BÚSQUEDA DE VIDA INTELIGENTE EN EL UNIVERSO Introducción Taller Número 1.3

Total Page:16

File Type:pdf, Size:1020Kb

BÚSQUEDA DE VIDA INTELIGENTE EN EL UNIVERSO Introducción Taller Número 1.3 BÚSQUEDA DE VIDA INTELIGENTE EN EL UNIVERSO Introducción Taller número 1.3 NOTAS PARA EL PROFESOR Objetivo: Analizar​ la fórmula de Drake y estimar la existencia de vida inteligente en el Universo. Conocer las misiones que han enviado mensajes al exterior y posibles señales detectadas en la Tierra desde el exterior. Edad recomendada: ​de 12 a 18 años Resumen de las actividades: 1. Se empieza con un video introductorio sobre la fórmula de Drake. Se pregunta a los alumnos sobre sus propias ideas acerca de la existencia de vida en el Universo. Los alumnos trabajan en grupos de 2-4 y comparan sus resultados con los demás grupos. Se organiza un debate a nivel de clase sobre el posible peligro de contactar con civilizaciones extraterrestres 2. Se analizan los parámetros de la fórmula de Drake 3. Se explica cómo se buscan señales extraterrestres 4. Los alumnos investigan sobre los mensajes enviados Temporización: 2 horas Contenidos clave curriculares: 1. Modelo de la evolución 2. Historia del Universo, de la Tierra y la Vida 3. Fases de una investigación. Diseño de un procedimiento experimental 4. Teorías y hechos experimentales. Controversias científicas. Ciencia y pseudociencia Competencias científico-tecnológicas: ✓ Competencia 1: Identificar y caracterizar los sistemas físicos y químicos desde la perspectiva de los modelos, para comunicar y predecir el comportamiento de los fenómenos naturales ✓ Competencia 2: Identificar y caracterizar los sistemas biológicos y geológicos desde la perspectiva de los modelos, para comunicar y predecir el comportamiento de los fenómenos naturales ✓ Competencia 3: Interpretar la historia del Universo, la Tierra y de la vida utilizando los registros del 1 de 15 pasado Competencias digitales: ✓ Competencia 8: Realizar actividades en grupo utilizando herramientas y entornos virtuales de trabajo colaborativo Metodología didáctica: ● trabajo en grupo, ● debate, ● co-evaluación, ● uso de las tecnologías de la información y comunicación Recursos: ● Ordenador del profesor con acceso a internet y proyector ● Ordenadores de los alumnos con acceso a internet. ● Página web,​ taller 1.3. Introducción. Fórmula de Drake ● Audio en la página web: Audio​ en MP3 Lecturas recomendadas: Para alumnos: ○ Cosmos: A Space-Time Odyssey: Los​ inmortales;​ 2014 ○ Canal de youTube Date​ un voltio ○ https://www.seti.org/ ○ http://setg.mit.edu/ ○ https://es.gizmodo.com/astronomos-del-seti-advierten-que-enviar-mensajes-al-es- 1779573462 ○ https://es.wikipedia.org/wiki/Se%C3%B1al_Wow! ○ http://weti-institute.org/ Para profesores: ● Programa SETI https://es.wikipedia.org/wiki/SETI​ ,​ ● El programa SETI tiene una sección dedicada a la educación https://www.seti.org/​ ● Formación estelar https://es.wikipedia.org/wiki/Formaci%C3%B3n_estelar​ ● https://en.wikipedia.org/wiki/Drake_equation ● https://es.wikipedia.org/wiki/Hip%C3%B3tesis_de_la_Tierra_especial ● https://es.wikipedia.org/wiki/SETI@home#Software 2 de 15 ● https://es.wikipedia.org/wiki/Mensaje_de_Arecibo ● https://es.wikipedia.org/wiki/Disco_de_oro_de_las_Voyager ● https://es.wikipedia.org/wiki/Placa_de_la_Pioneer ● Heller, R., Pudritz, R.; Astrobiology. The Search for Extraterrestrial Intelligence in Earth’s Solar Transit Zone; Mary Ann Liebert; 2016; https://arxiv.org/ftp/arxiv/papers/1603/1603.00776.pdf ● https://www.timetoast.com/timelines/dipity-online-timeline ➢ Datos de entrada para la propuesta gamificada: V​ alores para los parámetros de la fórmula de Drake. ➢ Insignias: M​ asa de la estrella, período orbital del exoplaneta. 