Quick viewing(Text Mode)

Information Letter N° 41 #2019-01 18-05-2019 Observations of Jan

Information Letter N° 41 #2019-01 18-05-2019 Observations of Jan

Eruptive spectroscopy Cataclysmics, Symbiotics, Novae

Eruptive Stars Information Letter n° 41 #2019-01 18-05-2019 Observations of Jan. - Mar. 2019 Contents

Symbiotics p. 2

V694 Mon = MWC 560 in high AX Per: strong outburst AG Dra monitoring before the 2019 expected outburst CH Cyg at low luminosity

p. 63 Mysterious l 5018 in the spectrum of AG Dra in outburst François Teyssier

TCP J05390410+4748030 Dwarf nova in outburst p. 77 Paolo Berardi, Lorenzo Franco

New Online Database of Symbiotic Variables p. 79 Jaroslav Merc, Rudolf Gális, Marek Wolf

Spin, angular momentum, p. 82 and how they govern your spectra Steve Shore

Authors : F. Teyssier, S. Shore, Jaroslav Merc, Rudolf Gális, Marek Wolf, D. Boyd, J. Guarro, F. Sims, T. Lester, F. Campos, U. Sollecchia, C. Boussin, P. Berardi, S. Charbonnel, O. Garde, P. Somogyi, C. Buil, V. Marik, G. Martineau, Y. Buchet, I. Diarrassouba, J. Michelet

“We acknowledge with thanks the variable observations from the AAVSO International Database contributed by observers worldwide and used in this letter.” Kafka, S., 2015, Observations from the AAVSO International Database, http://www.aavso.org ARAS Eruptive Stars Information Letter #40 2019-01

Spectroscopic observations of symbiotic stars in 2019-Q1

Authors: F. Teyssier, D. Boyd, J. Guarro, F. Sims, T. Lester, F. Campos, U. Sollecchia, C. Boussin, S. Charbonnel, O. Garde, P. Somogyi, P. Berardi, C. Buil, V. Marik, G. Martineau, Y. Buchet, I. Diarrassouba, J. Michelet

Abstract: 198 spectra of 23 symbiotic stars at resolution from 500 to 15000 were obtained during 2019-Q1 by 18 observers. AG Dra is monitored before the expected outburst in 2019. At the date (2019-05-18) no sign of outburst has been detected. AX Per soon after the oulet of its eclipse has been detected in strong classical outburst, characterized by the weakening of high emission lines [Fe VII]. CH Cyg is in low luminosity, several spectra has been obtained during a short flare. V694 Mon, in high luminos- ity, has been monitored at high during the season. The profiles of Balmer and Fe II lines isun- usual with a classical profile and the disappearence of the broad blue absorption lines.

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 2 ARAS Eruptive Stars Information Letter #40 2019-01 Symbiotics: Observing program

S Target Request Objective Notes Status Y CH Cyg Independently Long term monitoring of a com- Ongoing A. Skopal plex and highly variable object M M. Karovska B AG Dra R. Gàlis Study of outbursts and orbital He II / Hb One spectrum a week J. Merc variability Raman OVI until next outburst I L. Leedjarv (Spring 2019) AX Per R. Gàlis Ongoing outburst O J. Merc T SU Lyn K. Drozd Study of the orbital variations of a One spectrum a week newly discovered symbiotic I V694 Mon A. Lucy Detection of active phases Balmer and Fe II lines J. Sokolovski C M. Karovska R Aqr M. Karovska Studying ongoing eclipse

RT Cru J. Luna see above

Main targets for 2019, Quarter 2 AG Dra CH Cyg T CrB RT Cru Other targets of interest: SU Lyn, V443 Her, YY Her, CI Cyg, BF Cyg, RS Oph And asap in the morning sky: R Aqr (eclipse), AG Peg, Z And, AX Per (outburst), V694 Mon

Observing : main targets RT Cru Name AD (2000) DE (2000) The symbiotic RT Cru has been getting AG Dra 16 1 40.5 +66 48 9.5 some attention in the last due to its high energy emission in X-rays. AG Peg 21 51 1.9 +12 37 29.4 I have published a couple of papers AX Per 01 36 22.7 +54 15 2.5 about it: BF Cyg 19 23 53.4 +29 40 25.1 http://adsabs.harvard.edu/ BX Mon 07 25 24 -03 36 00 abs/2018A%26A...616A..53L CH Cyg 19 24 33 +50 14 29.1 http://adsabs.harvard.edu/ CI Cyg 19 50 11.8 +35 41 03.2 abs/2007ApJ...671..741L EG And 00 44 37.1 +40 40 45.7 R Aqr 23 43 49.4 -15 17 04.2 I would like to call the ARAS observ- ers attention and encourage to follow RS Oph 17 50 13.2 -06 42 28.4 spectroscopically this source. The SU Lyn 06 42 55.1 +55 28 27.2 AAVSO light curve is also showing an T CrB 15 59 30.1 +25 55 12.6 interesting behavior now, recovering V443 Her 18 22 8.4 +23 27 20 from a faint state. V694 Mon 07 25 51.2 -07 44 08 Z And 23 33 39.5 +48 49 5.4 Joan Luna

