<<

Publishedintheyear2001,ASSLseries‘TheInfluenceofBinariesonStellarPopulationStudies’, ed.D.Vanbeveren,KluwerAcademicPublishers:Dordrecht.

MASSIVECLOSEBINARIES

DanyVanbeveren

AstrophysicalInstitute,VrijeUniversiteitBrussel,Pleinlaan2,1050Brussels,Belgium [email protected]

keywords:Massive,stellarwinds,populations

Abstract

Theevolutionofmassivestarsingeneral,massiveclosebinariesinparticulardependon

processeswhere,despitemanyefforts,thephysicsarestilluncertain.Herewediscuss

theeffectsofstellarwindasfunctionofduringdifferentevolutionaryphases

andtheeffectsofrotationandwehighlighttheimportanceforpopulation(number)

synthesis.ModelsareproposedfortheX-raybinarieswithaholecomponent.We

thenpresentanoverallschemeforamassivePNScode.Thiscode,incombination

withanappropriatesetofsinglestarandclosebinaryevolutionarycomputations

predictstheO-typestarandWolf-Rayetstarpopulation,thepopulationofdouble

compactstarbinariesandtherates,inregionswherestarformationis

continuousintime.

1. INTRODUCTION

Populationnumbersynthesis(PNS)ofmassivestarsreliesontheevolutionofmassive starsand,therefore,uncertaintiesinstellarevolutionimplyuncertaintiesinPNS.The transferandtheprocessduringRochelobeoverflow(RLOF)inabinary, themergerprocessandcommonenvelopeevolutionhavebeendiscussedfrequentlyin thepastbymanyauthors(forextendedreviewsseee.g.vandenHeuvel,1993,

Vanbeverenetal.,1998a,b).Inthepresentpaperwewillfocusontheeffectsofmasslossduringthevariousphasesofstellarevolutionandtheeffectofthe metallicityZ.ThesecondpartofthepapersummarisestheBrusselsoverallmassivestar

PNSwitharealisticfractionofbinaries.Wecomparetheoreticalpredictionwith observationsofO-typestars,Wolf-Rayet(WR)stars,supernova(SN)ratesandbinaries withtworelativisticcomponents[star(NS)orblackhole(BH)],inregionswhere starformationiscontinuousintime.Inthelastpartofthepaper,wewilldiscussoverall evolutionaryeffectsofrotationandtheconsequencesforPNS.Asusual,wewillclassify

binariesasCaseA,CaseBr,CaseBcandCaseCdependingontheonsetofRLOF.

2. STELLARWINDFORMALISMS

Wedistinctfourstellarwind(SW)phases:thecoreburning(theOB-typephase)

priortotheLuminousBlueVariable(LBV)phase,theLBVphase,theRedSupergiant

(RSG)phase,theWolf-Rayet(WR)phase.Tostudytheeffectonevolutiononerelieson

observedSWmasslossratesandhowtheseratesvaryasfunctionofstellarparameters MÇ (,temperature,chemicalabundance’s,rotation).Inthefollowing, isin

M¤/yrandtheluminosityLisinL¤

TheOB-typeandLBVphase. SWmasslossformalismsofOB-typestarshavebeen

reviewedbyKudritzkiandPuls(2000)(seealsoP.Crowther,intheseproceedings).Note

thatallformalismspublishedsince1988giveverysimilarresultswhentheyare

implementedintoastellarevolutionarycode.

LBVsarehot,unstableandveryluminousOB-typesupergiants.Thosebrighterthan

≥ Mbol=-9.5(correspondingtostarswithinitialmass 40M¤)areparticularlyinterestingas farasevolutionisconcerned.Theyarelosingmassbyamoreorlesssteadystellarwind MÇ -7 -4 -3 -2 ( =10 -10 M¤/yr)andbyeruptionswherethestarmaylosemassatarateof10 -10

M¤/yr.Theoutflowvelocitiesaretypicallyafew100km/s.TheobservedSW-ratesare

highlyuncertain,butduetothefactthatnoRSGsareobservedbrighterthanM bol=-9.5an MÇ evolutionaryworkinghypothesiscouldbe: the duringtheLBV+RSGphaseofastarwith

≤ Mbol -9.5mustbesufficientlylargetoassureaRSGphasewhichisshortenoughtoexplainthe

≤ lackofobservedRSGswithMbol -9.5.

TheRSGphase. UsingtheformalismproposedbyJura(1987),Reidetal.(1990) determinedtheSWmasslossratefor16luminousRSGsintheLargeMagellanicCloud. MÇ Thefollowingequationrelatesthese valuestotheluminosity

Log( MÇ ) 0.8LogL C − = − (1)

withC=8.7.However,RSGmasslossratesaresubjectofpossiblelargeuncertaintiesand MÇ C=9( isafactor2smallerthanpredictedwithC=8.7)cannotbeexcluded.

TheWRphase. ThereisincreasingevidencethattheoutflowingatmospheresofWR

starsareinhomogeneousandconsistofclumps(Crowther,thepresentproceedings).SW

masslossratesofWRstarsdeterminedbymethodsthatincludetheeffectsofclumpsarea

factor2-4timessmallerthanthoseobtainedwithsmoothwindmodels. MÇ Table1listsanumberofgalacticWRstarswherethe andtheluminosityis determinedbydetailedspectroscopicanalysis. MÇ Noticethatthespectroscopic -valueoftheWRcomponentofthebinaryV444Cyg correspondstoindependentdeterminationswhicharebasedonthebinaryperiod variation(Khaliulinetal.,1984)andonpolarimetry(St.-Louisetal.,1988;Nugisetal.,

2 1998),whereas γ VelisanearbyWRbinaryanditsdistance(basedonHipparcos measurements)isverywellknown,thusalsoitsluminosity.Figure1illustratesapossible MÇ -Lrelation.WehavegivenlargestatisticalweightattheobservationsofV444Cygand

2 of γ Vel.WR44isapeakwhichseemstobeunrealisticfromstatisticalpointofview.