3 de 15 TALLER INTRODUCCIÓN: Tiempo: 30​ minutos. Contenido: ​Entender que el cálculo de la aparición de la vida depende de la probabilidad. La actividad empieza mostrando un video sobre la probabilidad de la existencia de la vida en la Tierra: https://www.youtube.com/watch?v=9NxJEELpXKY​ ​(4 minutos en castellano) Se pueden pedir sobre el video las siguientes preguntas: 1. No hay indicios de vida inteligente en el resto del Universo a) Cierto b) Falso 2. No sabemos definir qué es la vida a) Cierto b) Falso 3. ¿Dónde no podemos encontrar vida? a) Cerca de una estrella de b) Sistema de estrellas dobles neutrones 4. La fórmula de Drake sirve para: a) Estimar el número de civilizaciones inteligentes en el Universo b) Estimar el número de civilizaciones inteligentes en nuestra Galaxia 5. La franja de habitabilidad es la: a) Región cerca de una estrella donde se puede encontrar vida b) Región cerca de una estrella donde el agua se encuentra en forma líquida 6. Para buscar vida inteligente: a) Buscamos seres capaces de comunicarse con señales de radio b) Buscamos seres parecidos a nosotros Se sigue con una breve discusión sobre la cantidad de planetas con vida inteligente que los alumnos creen que existen, comentando cada elemento de la fórmula de Drake por separado: ● estrellas con planetas ● planetas en la zona habitable 4 de 15 ● planetas con vida ● planetas con vida inteligente ● planetas con vida inteligente capaces de comunicarse Se deja a los alumnos contrastar sus proyecciones en grupos de 3 y cambiarlas, si así lo creen necesario. Las proyecciones realizadas por los alumnos se guardarán para compararlas con los resultados al aplicar la fórmula con los datos científicos. Se orienta el debate acerca de la idoneidad de contactar con civilizaciones extraterrestres. Se realiza una lectura individual del siguiente artículo​ e incluso se puede organizar un juego de rol en que la mitad de la clase esté a favor de enviar mensajes y la otra en contra. Si se tiene acceso a Internet se puede explorar la página de WETI ¿Qué es WETI? 5 de 15 DESARROLLO Tiempo: 60​ minutos. Contenido: Fórmula​ de Drake Los alumnos trabajarán en equipos de 2 y estudiarán la imagen de la fórmula de Drake. Deberán escribir en un muro colaborativo como https://es.padlet.com​ ​sus cálculos a priori. Se analiza cada factor de la fórmula: R*​ ​TASA DE FORMACIÓN DE ESTRELLAS EN LA GALAXIA • La tasa de formación de estrellas es el número de estrellas que se forman anualmente • La tasa de formación estelar varía entre 1,5-​3​ ​por año. • Se estima que hay 100 billones de estrellas en nuestra galaxia, la Vía Láctea. 6 de 15 fp​ ​FRACCIÓN DE ESTRELLAS CON SISTEMAS PLANETARIOS • Dados los sistemas planetarios descubiertos hasta ahora, se calcula que el 100%​ ​de​ las estrellas tienen planetas. • Algunos científicos son menos optimistas y apuntan al 50%.