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 3 S Symbiotics in ARAS Data Base Update : 16-05-2019 Y 58 stars M 4425 spectra B # Name AD (2000) DE (2000) Nb. of spectra First spectrum Last spectrum Days Since Last I 1 EG And 0 44 37.1 40 40 45.7 124 12/08/2010 18/02/2019 89 2 AX Per 1 36 22.7 54 15 2.5 276 04/10/2011 12/05/2019 6 O 3 V471 Per 1 58 49.7 52 53 48.4 27 06/08/2013 14/02/2019 93 4 Omi Cet 2 19 20.7 -2 58 39.5 33 28/11/2015 09/02/2019 98 T 5 BD Cam 03 42 9.3 63 13 0.5 46 08/11/2011 29/04/2019 19 6 StHa 32 04 37 45.6 -01 19 11.8 5 02/03/2018 25/01/2019 113 I 7 UV Aur 05 21 48.8 32 30 43.1 81 24/02/2011 28/03/2019 51 8 V1261 Ori 05 22 18.6 -8 39 58 16 22/10/2011 29/12/2019 0 C 9 StHA 55 05 46 42 6 43 48 8 17/01/2016 08/02/2019 99 10 SU Lyn 06 42 55.1 +55 28 27.2 160 02/05/2016 30/04/2019 18 S 11 ZZ CMi 07 24 13.9 8 53 51.7 61 29/09/2011 21/04/2019 27 12 BX Mon 07 25 24 -3 36 0 64 04/04/2011 25/03/2019 54 13 V694 Mon 07 25 51.2 -7 44 8 298 03/03/2011 12/04/2019 36 14 NQ Gem 07 31 54.5 24 30 12.5 76 01/04/2013 18/04/2019 30 15 GH Gem 07 4 4.9 12 2 12 9 10/03/2016 15/02/2019 92 16 CQ Dra 12 30 06 69 12 04 34 11/06/2015 11/05/2019 7 17 TX CVn 12 44 42 36 45 50.6 68 10/04/2011 28/04/2019 20 18 RW Hya 13 34 18 - 25 22 48.9 18 28/06/2017 14/07/2018 308 19 IV Vir 14 16 34.3 -21 45 50 10 28/02/2015 11/07/2018 311 20 T CrB 15 59 30.1 25 55 12.6 283 01/04/2012 12/05/2019 6 21 AG Dra 16 01 40.5 66 48 9.5 584 03/04/2013 15/05/2019 3 22 AS 210 16 51 20.4 -26 00 26.7 2 14/06/2018 07/07/2018 315 23 V503 Her 17 36 46 23 18 18 5 05/06/2013 15/05/2018 368 24 RS Oph 17 50 13.2 -6 42 28.4 48 23/03/2011 20/07/2018 302 25 V934 Her 17 06 34.5 +23 58 18.5 30 09/08/2013 31/08/2018 260 26 RT Ser 17 39 52.0 -11 56 38.8 2 26/06/2012 13/07/2018 309 27 AS 245 17 51 00.9 -22 19 35.1 1 15/07/2018 15/07/2018 307 28 AS 270 18 05 33.7 -20 20 38 6 01/08/2013 07/07/2018 315 29 AS 289 18 12 22.1 -11 40 07 3 26/06/2012 15/06/2018 337 30 YY Her 18 14 34.3 20 59 20 27 25/05/2011 26/09/2018 234 31 FG Ser 18 15 06.2 0 18 57.6 7 26/06/2012 22/06/2018 330 32 StHa 149 18 18 55.9 27 26 12 6 05/08/2013 13/07/2018 309 33 V443 Her 18 22 08.4 23 27 20 54 18/05/2011 11/12/2018 158 34 FN Sgr 18 53 52.9 -18 59 42 9 10/08/2013 15/07/2018 307 35 V919 Sgr 19 03 46 -16 59 53.9 7 10/08/2013 10/12/2018 159 36 V1413 Aql 19 03 51.6 16 28 31.7 13 10/08/2013 10/12/2018 159 37 V335 Vul 19 23 14 +24 27 39.7 11 14/08/2016 26/07/2018 296 38 BF Cyg 19 23 53.4 29 40 25.1 154 01/05/2011 22/04/2019 26 39 CH Cyg 19 24 33 50 14 29.1 726 21/04/2011 15/05/2019 3 40 HM Sge 19 41 57.1 16 44 39.9 13 20/07/2013 23/09/2018 237 41 QW Sge 19 45 49.6 18 36 50 11 14/08/2016 26/07/2018 296 43 CI Cyg 19 50 11.8 35 41 3.2 206 25/08/2010 12/04/2019 36 44 StHa 169 19 51 28.9 46 23 6 5 12/05/2016 08/07/2018 314 45 EF Aql 19 51 51.7 -05 48 16.7 1 11/11/2018 11/11/2018 188 46 TCPJ19544251+172228119 54 42.9 +17 22 12.7 59 09/08/2018 31/10/2018 199 47 V1016 Cyg 19 57 4.9 39 49 33.9 18 15/04/2015 10/12/2018 159 48 RR Tel 20 04 18.5 -55 43 33.2 3 08/09/2017 30/10/2017 565 49 PU Vul 20 21 12 21 34 41.9 21 20/07/2013 10/11/2018 189 50 LT Del 20 35 57.3 20 11 34 17 28/11/2015 28/09/2018 232 51 ER Del 20 42 46.4 8 40 56.4 11 02/09/2011 20/10/2018 210 52 V1329 Cyg 20 51 1.1 35 34 51.2 20 08/08/2015 09/01/2019 129 53 V407 Cyg 21 2 13 45 46 30 12 14/03/2010 18/04/2010 54 StHa 190 21 41 44.8 2 43 54.4 21 31/08/2011 21/10/2018 209 55 AG Peg 21 51 1.9 12 37 29.4 252 06/12/2009 24/12/2018 145 56 V627 Cas 22 57 41.2 58 49 14.9 33 06/08/2013 08/01/2019 130 57 Z And 23 33 39.5 48 49 5.4 151 30/10/2010 15/02/2019 92 ARAS58 R Aqr Data Base Symbiotics23 43 49.4 : http://www.astrosurf.com/aras/Aras_DataBase/Symbiotics.htm-15 17 4.2 175 20/11/2010 30/12/2018 139 Symbiotic like 59 SS Lep 06 04 59.1 -16 29 04.0 8 17/02/2018 14/02/2019 93