Eithertheluminosityistoohighorthemasslossrateistoosmall.OmittingWR44,the MÇ followingformulalinks andL

Log( MÇ ) LogL 10 − = − (2)

MÇ RemarkthatincludingWR44givesarelationwhichpredictsevensmaller -values forLogL≥5comparedtoEquation2

Table1 LuminosityandmasslossratesofgalacticWRstars.[1]=DeMarcoetal.,2000,[2]=Hillier

andMiller,1999,[3]=Morrisetal.,2000,[4]=HamannandKoesterke,1998,[5]=Nugisetal.,1998}

MÇ WRstar LogL Log(- ) ref

2 γ Vel 5 -5 [1]

HD165763 5.3 -4.8 [2]

WR147 5.65 -4.59 [3]

HD50896 5.45 -4.42 [4]

V444Cyg 5 -5.04 [5]

WR44 5.55 -5.1 [4]

WR123 5.7 -4.14 [4]

-4

-4,2

-4,4

-4,6

Log (-Mdot) -4,8

-5 WR44 -5,2 4,9 5,1 5,3 5,5 5,7 5,9 Log L

Ç Figure1 TheLog M -LogLdiagramofgalacticWRstars. MÇ TheeffectofmetallicityZon SWratesresultingfromspectralanalysisare uncertainbyatleastafactor2.Itisthereforedifficulttodeduceanykindofmetallicity MÇ ζ dependencefromobservations.TheorypredictsthatforaradiationdrivenSW, ÷Z with0.5≤ζ≤1.WeexpectthatOB-typemasslossratesobeythisrule.

WedonotknowhowtheSWratesofLBVsandRSGsdependonZ.Weliketo MÇ MÇ remindthatthe -Lrelation(Equation1)holdsforRSGsintheLMC.Ifthe ofRSGs dependsonZaswell,theeffectontheevolutionofgalacticstarscouldbeevenlarger.

HamannandKoesterke(2000)investigated18WNstarsintheLMC.Figure2 MÇ illustratestheLog -LogLdiagram.Thereseemstobenoobviousrelationhowever,as anexercise,weusedalinearrelationsimilarto(Equation2)andshiftedthelineuntilthe sumofthedistancesbetweenobservedvaluesandpredictedoneswassmallest(alinear regressionwheretheslopeofthelineisfixed).Thisresultedinashiftof-0.2which, accountingfortheZvalueoftheSolarneighbourhoodandoftheLMCcorrespondsto ζ=

0.5.Tobemoreconclusive,manymoreobservationsareneededwheredetailedanalysis maygivereliablestellarparameters,butfromthisexerciseitlooksasif WRmasslossrates areZ-dependent.

-3,6 -3,8 -4 -4,2 -4,4 -4,6

Log(-Mdot) -4,8 -5 -5,2 -5,4 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 6,6 Log L

Ç Figure2 TheLog M -LogLdiagramforWRstarsintheLMC.

3. MASSIVESTAREVOLUTION

WhenthemostrecentSWmasslossformalismsofOB-typestarsareimplementedintoa stellarevolutionarycode,oneconcludes thatstellarwindmasslossduringcorehydrogen burning(priortotheLBVphase)isnotimportantfortheevolutionofgalacticstarswithinitial

masssmallerthan40M¤. Astarwithinitialmasslargerthan40M ¤losesmostofitshydrogenrichlayersby

OB+LBV-typestellarwind.Whenitisaclosebinarycomponentandwhenthebinary periodPislargeenoughsothatRLOFdoesnotstartbeforetheonsetoftheLBVphase

(roughlyP≥10days),masslossbyRLOFmaybelargelysuppressed(ormaynotoccurat all),i.e.duetoOB-type+LBV-typestellarwind,theimportanceofRLOFinabinarywithorbital

≥ period 10daysandwithprimarymasslargerthan40M ¤maybesignificantlyreduced;RLOF mayevenbeavoided.

Ofparticularimportanceistheevolutionofthebinaryperiodduetostellarwind. JÇ / MÇ Thespecificangularmomentum( )ofasphericallysymmetricwindcanbeexpressed

as

JÇ A2 MÇ = λ Ω (3)

2π withAthedistancebetweenthetwobinarycomponentsand Ω = P Ω.Whenthewind MÇ velocityofthemassloser(withmassM 1andmassloss 1)islargecomparedtothe

Ω orbitalvelocity Aofthecompanion(withmassM2),thisspecificangularmomentumcan beapproximatedbythemomentumofatthemomentitleavestheloser,i.e.

2  M2  λ =   (4)  M1 + M2 

resultinginanoverallbinaryperiodincrease.

However,whenthewindvelocityiscomparabletotheorbitalvelocity,the

outflowingmattercangainorbitalangularmomentumbytorqueandthevalueof λmay besignificantlylargerthanpredictedbyEquation4.Thisisparticularlyimportantforthe evolutionofbinarieswithverysmallmassratio,possibleprogenitorsoftheLowMassX- rayBinaries(LMXBs)withaBHcomponent(seeSect.4)

3.1.THEEFFECTOFRSGMASSLOSS

TheinfluenceofRSGmasslossrates(Equation1)onsinglestarevolutionhasbeen describedinextensobyVanbeverenetal.,(1998a,b)andSalasnichetal.(1999).Oneofthe importantconsequencesofthelargerRSGratesisthat Galacticsinglestarswithinitialmass

aslowas20(15)M¤becomehydrogendeficientcoreheliumburningstars=WRstars.

HamannandKoesterke(1998,2000)determinedtheluminosityandtemperatureofa

largesampleofWRstarsintheandintheLMC.WhenoneconsiderstheWNstars

withouthydrogenandifatleastsomeoftheWRstarswiththelowestluminosityare

single,theirpositionintheHR-diagramisindirectevidencefortheRSG-windevolution

ofsinglestarsasdiscussedinthepaperscitedabove. ≥ Whenastarwithinitialmass 15-20M¤isabinarycomponentandwhentheperiod

islargeenoughsothatRSGwindstartsbeforethestarfillsitsRochelobe(CaseB cand

CaseCbinaries),itisclearthatRSGwindcansignificantlyreducetheimportanceofthe

RLOFmassloss(andthecommonenvelopeprocess).Evenmore,caseCwillnothappen.

LetusremarkthatanRSGwindisveryslow.Thismeansthat λinEquation3maybe substantiallylargerthanpredictedbyEquation4

IfRSGmasslossratesareZ-dependentaspredictedbytheradiativelydrivenwind theory,itcanreadilybeunderstoodthattheminimummassofsingleWRstarprogenitors insmallZ-regionswillbelargerthanintheGalaxy.

3.2.THEEFFECTOFWRMASSLOSS

DuetoLBVand/orRSGstellarwindmasslossorduetoRLOF,amassivestarmay becomeahydrogendeficientcoreheliumburningstar.Thefurtherevolutionisgoverned byaWR-typestellarwindmassloss.Theeffectonmassivestarevolutionofpresentday

WR-typemasslossrates(Equation2)hasbeenstudiedbyVanbeverenetal.(1998a,b,c).