​ ne​ ​PLANETAS CON UN ENTORNO ADECUADO PARA LA VIDA • Este factor depende del tipo de estrella, de la energía que el planeta reciba de la estrella o de otra fuente, de la posibilidad que el planeta tenga atmósfera, etc. • Los datos del telescopio Kepler sugieren que el 22% de los planetas descubiertos son rocosos y con agua líquida. • Este tipo de planetas son llamados planetas “ricitos de oro” (Goldilock​ planet)​ porque, como en el cuento , la vida se encuentra en un planeta ni muy frío, ni muy caliente, ni muy grande, ni muy pequeño. • Basándonos en nuestro Sistema Solar, un ​planeta puede albergar vida. • Datos más optimistas apuntan a un valor de ne​​ de 5.​ 7 de 15 fe​ ​PLANETAS DONDE APARECE LA VIDA • Se define la vida tal y como se conoce en la Tierra. • Según la experiencia en nuestro Sistema Solar, estamos seguros que la vida ha aparecido en una fracción de 1/2​ .​ • Algunos científicos estiman que fe​ ​podría llegar a 1​,​ si se encuentra vida en Marte, Europa, Encélado, o Titán. Se ha comprobado que allí donde se desarrolla, la vida es fuerte, pero aún no se ha descubierto si apareció sola (abiogénesis​ )​ o vino del exterior (panspermia​ ).​ ➢ Abiogénesis: H​ipótesis según la cual la vida surgió de la Tierra a partir de materia no viva, como compuestos orgánicos. ➢ Panspermia: E​sta hipótesis defiende que la vida se originó fuera de la Tierra y llegó a ella, quizás a través de cometas o meteoritos. fi​ ​PLANETAS CON VIDA INTELIGENTE • No sabemos si la inteligencia es la evolución natural de la vida, lo que lleva a fi​ = 100%​ ,​ aunque sería del 50% si se llega a demostrar que la vida apareció en Marte pero se extinguió. • Drake mismo consideró que este parámetro era del 1%.​ • La localización de nuestro Sistema Solar en la galaxia, ocasiona un nivel bajo de radiación de las supernovas, que se encuentran en el centro de la galaxia. Se estima que sólo un 10​ ​-7 de​ sistemas tienen niveles de radiación semejantes. 8 de 15 fc​ ​CIVILIZACIONES CAPACES DE EMITIR SEÑALES • En la Tierra, no todos los seres con algo de inteligencia desarrollan tecnología capaz de emitir señales en el espacio: el mismo Drake estimó para este parámetro un valor entre de ​0,01 ​y 0,1​ • También hay que tener en cuenta la distancia a la que se pueden encontrar estas civilizaciones: cuánto tiempo pueden tardar sus señales en llegar a la Tierra, así como la capacidad de nuestros telescopios de detectar señales muy lejanas. L ​TIEMPO QUE LAS CIVILIZACIONES TARDAN EN EMITIR SEÑALES • Basándonos en nuestra historia, la humanidad construyó su primer radiotelescopio en 1938. Si somos muy pesimistas y creemos que nuestra civilización morirá mañana, L será la resta entre el año actual y 1938. • Otros estudios apuntan que, una vez una civilización se ha desarrollado tecnológicamente, el riesgo de desaparición es muy alto. Historiadores de civilizaciones antiguas argumentan que una civilización tiene una vida de 304 años,​ mientras que otros proponen que una civilización desarrollada puede llegar a ser inmortal y tener casi la edad del Universo. • Hay que tener en cuenta que: “S​ólo hay 9 de 15 un pequeño período en el desarrollo de su sociedad donde todas sus comunicaciones se enviarán a través de los medios más primitivos y menos protegidos”.​ ( Snowden, ex-trabajador de la CIA) A continuación, calculamos el valor optimista​ y​ el pesimista​ para​ la fórmula con los valores verde y rojo marcados en los textos. Se introducen los parámetros en la página web: PESIMISTA N = 1,5 * 0,5 *1 * 0,5 * 10​-7 ​* 0,01 * 304 = ​0,0000001824 OPTIMISTA N = 3 * 1 *5 *1 * 1 * 0,1 * 10​9 ​= 1.500.000.000​ Como se ve, los resultados difieren mucho dependiendo de los valores introducidos en los parámetros, que además están basados en conjeturas.
