Design Space Exploration and Optimization for CAD Models
    Interactive Design Space Exploration and Optimization for CAD Models ADRIANA SCHULZ, JIE XU, and BO ZHU, Massachusetts Institute of Technology CHANGXI ZHENG and EITAN GRINSPUN, Columbia University WOJCIECH MATUSIK, Massachusetts Institute of Technology Precomputed Samples Interactive Exploration Parametric min stress Space CAD System Smooth interpolations Optimization Fig. 1. Our method harnesses data from CAD systems, which are parametric from construction and capture the engineer’s design intent, but require long regeneration times and output meshes with different combinatorics. We sample the parametric space in an adaptive grid and propose techniques to smoothly interpolate this data. We show how this can be used for shape optimization and to drive interactive exploration tools that allow designers to visualize the shape space while geometry and physical properties are updated in real time. Computer Aided Design (CAD) is a multi-billion dollar industry used by CCS Concepts: • Computing methodologies → Shape modeling; Shape almost every mechanical engineer in the world to create practically every analysis; Modeling and simulation; existing manufactured shape. CAD models are not only widely available Additional Key Words and Phrases: CAD, parametric shapes, simulation, but also extremely useful in the growing field of fabrication-oriented design because they are parametric by construction and capture the engineer’s precomputations, interpolation design intent, including manufacturability. Harnessing this data, however, ACM Reference format: is challenging, because generating the geometry for a given parameter Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Woj- value requires time-consuming computations. Furthermore, the resulting ciech Matusik. 2017. Interactive Design Space Exploration and Optimization meshes have different combinatorics, making the mesh data inherently dis- for CAD Models.
    [Show full text]
  • TEC Cutting Edge Mill the Total Classroom Manufacturing Package!
    Featuring the Exclusive TECTEC CuttingCutting EdgeEdge MillMill plus everything to teach Manufacturing and Industrial Production CTOR Included - FREE! INSTRU VED APPRO TheThe TotalTotal ClassroomClassroom ManufacturingManufacturing Package!Package! ™ FREE KEYCREATOR FREE 6” Adjustable Wrench (The Next Evolution of CADKEY!) Full Commercial Version Design (CAD) FREE Vacuum System Software ($3,000 Commercial Value!) FREE 3”x 3”x 3/4” High Density FREE SURFCAM® Foam (10 Pieces) Full Commercial Version Machining FREE ANSI Hex Key Set (13 Pc.) (CAM) Software ($17,000 Commercial Value!) FREE RS232 Serial Cable Link FREE VELOCITY™ CNC Control FREE Adjustable Halogen Software Gooseneck Work Lamp FREE Tooling / Accessories ® 1/8”, 3/16”, and 1/4” Collets with FREE Lexan Safety Shield with Draw Bolt Safety Interlock Tool Hold 3/8” Shank with Hex Key End Mill 2 Flute HSS FREE Users Guide (1/8”, 3/16”, 1/4”, 3/8”) T-Slot Bolts with Step Blocks FREE Technical (1”, 2”, 3”) Support T-Slot Heads T-Slot Hold Down Hex Key FREE 1 Year Warranty Center Drill Set (3 Piece) FREE Accessories Kit (contents listed on back) Tech Ed Concepts, Inc. • 32 Commercial Street Concord, NH 03301 • Phone 1-800-338-2238 • www.TECedu.com Cutting Edge Accessories Kit SURFCAM CAM* 2-, 3-, 4-, and 5-axis Machining (2) Pair Safety Glasses Integrated Toolpath Verification Steel Jaw Quick Release Vise Operations Manager provides a 6” Stainless Steel Digital Caliper with Case graphical interface for reordering, 4” Solid Steel Machinist’s Set-up Square regenerating, verifying,
    [Show full text]