Recently,WellsteinandLanger(1999)discussedthecoreheliumburning(CHeB) evolutionofmassivestarsbyadoptingastellarwindmasslossraterelation

Log( MÇ ) 1.5LogL 12.25 − = − (5)

forhydrogendeficientCHeBstarswithlogL ≥4.45.ComparedtoEquation2,two differencesareimportant.Equation5assumesastrongerluminositydependencewhereas MÇ itpredicts -valuesforthestarsoftable1whicharestillsignificantlylargerthanthe

observedvalues.WewillcompareourCHeBresultswithresultscalculatedwithEquation

5.

TheGalacticWRlifetime. TodeducetheWR-lifetimeoneobviouslyneedsa

definitionofaWRstarthatisusefulforevolution.MostofthesingleWRstarshaveLogL

≥5(HamannandKoesterke,1998,2000)whereasmostoftheWRcomponentsinWR+OB

≥ binarieshaveamass 8M¤(Vanbeverenetal.,1998b).AccountingforthetheoreticalM-L

relationofWRstarsdiscussedlater,itcanbeconcludedthatbothconditionsaresimilar.

WewillusetheLogL ≥5criterion.Figure3showsthegalacticWNandWClifetimesasa

functionofinitialprogenitormass.WeonlyconsiderthecoreheliumburningWRstars.

ThemostmassivestarsmaybecomeWNLstars(WNstarswithsignificanthydrogenin

theiratmosphere)alreadyduringcorehydrogenburning(seeAndreMaeder,present

proceedings)andthisobviouslyincreasesthetotalWNlifetimecomparedtothelifetimes

showninFigure3.RemarkthatmostoftheWNE(WNstarswithouthydrogen)stars

originatefromstarswithinitialmassbetween20M ¤and40M ¤whereasmostoftheWC

≥ starshaveM 40M ¤progenitors.ThefiguresillustratethataPNSstudyofWRstarswill notcriticallydependonwhetherevolutionaryresultsareusedwheretheRSGstellarwind masslossiscomputedwithEquation1withC=8.7orwithC=9.Thedifferentwind formalismsduringtheWRphasehavealargereffect(typicallyafactor2). 4,5 4 3,5 3 2,5

time 2 1,5 1 0,5 0 10 20 30 40 50 60 70 80 90 100 Mi

3,5

3

2,5

2

time 1,5

1

0,5

0 10 20 30 40 50 60 70 80 90 100 Mi

5 Figure3 TheWN(thicklines)andWC(thinlines)lifetime(in10 yr)asfunctionofinitialprogenitor

mass(inM ¤ ).Dashed-dotted(respectivelydashedlinesandfulllines)linesapplytocaseBbinaries

(respectivelysinglestarswheretheRSGmasslossiscalculatedwithEquation1withC=8,7andwithC=

9).Above40M ¤allstarslosetheirhydrogenrichlayersveryfastduetotheLBV-typeformalismdiscussed inSect.2.Thetop-figure(respectivelybottom-figure)correspondstoourpreferredWRmasslossformalism

Equation2(respectivelyEquation5).

TheM-LrelationofWRstars. AmassluminosityrelationofWRstarshasbeen proposedbyVanbeverenandPacket(1979),Maeder(1983),Langer(1989),Vanbeveren

(1991),SchaererandMaeder(1992).Allrelationscloselymatch,althoughdifferent assumptionsweremadeconcerninganumberofuncertaintiesduringCHeB.Thisrelation canthereforebeconsideredasaveryrobustone. Thefinalmasspriortocorecollapse. Figure4givesthefinalmassofthestarandofthe

CO-corepriortocorecollapse,forsinglestarsandforCaseBbinarycomponents.Remind

thatCaseBisthemorefrequentclassofinteractingbinaries.ComparedtoCaseB,itis

trivialtounderstandthatCaseAcomponentshavesmallerfinalwhereasitis

obviousthatCaseC(andnon-interacting)binariesaresimilartosinglestars.Equation1

decidesuponthemasslossduringtheRSGphase.Thetop-figureholdsfortheWRrates

predictedbyEquation2whereasthebottom-figurecorrespondstotheformalismadopted

byWellsteinandLanger(2000).NoticethemuchlargerfinalmasseswhenEquation2

holds,i.e.withourpreferredWRmasslossformalism,starswithinitialmassbetween40M ¤and

100M ¤endtheirlifewithamassbetween10M ¤and20M ¤correspondingtoCO-coreswitha

massbetween5M¤and15M¤.

ItmustbeclearthatPNSofbinarieswithrelativisticcomponents,NSsorBHs,

dependscriticallyontheadoptedWRmasslossformalism.

Figure4canbeusedtolinktheminimummassofBHformationofsinglestarswith

theoneofprimariesofcaseB-typebinaries.Supposethatthelatteris40M ¤.Basedonthe

valueoftheCO-coremass,thecorrespondingminimummassforsinglestarsis~30M ¤

(RSGstellarwindaccordingtoEquation1withC=8.7)or~20M ¤(Equation1withC=

9).Obviously,thesemasslimitsalsoapplyforCaseCbinariesandforCaseB coneswhere theRSGwindphasebeginsbeforetheonsetoftheRLOF(Sect.3.1).

CaseBBversusstellarwind. Habets(1985,1986)computedtheevolutionofhelium

≤ ≤ starswith2 M/M ¤ 4uptoneonignition,assumingthattheSWmasslossduring

≤ ≤ CHeBissmallinthismassrange.HeconcludedthatCHeBstarswith2 M/M ¤ 2.9 expandsignificantlyduringtheHeshellburningphase,afterCHeB.Ifastarlikethatisa closebinarycomponent,itcanbeexpectedthatitwilloverflowthecriticalRochelobefor asecondtime:theprocessisknownascaseBBRLOF.However,whenweextrapolatethe stellarwindmasslossformalism(Equation2)andwecalculatetheevolutionofCHeB

≤ ≤ starswith2 M/M ¤ 2.9,itfollowsthatcaseBBislargelysuppressed(ordoesnot happenatall).ItcanreadilybecheckedthatthedifferencebetweencaseBBandSW mainlyconcernstheperiodevolutionofbinaries.

4. APPLICATIONS

νSgr. ThebinaryhasaperiodP=138days,ahydrogendeficientA-type

supergiantwithminimummass=2.5M ¤andaB-typecompanionwithminimummass=

4M ¤(DudleyandJefferey,1990).A2.5M ¤heliumcorecorrespondstoaprimarywith

initialmass~12M¤andweproposea12M¤+4M¤progenitorbinary.Thepresentperiod

indicatesthattheinitialperiodwasverylarge,correspondingtoCaseB corCaseC binaries,andthismeansthatthebinaryexperiencedcommonenvelopeevolution.Whenit isassumedthatalltheenergythatisneededtoremovethehydrogenrichlayersofthe12

M¤starcomesfromtheorbit,itisimpossibletoexplainthepresentbinaryperiod.We proposeanalternativemodel:whenweusetheRSGstellarwindmasslossformalism (Sect.2),thestarmaylose~5-6M ¤bystellarwindbeforetheonsetofthecommon

envelope.Orbitalenergyisthenresponsiblefortheremovaloftheremaining3-4M ¤and

forthereductionofthebinaryperiodto138days.Weconcludethatthebinary νSgrgives indirectevidencefortheimportanceofRSGstellarwindmasslossinmassivestars,

possiblydownto10-12M¤.