Recommended publications
  • Strangest of All
    Strangest of All 1 Strangest of All TRANGEST OF LL AnthologyS of astrobiological science A fiction ed. Julie Nov!"o ! Euro#ean Astrobiology $nstitute Features G. %avid Nordley& Geoffrey Landis& Gregory 'enford& Tobias S. 'uc"ell& (eter Watts and %. A. *iaolin S#ires. + Strangest of All , Strangest of All Edited originally for the #ur#oses of 'EACON +.+.& a/conference of the Euro#ean Astrobiology $nstitute 0EA$1. -o#yright 0-- 'Y-N--N% 4..1 +.+. Julie No !"o ! 2ou are free to share this 5or" as a 5hole as long as you gi e the ap#ro#riate credit to its creators. 6o5ever& you are #rohibited fro7 using it for co77ercial #ur#oses or sharing any 7odified or deri ed ersions of it. 8ore about this #articular license at creati eco77ons.org9licenses9by3nc3nd94.0/legalcode. While this 5or" as a 5hole is under the -reati eCo77ons Attribution3 NonCo77ercial3No%eri ati es 4.0 $nternational license, note that all authors retain usual co#yright for the indi idual wor"s. :$ntroduction; < +.+. by Julie No !"o ! :)ar& $ce& Egg& =ni erse; < +..+ by G. %a id Nordley :$nto The 'lue Abyss; < 1>>> by Geoffrey A. Landis :'ac"scatter; < +.1, by Gregory 'enford :A Jar of Good5ill; < +.1. by Tobias S. 'uc"ell :The $sland; < +..> by (eter )atts :SET$ for (rofit; < +..? by Gregory 'enford :'ut& Still& $ S7ile; < +.1> by %. A. Xiaolin S#ires :After5ord; < +.+. by Julie No !"o ! :8artian Fe er; < +.1> by Julie No !"o ! 4 Strangest of All :@this strangest of all things that ever ca7e to earth fro7 outer space 7ust ha e fallen 5hile $ 5as sitting there, isible to 7e had $ only loo"ed u# as it #assed.; A H.
    [Show full text]
  • A Profile of Humanity: the Cultural Signature of Earth's Inhabitants
    International Journal of A profile of humanity: the cultural signature of Astrobiology Earth’s inhabitants beyond the atmosphere cambridge.org/ija Paul E. Quast Beyond the Earth foundation, Edinburgh, UK Research Article Abstract Cite this article: Quast PE (2018). A profile of The eclectic range of artefacts and ‘messages’ we dispatch into the vast expanse of space may humanity: the cultural signature of Earth’s become one of the most enduring remnants of our present civilization, but how does his pro- inhabitants beyond the atmosphere. tracted legacy adequately document the plurality of societal values and common, cultural heri- International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550418000290 tage on our heterogeneous world? For decades now, this rendition of the egalitarian principle has been explored by the Search for Extra-Terrestrial Intelligence community in order to draft Received: 18 April 2018 theoretical responses to ‘who speaks for Earth?’ for hypothetical extra-terrestrial communica- Revised: 13 June 2018 tion strategies. However, besides the moral, ethical and democratic advancements made by Accepted: 21 June 2018 this particular enterprise, there remains little practical exemplars of implementing this gar- Key words: nered knowledge into other experimental elements that could function as mutual emissaries Active SETI; data storage; deep time messages; of Earth; physical artefacts that could provide accessible details about our present world for eternal memory archives; future archaeology; future archaeological observations by our space-faring progeny, potential visiting extrasolar long-term communication strategies; SETI; time capsules denizens or even for posterity. While some initiatives have been founded to investigate this enduring dilemma of humanity over the last half-century, there are very few comparative stud- Author for correspondence: ies in regards to how these objects, time capsules and transmission events collectively dissem- Paul E.
    [Show full text]
  • NO EXIT a Gripping Thriller Full of Heart-Stopping Twists
    NO EXIT A gripping thriller full of heart-stopping twists TAYLOR ADAMS First published 2017 Joffe Books, London www.joffebooks.com This book is a work of fiction. Names, characters, businesses, organizations, places and events are either the product of the author’s imagination or are used fictitiously. Any resemblance to actual persons, living or dead, events or locales is entirely coincidental. The spelling used is American English except where fidelity to the author’s rendering of accent or dialect supersedes this. Please join our mailing list for free Kindle crime thriller, detective, mystery, and romance books and new releases. http://www.joffebooks.com/contact/ ©Taylor Adams DEDICATION For Riley. CONTENTS Sent: 12/23 6:52 p.m. DUSK 7:39 p.m. 8:17 p.m. NIGHT 9:25 p.m. 9:39 p.m. 10:41 p.m. 11:09 p.m. 11:55 p.m. MIDNIGHT 12:01 a.m. 12:04 a.m. 12:09 a.m. 1:02 a.m. 1:09 a.m. 1:23 a.m. 2:16 a.m. 2:56 a.m. WITCHING HOURS 3:33 a.m. 3:45 a.m. 4:05 a.m. 4:26 a.m. 4:55 a.m. 6:01 a.m. DAWN 6:15 a.m. 6:22 a.m. DRAFT EMAIL (UNSENT) EPILOGUE FREE KINDLE BOOKS AND OFFERS OTHER BOOKS BY TAYLOR ADAMS Sent: 12/23 6:52 p.m. To: [email protected] From: [email protected] We’ll do it tonight. Then we'll need a place to sleep for a few weeks.
    [Show full text]
  • WO 2016/097832 Al 23 June 2016 (23.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/097832 Al 23 June 2016 (23.06.2016) W P O P C T (51) International Patent Classification: hammed, 11 Talaat Harb, ST from Diaa Street, Haram, H04B 7/185 (2006.01) Postal code: 971 14, Cairo (EG). YOUSIF, Amro [SD/SA]; c/o AMMAR, Mohammed, 11 Talaat Harb, ST (21) International Application Number: from Diaa Street, Haram, Postal code: 971 14, Cairo (EG). PCT/IB20 15/000427 (74) Common Representative: AMMAR, Mohammed; c/o (22) Date: International Filing AMMAR, Mohammed, 11 Talaat Harb, ST from Diaa 18 May 2015 (18.05.2015) Street, Haram, Postal code: 971 14, Cairo (EG). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3288 16 December 2014 (16. 12.2014) SD DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (72) Inventors; and HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicants : KAMIL, Idris [SD/SD]; c/o AMMAR, Mo KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, hammed, 11 Talaat Harb, ST from Diaa Street, Haram, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, Postal code: 97 114, Cairo (EG).
    [Show full text]
  • 10 Pioneer 11 O Ager 1 O Ager 2 2163 2057
    2 3 Gemini irgo 5 6 2059 Pioneer 10 Pioneer 11 oager 1 oager 2 2163 2057 1972 • United States 1973 • United States 2069 1977 • United States 1977 • United States Ursa Major THE VOYAGER AND PIONEER PROBES AREN’T DIRECTED TOWARDS A PARTICULAR 2054 2049 Cgnus Sagitta 2047 Draco Hdra LOCATION, AND ARE CURRENTLY FLOATING AIMLESSLY THROUGH INTERSTELLAR SPACE. 2057 2069 2051 2057 2067 Cetus 2059 Orion 2040 2047 2039 1998 Delphinus Andromeda 2044 2070 Eridanus Cassiopeia 2036 1996 Hercules Cancer 9 2044 2053 APPROX. 25974 APPROX. 8 Teen Age 10 Message C mic osm Cos 2001 • Crimea ic 1 Ca all ll 2 THIS BROADCAST C ea 200 rim 3 • C WASN’T AIMED AT • C rim 999 ea 1 A PARTICULAR LOCATION. 11 enus 7 C a ra ic M i t l s 20 gs e a te 05 e l o n ta • ss is P gi S U a t a ed n ge it it s n ed U S • t 6 at 98 e 1 s 1962 A F 12 o M 4 o c 2 r b e i 0 o e i g R 0 m c 8 s e a o s s t • E a r s r e C a g A e u r r e P i t M m h • e 4 a 7 9 1 A 2 a U c 0 e r e n 0 e 13 o g s m 8 i i 1 s r a r • s s e o C s S r t p e • s h M a e 2 e i M 6 n 9 Cosmic 1 S 2 ó 0 1 a n 7 G a s • r r t o J o N r t 2 Calls C N i e o 22 7 a r r • 3 l o d 14 b l 8 i a 0 D A n 0 g 2 A HISTORY OF REACHING OUT TO EXTRATERRESTRIAL INTELLIGENCE a A s n e t S E 2 a i 0 t l l m S l 2030 1 e e 6 i m p d h t Centarus l • e t S e t e S i n p n d R a a o t e i U a n • D o l s t 21 p 8 e S M o 0 h 0 h 15 2012 e n 2 T t Canis Major s s r s e a a g E e 2 01 3 ia • l U ra n st it u L ed A o S • lo h S n t 09 l t i e at 0 e ar gn es 2 H E a l om 20 Fr 16 Boötes 2 Libra 01 ico 2 • R Pue erto rto
    [Show full text]
  • Astrobiology: a Very Short Introduction by David C. Catling
    Astrobiology: A Very Short Introduction by David C. Catling Questions for Thought and Discussion Chapter 1 addresses the question of “What is Life?” by considering what we know from terrestrial life, our one example. Members of the public often wonder if scientists are failing to consider “life as we don’t know it”, which is an idea popularized in science fiction. Is the concept of “life as we don’t know it” useful in factual science? How would we define “life as we don’t know it” and how would we look for it? In the formation of the Earth, to what degree did chance events allow the Earth to become a habitable environment and what does that mean for the likelihood of Earth-like planets elsewhere? What is an acceptable level of proof that a geological or geochemical trace found in ancient rocks is a sign that there were once living organisms? What are the various possibilities for where life originated and their relative merits, and how will it be possible for future science to decide amongst these options? If an asteroid had never hit the Earth and ushered in the age of the mammals with the Cretaceous-Palaeogene mass extinction 65 million years ago, do you think technological civilization would have evolved in some other animal lineage, perhaps even the dinosaurs? What are arguments for and against such evolution? Our civilization is heading towards a point in the future where it can genetically engineer individuals and also greatly slow an individual’s aging process. If and when this happens, how do you think it will alter the future evolution of the human species? Are there potential implications for the evolution of advanced life and civilizations elsewhere in the universe, if they exist? In Chapter 5, the book takes the point of view that viruses are not alive.