20 18 16 14 12 10

Mfinal 8 6 4 2 0 10 20 30 40 50 60 70 80 90 100 Mi

9 8 7 6 5

Mfinal 4 3 2 1 0 10 20 30 40 50 60 70 80 90 100 Mi

Figure4 Thefinalmass(inM ¤)ofthestar(thicklines)andoftheCOcore(thinlines)asafunctionof

initialmass(inM ¤ )ofthestar.Theline-typeshavethesamemeaningasinFigure3.Thetop-figure

(respectivelybottom-figure)correspondstoourpreferredWRmasslossformalismEquation2(respectively

Equation5) CygX-1. ThecompactstarinthehighmassX-raybinaryCygX-1ismostlikelyaBH

withmass~10M ¤(GiesandBolton,1986;Herreroetal.,1995).Nelemansetal.(1999)

demonstratedthatthespacevelocityofthebinary(~50km/s)canbeexplainedif~4M ¤ wereejectedduringaprevioussupernovaexplosion.Thismeansthatthefinalmassofthe

BHprogenitorwasatleast14M ¤.Figure4(top-figure)illustratesthattheinitialmassof

theBHprogenitorwaslargerthan60-70M ¤.WiththeWRmasslossratesproposedby

WellsteinandLanger,itisnotpossibletoexplaintheBHmass.Theinitialmassindicates

thatLBV+RSGstellarwindmasslosshasplayedafundamentalroleintheevolutionof

theprogenitorsystem(Sect.3andSect.3.1).

TheLMXBswithaBHcomponent. Bailynetal.(1998)listanumberofLMXBswitha

(probable)BHcomponent.TheBHmassesrangebetween2M ¤and18M ¤(7M ¤isthe

average),thebinaryperiodbetween0.2daysand6days,themassoftheoptical

≥ componentbetween0.3M ¤and2.6M ¤.ToexplainthespacevelocityofSco1994(

100km/s),Nelemansetal.(1999)proposethat~4M ¤oftheBHprogenitorwaslost duringthesupernovaexplosion.Ifthisvaluecanbeconsideredassomecanonicalone,the

averagefinalmassoftheBHprogenitorswas~11M ¤.Figure4(top-figure)thenindicates

≥ thattheinitialmassoftheseprogenitorswas 30-40M ¤.Inparticular,XNMon75and

XNCyg89containaverymassiveBHcomponent(10-15M ¤).Accountingforthemass thatwaslostduringtheSNexplosion,itfollowsfromFigure4(top-figure)thattheir

progenitorshadaninitialmassinexcessof40M ¤(possiblyaslargeas60-70M ¤).This meansthattheevolutionoftheseprogenitorshasbeenheavilyinfluencedbystellarwind masslossduringanLBVandRSGphase,similarastheprogenitoroftheBHinCygX-1.

Brownetal.(1999)proposeacaseCtypeofevolutiontoexplainthesesystems.However theydenytheeffectsofstellarwindmasslossduringtheLBVand/orRSGphaseofa massivestar(Sect.3andSect.3.1).AsaconsequenceoftheseSWphases,CaseCdoesnot

≥ happeninbinarieswithprimarymass 20M ¤andwethereforedonotsupporttheidea ofBrownandBethe.

PortegiesZwartetal.(1997)exploredmodelswhicharebasedontheclassicalspiral- informalismandconcludedthatitisextremelydifficulttoexplaintheobservednumbers ofLMXBswithBHcomponents.

UsingthestellarwindmasslossrateformalismsduringtheLBVphaseandduring theWRphasediscussedabove(Equation2)andaccountingforthefinalmassesof massivestarswhichdependontheseformalisms,Vanbeverenetal.(1998a,b)proposed thefollowingmodelfortheprogenitorsofLMXBswithaBHcomponent:LMXBswitha

≥ massiveBHcomponentoriginatefrombinarieswithaprimarymass 40M ¤andwitha periodwhichislargeenough(oftheorderofafewdozendays)sothatLBVstellarwind masslossstartsbeforetheRLOF(andthusbeforeclassicalspiral-in)happens(Sect.3).The effectofRLOFandofthespiral-inislargelyreduced.

Here,weproposeasecondchannel:LMXBswith(nottoomassive)BHcomponents

originatefromCaseB cbinarieswithextrememassratio,withprimarymassbetween

20(30)M¤and40M ¤(Sect.3.2),withaperiodwhichislargeenoughthattheRSGstellar windphasestartsbeforetheRLOF-spiral-inphasereducingtheimportanceofthelatter

(Sect.3.1).

Preliminarycalculationsrevealthatmostofthebinariessurvivethisphase,i.e.

mergingisavoided.Thismayexplainthe(relatively)largenumberofobservedLMXBs

withaBHcomponent.TheperiodsofLMXBsrangebetween0.2daysandafewdays,

whichatfirstglancecontradictastellarwindscenario.However,anLBVorRSGwindis

denseandtheoutflowvelocitymaybecomparabletotheorbitalvelocityofthelowmass

component.Theorbitalangularmomentumoftheoutflowingmattercanthereforebe

significantlylargerthanthemomentumofmatteratthemomentitleavestheloser(Sect.

3)implyingalargereductionofthebinaryperiod.Moreover,BHformationmaybe

precededbyaSNexplosion.Ifthelatterisasymmetrical,evenabinarywithapre-SN

periodoftheorderofseveraldayscanbecomeapost-SNbinarywithverysmallperiod.

5. POPULATIONNUMBERSYNTHESIS(PNS)OFMASSIVESTARS

TheskeletonsofmostPNScodeswitharealisticfractionofinteractingbinariesarevery

similar.Binarieswithmassratioq ≤0.2(lowmasscomponentisanormalcorehydrogen burningstar)evolvethroughaspiral-inphase.Manyofthemmerge.

CaseBcandCaseCsystemspassthroughacommonenvelopephasewhereonehas

≥ toaccountfortheeffectofRSGstellarwindmassloss,CaseAandCaseB rwithq 0.2 experienceRLOF(whetherRLOFisconservativeornotisstillamatterofdebate;mass lossfromthesystemisparameterised).