    [Show full text]
  • The Benefits and Harms of Transmitting Into Space
    The Benefits and Harm of Transmitting Into Space Jacob Haqq-Misraa,*, Michael W. Buscha,b, Sanjoy M. Soma,1, and Seth D, Bauma,c a. Blue Marble Space Institute of Science b. Department of Earth and Space Sciences, University of California Los Angeles c. Department of Geography, Pennsylvania State University * Corresponding author. Email: [email protected] 1. Present address: Exobiology Branch, NASA Ames Research Center Space Policy 29(1):40-48. This version: 15 March 2013. Abstract Deliberate and unintentional radio transmissions from Earth propagate into space. These transmissions could be detected by extraterrestrial watchers over interstellar distances. Here, we analyze the harms and benefits of deliberate and unintentional transmissions relevant to Earth and humanity. Comparing the magnitude of deliberate radio broadcasts intended for messaging to extraterrestrial intelligence (METI) with the background radio spectrum of Earth, we find that METI attempts to date have much lower detectability than emissions from current radio communication technologies on Earth. METI broadcasts are usually transient and several orders of magnitude less powerful than other terrestrial sources such as astronomical and military radars, which provide the strongest detectable signals. The benefits of radio communication on Earth likely outweigh the potential harms of detection by extraterrestrial watchers; however, the uncertainty regarding the outcome of contact with extraterrestrial beings creates difficulty in assessing whether or not to engage in long-term and large-scale METI. 1. Introduction Does transmitting radio messages into space pose a risk to human civilization? Efforts to send messages to potential extraterrestrial watchers1 have raised concerns that such actions may provoke unwanted attention.
    [Show full text]
  • Thesearchforetlifeintheunivers
    Chapter-1 (The Grand Cosmos) - Why Extra-terrestrials.............................................................. 1 - In the Beginning....................................................................... 5 - The other Fantastic Four.......................................................... 8 - Let there be Light................................................................... 14 - To Be or not to Be.................................................................. 16 - Future from the Beyond......................................................... 23 Chapter-2 (Religions, Ancient Astronauts, Histories, UFOs & E.Ts) - The Sacred Whispers............................................................. 26 - The Ancient Astronauts Theory............................................. 30 - UFO s in Medieval Paintings.................................................. 34 - Ancient Astronauts or Ancient Archeology?........................ 35 - UFOs themselves................................................................... 38 - The Search for Extra-Terrestrial Life: The Beginning.............44 Chapter-3 (Echoes from our Solar District) -The Story So Far..................................................................... 50 -The Water Worlds................................................................... 50 -Solar System: A very brief Tour.............................................. 52 - The Red Planet...................................................................... 53 - The Evening Star..................................................................
    [Show full text]
  • Too Early for Celestial Facebook Account?
    Too early for celestial Facebook account? Humans not ready to socialize with extraterrestrials, study shows “Are we alone in the universe?” The cliché start of the first astrobiology articles of rookie science writers is no longer in vogue these days. With almost daily announcement of the discovery of new exoplanets and calculations of astronomers which put the number of potentially habitable planets in the Milky Way alone at tens of billions, the question now rather is “where are they”. That the curiosity has ceased to be the obsession of a few astronomers is evident from millions of home computers volunteered for the analysis of terabytes of data compiled by SETI (Search for Extraterrestrial Intelligence) project which is listening to the elusive voice of ET with a wide open ear: The 300-meter Arecibo radio telescope in Puerto Rico. There’s no harm in listening for signals announcing the presence of advanced extraterrestrials around. After all, we’ve been doing that for some 50 years. Besides browsing through radio wavelengths, or looking for high-energy laser pulses, alternative proposals are in no short supply in the realm of “passive” searches. Some of these, evidently products of stretched imaginations, appear based on the supercivilization classification of Russian astrophysicist Nikolai Kardashev. To name but a few, looking for conspicuous gaps in galactic niches for “Dyson spheres” encasing stars – and thereby making it invisible –an advanced civilization might have built to exploit all of its energy, or distinctive gamma rays emanating from atomic size “black hole engines” manufactured to provide propulsion for space faring races.
    [Show full text]
  • Nonmetallic Mineral Resources of Washington
    STATE OF v\7 ASHINGTON Department of Conservation and Development J. B. FINK, Acting Director DIVISION 0}' GEOLOGY HAROLD E. CULVER. Supervisor BULLETIN NO. 33 NONMETALLIC MINERAL RESOURCES OF WASHINGTON WITH STATISTICS FOR 1933 By SHELDON L. GLOVER OLYMPIA STATE. PRINTING PLANT t9!6 DEPARTMENTAL ORGANIZAT[ON DBPARTJYIENT OF CONSERVATION AND DEVELOPMENT J. B.FINK Acti,ig Dlrecto1· Ol ympia DIVISION OF RECLAMATIO I': FRANK R. SPINNING ~11pervi,•t>r Ml{I As&isfrrn t ])i,·pr/()1" Olympia DIVISION OF FORESTRY T. S. GOODYEAR S1,verv-£so1· Olympi a DIVISION OF HYDRAULICS CHAS. J. BARTHOLET S1t/Jervisor Olym 1>ia DIVISION OF GEOLOGY HAROLD E . CULVER S1171ervisor Pullman DIVISION OF' MINES AND MINI NG THOMAS B. HILL Su71crviso,· Olympia COLUMBIA BASIN COMMISSION J. B. FINK ,t cting Cltairnum Olympia CONTENTS Pago Introduction . 7 Nonmetallic minerals occurring in Washington . 8 Rock-forming and incidental minerals .. 9 Nonmetallic resources of the counties . 9 Nonmetallic resources, with production for 1933, by rounties .. .. 10 General refer ences ......................... ... .............. 11 Nonmetallic mineral production of Washington, 1923-1933 .... facing 11 Abrasives . 12 References . 13 Asbestos . • . 1:l Washington occurrences . .. • ......... ..... .. .. ... .. • ... 14 Reference . 15 Barite . • . 15 Washington occurrences . 16 References . 16 Carbon dioxicle . 16 Reference . 1 7 Clay products . 18 Manufacturers of clay products, 1935 ... ... ............... .. .. 19 Clay products, 1923-1933 ...... .. ....... ......... ....... facing 19 References .......... ........................ .. ............ 19 Clays and shales . 20 R efractory (high a lumina) clays and shales ...... ... .. .. ...... 21 Buff and gr ay-burning clays and shales ... ........ ... , . 22 R ed and brown-burning clays and sh.:t les . 2 4 Clay production, 1923-1933 ... .. ........ .. ................ 27 R eferen ces . • . 28 Coal ..