Post-supernovabinarieswithaNSoraBHcomponentevolvethroughaphase.Inthecaseofmerging,asocalledThorne-Zhytkowobjectisformed.

DifferencesintheresultsofmassivestarPNSperformedbydifferentresearchteams aredueto

• differencesintheevolutionarycalculationsofsinglestarsandofclosebinariesthat

areusedtoperformPNS

• differencesinthemassandangularmomentumlossformalismofanon-

conservativeRLOF,commonenvelopeandspiral-inprocess

• differencesinthephysicsoftheSNexplosionandhowtheSNexplosionofone

componentaffectstheorbitalparametersofabinary

• differencesinthecriteriausedtodecidewhenabinarywillmergeornot..

ThePNScodeoftheBrusselsteamhasbeendescribedinVanbeverenetal.

(1998a,b,c).Summarising:

• weuseevolutionarycomputationsofsinglestarsandofbinarycomponentswith

moderateamountofconvectivecoreovershootingasproposedbySchalleretal.

(1992),norotation,withthestellarwindmasslossrateformalismsduringthe

differentphasesasdescribedabove(OB-phase,LBVphase,RSGphase,WRphase)

• theeffectofmassaccretionontheevolutionofthemassgainerisfollowedindetail.

Wehavealibraryofover1000evolutionarycalculationsofmassiveclosebinaries

wheretheevolutionofthemassgainerisfolloweduptotheendofitsCHeBphase

• ourevolutionarylibraryofsinglestarsandofclosebinariescontainscalculations

fordifferentZvalues(0.002≤Z≤0.02)

• whenmassisleavingthebinaryduringRLOF,weassumethatthishappens

throughthesecondLagrangianpoint(matterformsaringaroundthesystem).The

angularmomentumlossthereforecanbecomputedfromfirstphysicalprinciples

andisparameterfree

• BHsformoutofprimariesinCaseB rbinarieswithinitialmasslargerthan40M ¤,

singlestarsandprimariesofCaseB candCaseCsystemswithinitialmasslarger

than~25M ¤,massgainerswhobecamesingleafterthefirstSNexplosionand

who'smassaftermasstransferislargerthan~25M¤

• theobservedspacevelocitiesofindicatethattheSNexplosionis

asymmetrical.Thisasymmetrycanbetranslatedintermsofthe‘kick’velocityof

thecompactremnant.WestudyeffectsofkicksonPNSinfull3-D.Theadopted

2 kickvelocitydistributionisa χ -distribution(withatailoflargevelocities)andwe

investigatetheconsequencesfordifferentvaluesoftheaveragevelocity.BH

formationmaybeprecededbyaSNexplosion(Israelianetal,1999;Nelemansetal.,

1999)butourcodedoesnotaccountfortheeffect

• mergingconditions: interactingbinariesexperienceeitheraspiral-inprocess,a

commonenvelopeprocess,RLOFandmasstransfer.Alltheseprocessesstopwhen

themassloserhaslostalmostallitshydrogenrichlayersorwhenbothcomponents

mergebefore.Aftertheremovalofmostofthehydrogen,aheliumburning

remnantrestoresitsthermalequilibriumandshrinksrapidly.Fromour

evolutionarycalculations,wededucethefollowingrelationfortheequilibrium

radiusReoftheheliumremnant(ReinR¤)asfunctionofmassM(inM¤):

R 0.000062M 3 0.0049M 2 0.18M 0.17 e = − + + (6)

Whenastardoesnotaccretemass,itsradiusremainsconstant.Whenaccretion

happens,ourevolutionarylibrarygivesustheradiusafteraccretionwhenthestar

restoreditsequilibrium. Mergingisavoidedwhentheequilibriumradiiofboth componentsaresmallerthantheirRocheradii .Binarieswithq ≤0.2atbirthorwitha

NSorBHcomponentevolvethroughaspiral-inphase.Forthesebinarieswe

comparetheequilibriumradiusR eoftheHeremnantwiththeorbitalradiusofthe

lowmassstar,NSorBH.MerginghappenswhenthelatterissmallerthanR e.In

ourPNScodeweassumethatthemergersoftwonormalstarsevolveinasimilar

wayassinglestarswithmass=thesumofthemassesofbothcomponentsbefore

themasslossprocess.However,inmostofthecases,merginghappenswhenthe

primaryisahydrogenshellburningstar,i.e.whentheheliumcoreisfixed.Ifthe

processofmergingissimilartotheprocessofaccretionofmass(=themassofthe

lowermasscomponent),anewstarisformedwithaheliumcorethatissmaller

thantheoneofanormalsinglestarwithmass=thesumofthemassesofboth

componentsandtheevolutionofsuchstarsmaybedifferentfromtheevolutionof

normalsinglestars.

5.1.PNSRESULTSFORO-TYPESTARSANDWRSTARS

Inthispaperweconsiderregionswherestarformationiscontinuousintime.Starbursts willbeconsideredbyVanBeverandVanbeverenlateron.Toaccountforthepropertiesof theobservedpopulationofOandearlyBtypebinaries,andtoaccountforstatistical biases,oneisforcedtoconcludethatatleast60%ofallmassivestarsarebornasthe primaryofaninteractingbinarywithorbitalperiodbetween~1dayand10years(seealso

MasonandVanRensbergen,theseproceedings).Asignificantfractionisexpectedtohave massratioq ≤0.2wheretheevolutionwillbegovernedbythespiral-inandmerger process.

Wepredictthat15-25%oftheO-typestarsarepost-SNmassgainersofmassiveclose binariesanditwasshownbyDeDonderetal.(1997)that~40%ofthelatterclassare runawaycandidates(i.e.5-10%oftheO-typestarsareexpectedtoberunawaysduetoa previousSNexplosioninabinary).Comparedtotheobservednumberofrunaways,we concludethatatleast50%ofthemareformedbytheSNmechanisminbinaries.Ifthe averageSNkickvelocity=500km/s(resp.150km/s),lessthan20%(resp.morethan

50%)oftheserunawayshaveacompactcompanion(NSorBH).Thesepercentagesshould beverysimilarintheGalaxyandintheMagellanicClouds.