    [Show full text]
  • MATTHEW F. K. Mcdaniel Georgia's Forgotten Battlefields: a Survey of and Recommendations for Selected Revolutionary War Battle
    MATTHEW F. K. McDANIEL Georgia’s Forgotten Battlefields: A Survey of and Recommendations for Selected Revolutionary War Battlefields and Sites in the State (Under the Direction of DR. MARK REINBERGER) Although not entirely neglected by scholars, the American Revolution in Georgia has essentially remained a footnote to the state’s Civil War history. Several Federally- and state-owned sites both interpret and commemorate Civil War battles fought on Georgia soil. Despite active and important military participation in the Revolution, Georgia contains only one state-owned site related to the Revolution, and it provides only a broad interpretation of military events occurring there. The portions of some additional sites are held by local municipal governments, but resources are not currently available to appropriately protect, commemorate, or interpret the sites. Under direction of the National Park Service’s American Battlefield Protection Program and the Historic Preservation Division of the Georgia Department of Natural Resources, researcher Matt McDaniel was able to research, visit, and document eleven Revolutionary War-era sites in Georgia. He found a variety of site conditions, most of which lean towards neglect. However, opportunities exist to continue to research and investigate some of these sites, and, in the future, more appropriately protect and commemorate them. INDEX WORDS: Battlefield(s), Historic Preservation, Augusta, Cherokee Ford, Fort Cornwallis, Fort Grierson, Fort Morris, Frederica, Hutchinson Island, New Ebenezer, Savannah, Sunbury, Battle of Brier Creek, Battle of Kettle Creek, Battle of the Rice Boats, Rebecca and Hinchinbrooke GEORGIA’S FORGOTTEN BATTLEFIELDS: A SURVEY OF AND RECOMMENDATIONS FOR SELECTED REVOLUTIONARY WAR BATTLEFIELDS AND SITES IN THE STATE by MATTHEW F.
    [Show full text]
  • The Biological Universe Wallace Arthur Index More Information Www
    Cambridge University Press 978-1-108-83694-4 — The Biological Universe Wallace Arthur Index More Information INDEX Page numbers in italic include illustrations. 55 Cancri e, 241, 251 artificial intelligence, 39, 318 astrobiology, xi, xiii, 49, 186, 220, acellularity, 51, 215–217, 310 225, 227, 236, 332 Across the Universe, 277 astronomical unit, 138, 143, 153, 231 adaptation, 73, 97 atmosphere adaptive radiation, 50 Earth, 58, 239–242 algae exoplanets, 250–254 brown, 9, 39, 68, 196, 311 Mars and Venus, 242–243 green, 68, 83, 196–197 spectroscopy, 246–250 proto-, 71 Titan, 243–246 red, 68 autonomy (from environment), 19, ALH 84-001, 162 310, 316 Alpha Centauri, 144, 155, 228, 280, Autospermia hypothesis, 135, 174, 298 208 amino acids, 19, 173–174, 212, 237, autotrophy, 71 246 ammonoids, 110, 121 bacteria, 9, 13, 38, 60, 68–69, 75–77, anaerobic metabolism, 76–77, 181, 80–81, 92–94, 105, 175 241 beardworms, 93–94 anatomy, 218 Bell Burnell, Jocelyn, 44, 281 Andromeda, 23–24, 148, 235, 290, Berkeley SETI Research Center, 280 302 Betelgeuse, 29–31, 30, 42, 296, 298 angiosperms, 48 Big Bang, 173, 288 animals Big Ear telescope, 272 on exoplanets, 200–201 bilateral symmetry, 313, 323, 324 origin, 195–199, 198 binary systems, 47, 143, 155, 192 apes, 8, 127, 218 Bio-Region hypothesis, 135, 147, appendages, 98, 322 183–184 archaea, 9, 68, 76, 79–80, 94, 105, biodiversity, 7, 9, 91, 153, 168 175 biogeography, 64 archipelago, 15 bioluminescence, 77, 258 Arecibo message, 262, 275, 276, biomarker, 236 278–279, 281, 298, 330 biomes, 65, 67, 101 arthropods,
    [Show full text]