TheobservedoverallWRpopulationoftheSolarneighbourhoodiswellreproduced ifwestartwithaninitialmassiveinteractingclosebinaryfrequency ≥60%.Wepredicta

WR+OBbinaryfrequency~40%andaWN/WCnumberratioaround1correspondingto theobservedvalues.Itisinterestingtoremarkthatabout40-50%ofourpredicted

WR+OBsampledidnotexperienceaclassicalRLOFwithsignificantmasstransfer.They becameWR+OBthroughtheLBVand/orRSGstellarwindscenariodiscussedabove.At least50%ofthesingleWRstarshaveabinarypast(originatefrommergedbinariesor frombinarymassgainerswheretheSNexplosionoftheprimarydisruptedthebinary) andonlyfewWRstarsareexpectedtohaveacompactcompanion(cc)(mostofthese

WR+ccareWR+BHswithaperiodoftheorderofdaystodecades).Thisexplainswhy veryfewWR-type(hard)X-raybinariesareobserved. WerepeatedthesecomputationsforlowZregions(Z=0.002,themetalvalueofthe

SMC)assumingasimilarOB-typebinaryfrequencyasintheGalaxyandtheRSGstellar

windmasslossdependsonZ.WefirstusedevolutionarycalculationswheretheWR

stellarwindmasslossratesarethesameasintheGalaxy.PNSpredictsthat80%ofallWR

starshaveanOB-typecompanion(correspondingtoobservationsintheSMC,seeC.

Foelmitheseproceedings),andabout2/3haveexperiencedRLOFandmasstransfer(i.e.

only1/3wereformedbyLBVand/orRSGstellarwindmassloss).However,the

predictedWN/WCratio~1-1.5whereastheobservedSMCratio~9.Weconcludethata

Z-dependenceoftheRSGmasslosscannotbetheonlyreasonfortheobserveddifference

betweentheWN/WCnumberratiointheGalaxyandtheSMC.Wethenused

evolutionarycomputationswheretheWRwindisZ-dependentandweobtaina

theoreticalWN/WCnumberratio~5-10whichcorrespondstotheobservedvalue.

AlthoughSMCstatisticsofWRstarsissmallnumberstatistics,wearetemptedto

concludethatthevariationoftheWN/WCnumberratioasfunctionofZisindirectevidencethat

theWRstellarwindmasslossratesareZ-dependentaspredictedbytheradiativelydrivenwind

theory.

Table2comparestheobservedandthetheoreticallypredictedWR/Onumberratio

fortheSolarneighbourhood(SN),theouterMilkyWay,theLMCandtheSMC.Inall

casesweassumeaninteractingclosebinaryfrequency≥60%.

Table2 ComparisonbetweentheobservedandtheoreticallypredictedWR/Onumberratioforthe

Solarneighbourhood(SN),theouterMilkyWay,theLMCandtheSMC}

WR WR Z      O  observed  O  predicted

0.02(SN) ~0.1 0.03-0.05

0.013(outerMW) 0.03 0.03

0.008(LMC) 0.04 0.03-0.04

0.002(SMC) 0.02 0.016-0.03

IthasbeennotedfrequentlyinliteraturethatintheSolarneighbourhoodtheWR/O

numberratio~0.1.However,HipparcosmadeclearthatallO-typedistancecalibrations

areverypoorandduetotheseverereddeningcomplicationsintheMilkyWay,the

numberofO-typestarsishighlyuncertain.PNSpredictsaWR/Onumberratio~0.03-

0.05,howeverthisvaluemayincreasesignificantlywhenoneaccountsfortheformation

processofO-typestars(BernasconiandMaeder,1996;NorbergandMaeder,2000).

Therefore,acomparisonbetweenobservationsandpredictionsfortheSolar

neighbourhoodseemstobedifficultatpresent.Remarkthatthecorrespondencebetween

theoryandobservationismuchbetterfortheouterMilkyWay. Thedistance-problemisobviouslylessseverefortheMagellanicCloudsanditis

interestingtonoticethattheobservedWR/OnumberratiointheLMCagreeswiththe

PNSprediction.

Theeffectofsemi-convectionontheevolutionofmassivestarswithlowZdeserves

someattention.Duringthehydrogenshellburningphase,massivestarsexpandandmay

becomeRSGs.Theexpansiontimescaledependsonthetreatmentofsemi-convectionand

ontheeffectofmetallicity.Whensemi-convectionistreatedasaveryslowdiffusion

process(theLedouxcriterion),theexpansionisalwaysveryrapidandamassivesingle

starbecomesaRSGalmostattheonsetoftheCHeBphase.Furthermore,theRLOFofa

≤ primarywithinitialmass 40M ¤inaCaseB rbinaryisalwaysveryfast(independent

fromZ)andstopsatthebeginningofCHeBwhentheprimaryhaslostmostofits

hydrogenrichlayers(resemblingaWRstar).However,whensemi-convectionistreated

asaveryfastdiffusionprocess(Schwarzschildcriterion),theexpansiontimescaleismuch

longer.ThemodelsofMeynetetal.(1994)forsmallZshowthatmassivesinglestars( ≤40

M¤)stragglearoundlogT eff=4.2-4andbecomeRSGonlyattheendofCHeB.Asa consequenceRSGstellarwindmasslossplaysaveryrestrictedroleandsingleWRstars

rarelyformoutofthismassrange.Moreover,sincethetimescaleoftheRLOFinCaseB r binariesdependsontheexpansiontimescaleduringhydrogenshellburning,itfollows

≤ thatinlowZ-regionstheRLOFofaprimarywithinitialmass 40M ¤inaCaseB rbinary lastsforaconsiderablefractionoftheCHeBtimescale.Theremainingpost-RLOFCHeB lifetimeissmallandthismeansthatonlyfewWR+OBbinariesareexpectedfromthis massrange.TheobservedWR/OnumbervaluefortheSMC~0.02whereasPNSpredicts

0.016(semi-convectionisfast)or0.03(semi-convectionisslow).Weconcludethatthe correspondenceissatisfactoryfortheSMCaswell.

5.2.PNSRESULTSFORSUPERNOVARATES

Stellarevolutionpredictswhetherornotastarendsitslifewithhydrogenrichouter layers.Ifoneknowswhichstarsexplodeasasupernova,itisthereforepossibletouse

PNScodestodeterminetheratesofSNtypeI(nohydrogen)andofSNtypeII(with hydrogen).ThishasbeendonebyDeDonderandVanbeveren(1998)withthecode describedabove.OnedistinguishestypeIafromtheothertypeI(=typeIbc).AtypeIaSN maybetheresultofaDwarfinabinarythataccretesmassfromamainsequence starorredgiantthatfillsitsRochelobe(KenNomoto,presentproceedings).TypeIbc supernovaeprogenitorsaremassivestarsthatlosttheirhydrogenbystellarwindmass lossorbyRLOF(hypernovaemaybeasubclassofthesetypeI's)whereastypeII progenitorsaremassivesinglestarswherestellarwindmasslosswasnotlargeenoughto removeallhydrogenrichlayers.Itisclearthattherelativeratesofthedifferenttypes dependonthebinarypopulation(binaryfrequency,massratioandperioddistribution).

WesummarisethefollowingthreeresultsthatwerediscussedinDeDonderand

Vanbeveren.

• TodeterminetheobservedSNII/SNISNnumberratioofoneparticulargalaxy,itis

customarytocollectdataofalargesampleofofthesametype.Theratio

holdingforthewholedatasetisthentakenasrepresentativeforallgalaxiesofthis

type(Cappellaroetal.,1993a,b;seealsoCappellaropresentproceedings).

However,sincetheratiodependscriticallyonthepopulationofbinaries,itisclear

thatthisismeaningfulonlyifthebinarypopulationissimilarinallthegalaxiesof

thedataset.Whetherthisistrueornotisamatteroffaith.

• Earlytype(respectivelylatetype)spiralgalaxieshaveanaverageSNII/Ibcratio~

2.3(respectively~5.5).Ifthisdifferenceisduetoadifferenceinthebinary

population,weconcludethatthemassiveclosebinaryformationrateinlatetype

spiralsmaybeafactor2smallerthaninearlytypespirals.

• Considerthedataofallgalaxieswithanytype.BycomparingtheSNII/Ibc

numberratiowithPNSprediction,weconcludethattheaveragecosmological

massiveinteractingclosebinaryformationrate~50%.

5.3.PNSRESULTSFORDOUBLECOMPACTSTARBINARIES

PNSpredictsthepost-massivestarcollapsepopulation.Toestimatethedoublecompact starbinarypopulation,letusconsidertheOB+cc(cc=NSorBH)classbinaries.Their furtherevolutionisgovernedbythespiral-inprocessoftheccintheOBstarandbythe variousstellarwindmasslossphasesoftheOBstardiscussedinSect.2.Whenthebinary survivesthe(spiral-in)+(stellarwindmassloss)phase,theOBstarwillbeahydrogen deficientCHeBstar,resemblingaWRstar.ThefurtherevolutionwillbegovernedbyWR stellarwindmassloss(Sect.2)andtopredictthepopulationofdoublecompactstar binariesitisessentialtouseCHeBevolutionarycomputationswiththemostuptodate

WRstellarwindrates.RemarkthatbesidethefactthattheseWRwindratescritically determinewhetheramassivestarendsitslifeasaNSorasaBH,theyalsodeterminethe binaryperiodevolution.

The spiral-insurvivalcondition hasbeendiscussedatthebeginningofSect.5.In

Brussels,weusethissurvivalconditioninourPNScodesince1997.

Results. PNScomputationswiththeBrusselscodehavebeenpublishedbyDe

DonderandVanbeveren(1998).Summarizing:

-6 -5

• PNSpredictsthatthebirthrateofGalacticdoubleNSsystemsisabout10 -10 /yr,

correspondingwithobservations(vandenHeuvel,1994).Remarkhoweverthatthe

observedvalueisstillveryuncertain

• mixedsystemsconsistingofaBHandaNSare(2-5)timesmorefrequentthan

NS+NSbinaries

• theformationrateofdoubleBHsystemsisatleastafactor100higherthanthe

formationrateofdoubleNSsystems

• mostofthedoubleNSsystemshaveaperiod ≤2dayswhichmeansthatmostof

themwillmergewithintheHubbletime.AlldoubleBHbinariesandatleast50%of

themixedsystemshaveaperiod ≥10days.Itisquestionablewhetherthese

systemswillmergewithintheHubbletime.

6. ROTATION

Theinfluenceofrotationonmassivesinglestarevolutionhasbeenstudiedindetailby

MeynetandMaeder(2000)(seealsoA.Maeder,presentproceedings).Theyshowedthat inordertounderstandtheevolutionaryhistoryandthechemistryoftheouterlayersof individualstars,theeffectsofrotationareveryimportant.

ForPNSresearchandtoinvestigatethechemicalevolutionofgalaxies,animportant questionisobviouslyinhowfarrotationaffectsaverageevolutionaryproperties.

FromthestudyofMeynetandMaeder,werestrainthefollowingimportant evolutionaryeffects.

Theextendoftheconvectivecore. Thelargertherotationthelargertheconvective coreduringthecorehydrogenburningphaseandthismeansthatconvectivecore overshootingmimicstheeffectofrotationonstellarcores.Theaverageequatorialvelocity ofOB-typestars~100-150km/sec(Penny,1996;Vanbeverenetal.,1998a,b).Whenthis propertyislinkedtothecalculationsofMeynetandMaeder,weconclude thattheeffectof rotationontheextendoftheconvectivecoreduringthecorehydrogenphaseofmassivesinglestars isontheaveragesimilartotheeffectofmildconvectivecoreovershootingasdescribedinSchalleret al.(1992)

DuetoRLOFabinarycomponentlosesmostofitshydrogenrichlayersandthe remnantcorrespondsmoreorlesstotheheliumcoreleftbehindaftercorehydrogen burning.Rotationmakeslargerheliumcoressothatalsohereconvectivecore overshootingmimicsrotation.

Mixingofthelayersoutsidetheconvectivecore. Rotationinducesmildmixinginall masslayersoutsidetheconvectivecore(rotationaldiffusionormeridionalcirculation).

Itisageneralpropertythatasnuclearburningproceeds,themassextendofthe convectivecoreduringcorehydrogenburningdecreases.Inthiswayacomposition gradientisleftbehindinthestellarinterior.Especiallyinmassivestarsasituationoccurs wherethesechemicallyinhomogeneouslayersaredynamicallystablebutvibrationally unstableandthismayinitiatemixing,aprocesscommonlyknownassemi-convection

(Kato,1966).Whetherthisprocessisfastorslowisstillamatterofdebate(Langerand

Maeder,1995)butsemi-convectionandrotationaldiffusionimplysimilareffets.Remark howeverthatsemi-convectionoperatesonlyintheinhomogeneouslayerswhereas rotationaldiffusionalsohappensintheouterhomogeneouslayers.Thelatteristhen

responsiblefortheappearanceofCNOelementsinthestellaratmospherebutishaslittle

overallevolutionaryconsequences.

Semi-convectionandrotationaldiffusiondecideabouttheoccurenceofblueloopsin

post-core-hydrogen-burningphases,i.e.theblueandredsupergianttimescalesduring

coreheliumburning.

Rotationandstellarwindmassloss. Theevolutionofmassivestarsissignificantly MÇ affectedbystellarwindmassloss.Question:howdoesrotationaffectsthe ?Whena MÇ theoreticalhydrodynamicatmospheremodelisusedtoinvestigatetheeffectof on stellarevolution,itisclearthatstellarrotationshouldbeincludedalthough,atleastfor starswhicharenottooclosetotheEddington-limit,theeffectisatmostoftheorderof10- MÇ 20%(PetrenzandPuls,2000).Weliketoemphasisethat astudyoftheeffectofrotationon MÇ (andthusonstellarevolution)ismeaningfulonlyif isdeterminedusingatheoreticalmodel.

However,mostmassivestarevolutionarystudiesuse(semi)-empiricalSWrate

formalismsliketheonesdiscussedinSect.2.Empiricalratesaredeterminedbycombining

observationsandatmospheremodels.Itisclearthattheseatmospheremodelsmust

accountforallphysicalprocesses,thusalsorotation.Inthiscontext,itisinterestingto

noticethatempiricalSWratesresultingfromtheanalysisoftheH αspectralfeature,tend

tobetoolargewhen1-dimensionalatmospheremodelsareused(i.e.whenrotationisnot

takenintoaccount)although,againtheeffectissmallforstarsthatdonotrotatecloseto

thebreakupvelocity(PetrenzandPuls,1996).

Overallconclusion

Asfarasoverallmassivesinglestarevolutionisconcerned,old-fashionsemi-convection+mild

convectivecoreovershootingmimictheeffectofnew-fashionrotation.

RotationandPNS. Tostudythepopulationofmassivestars,presentdayPNSuses

evolutionarycalculationswithamoderateamountofconvectivecoreovershooting(the

oneproposedbySchalleretal.,1992).ImadesometrialPNScomputationsfortheGalaxy

whereevolutionarymodelsareusedwithvaryingovershooting(simulatingthesituation

wherestarshavedifferentrotationalproperties)anditcanbeconcludedthat rotation

hardlychangestheconclusionsresultingfrommassivestarPNSfortheGalaxywhereevolutionary

calculationsareusedwithmoderateamountofovershooting .Thepopulationofblueandred

supergiantsmaybecriticallyaffectedbyrotationbutduetotheuncertaintyinthe

treatmentofsemi-convection,itisdifficulttodrawanyfirmconclusion.

References

Bailyn,C.D.,Jain,R.K.,Coppi,P.&Orosz,J.A.:1998,Ap.J.499,367.

Bernasconi,P.A.&Maeder,A.:1996,A.&A.307,829.

Brown,G.E.,Lee,C.-H.&Bethe,H.A.:1999,NewA4,313. Cappellaro,E.,Turatto,M.,Benetti,S.,Tsvetkov,D.Y.,Bartunov,O.S.&Makarova,I.N.:

1993a,A.&A.268,472.

Cappellaro,E.,Turatto,M.,Benetti,S.,Tsvetkov,D.Y.,Bartunov,O.S.&Makarova,I.N.:

1993b,A.&A.273,383.

DeDonder,E.&Vanbeveren,D.:1998,A.&A.333,557.

DeDonder,E.,Vanbeveren,D.&VanBever,J.:1997,A.&A.318,812.

DeJager,C.,Nieuwenhuyzen,H.&vanderHucht,K.A.:1988,A.&A.Suppl.72,259.

DeMarco,O.,Schmutz,W.,Crowther,P.A.,Hillier,D.J.,Dessart,L.,deKoter,A.

&Schweickhardt,J.:2000,A.&A.358,187.

Dudley,R.E.&Jeffery,C.S.:1990,MNRAS247,400.

Gies,D.R.&Bolton,C.T.:1986,Ap.J.304,371.

Hamann,W.-R.&Koesterke,L.:2000,A.&A.360,647.

Hamann,W.-R.&Koesterke,L.:1998,A.&A.333,251.

Herrero,A.,Kudritzki,R.P.,Vilchez,J.M.,Kunze,D.,Butler,K.&Haser,S.:1992,A.&A.

261,209.

Hillier,D.J.&Miller,D.L.:1998,Ap.J.496,407.

Israelian,G.,Rebolo.R.,Basri,G.,Casares,J.&Martin,E.L.:1999,Nature401,142.

Jura,M.:1987,Ap.J.313,743.

Kato,S.:1966,Publ.Astron.Soc.Japan18,374.

Khaliullin,K.F.,Khaliullina,A.I.&Cherepashchuk,A.M.:1984,SovietAstron.Letters10,

250.

Kudritzki,R-.P.&Puls,J.:2000,ARA&A38,613.

Langer,A.&Maeder,A.:1995,A.&A.295,685.

Langer,N.:1989,A.&A.210,93.

Maeder,A.:1983,A.&A.120,113.

Meynet,G.&Maeder,A.:2000,A.&A.361,101.

Meynet,G.,Maeder,A.,Schaller,G.,Schaerer,D.&Charbonnel,C.:1994,A.&A.Suppl.

103,97.

Morris,P.W.,vanderHucht,K.A.,Crowther,P.A.,Hillier,D.J.,Dessart,L.,Williams,P.

M.&Willis,A.J.:2000,A.&A.353,624.

Nelemans,G.,Tauris,T.M.&vandenHeuvel,E.P.J.:1999,A.&A.352,87.

Norberg,P.&Maeder,A.:2000,A.&A.359,1025.

Penny,L.R.:1996,Ap.J.463,737.

Petrenz,P.&Puls,J.:1996,A.&A.312,195.

Petrenz,P.&Puls,J.:2000,A.&A.358,956.

PortegiesZwart,S.F.,Verbunt,F.,Ergma,E.:1997,A.&A.321,207.

Reid,N.,Tinney,C.&Mould,J.:1990,Ap.J.348,98.

Salasnich,B.,Bressan,A.&Chiosi,C.:1999,A.&A.342,131.

Schaerer,D.&Maeder,A.:1992,A.&A.263,129.

Schaller,G.,Schaerer,D.,Meynet,G.&Maeder,A.:1992,A.&A.Suppl.96,268.

St.-Louis,N.,Moffat,A.F.J.,Drissen,L.,Bastien,P.&Robert,C.:1988,Ap.J.330,289.

VandenHeuvel,E.P.J.:1993,in‘InteractingBinaries’,Saas-FeeAdvancedCourse22,eds.

H.Nussbaumer&A.Orr,Springer-Verlag:p.263. Vanbeveren,D.:1991,A.&A.252,159.

Vanbeveren,D.&Packet,W.:1979,A.&A.80,242.

Vanbeveren,D.,VanRensbergen,W.&DeLoore,C.:1998a,TheAstron.Astrophys.Rev.

9,63.

Vanbeveren,D.,VanRensbergen,W.&DeLoore,C.:1998b,‘TheBrightestBinaries’,ed.

KluwerAcademicPublishers:Dordrecht.

Vanbeveren,D.,DeDonder,E.,VanBever,J.,VanRensbergen,W.,&DeLoore,C.:1998c,

NewA3,443.

Wellstein,S.&Langer,N.:1999,A.&A.350,148.