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 4 Symbiotics observed in January-March, 2019 1/2

Id. Observer Date Range Res. Id. Observer Date Range Res. AG Dra V. Marik 12/02/2019 3715 7401 660 EG And J. Foster 14/10/2018 3832 7397 634 AG Dra D. Boyd 25/02/2019 3901 7380 1122 EG And T. Lester 15/11/2018 4031 7960 14000 AG Dra F. Teyssier 27/02/2019 4200 7110 11000 EG And F. Sims 31/12/2018 3726 7275 978 AG Dra T. Lester 13/03/2019 4031 7950 14000 EG And F. Campos 06/01/2019 3816 7364 736 AG Dra U. Sollecchia 17/03/2019 6365 6748 8543 EG And J. Guarro 11/01/2019 4053 7499 9000 AG Dra F. Sims 18/03/2019 3727 7276 1008 EG And F. Sims 17/01/2019 3727 7275 811 AG Dra C. Buil 22/03/2019 3498 5955 322 EG And J. Guarro 25/01/2019 4053 7499 9000 AG Dra U. Sollecchia 22/03/2019 6728 7085 9851 EG And F. Campos 01/02/2019 3822 7333 846 AG Dra O. Garde 22/03/2019 3915 7591 11000 EG And J. Guarro 03/02/2019 4053 7499 9000 AG Dra F. Campos 22/03/2019 3840 7382 917 EG And J. Guarro 06/02/2019 4053 7499 9000 AG Dra C. Buil 23/03/2019 3499 6051 326 EG And J. Guarro 08/02/2019 4053 7499 9000 AG Dra O. Garde 23/03/2019 4080 7582 11000 EG And J. Guarro 11/02/2019 4053 7499 9000 AG Dra J. Guarro 23/03/2019 4056 7671 9000 EG And J. Guarro 14/02/2019 4053 7499 9000 AG Dra T. Lester 24/03/2019 4031 7950 14000 EG And J. Guarro 18/02/2019 4053 7499 9000 AG Dra U. Sollecchia 24/03/2019 6506 6897 8770 GH Gem F. Sims 09/02/2019 3727 7276 893 AG Dra D. Boyd 24/03/2019 3900 7380 1136 GH Gem F. Campos 15/02/2019 3900 7285 763 AG Dra C. Boussin 24/03/2019 3701 7571 501 NQ Gem F. Sims 03/01/2019 3727 7276 973 AG Dra S. Charbonnel 24/03/2019 3917 7593 11000 NQ Gem F. Sims 08/02/2019 3726 7275 931 AG Dra F. Sims 25/03/2019 3727 7276 1021 NQ Gem D. Boyd 24/02/2019 3901 7380 1105 AG Dra S. Charbonnel 25/03/2019 3917 7118 11000 NQ Gem J. Guarro 03/03/2019 3980 7762 9000 AG Dra S. Charbonnel 27/03/2019 3917 7118 11000 NQ Gem J. Guarro 25/03/2019 4053 7763 9000 AG Dra O. Garde 28/03/2019 4080 7586 11000 NQ Gem S. Charbonnel 28/03/2019 3917 7118 11000 AG Dra C. Boussin 28/03/2019 3701 7571 505 omi Cet J. Guarro 14/01/2019 4053 7499 9000 AG Dra F. Teyssier 30/03/2019 4300 7100 11000 omi Cet J. Guarro 21/01/2019 3980 7763 9000 AG Dra U. Sollecchia 30/03/2019 6506 6897 8670 omi Cet J. Guarro 08/02/2019 4053 7499 9000 AG Dra U. Sollecchia 31/03/2019 6509 6893 8732 omi Cet J. Guarro 09/02/2019 4053 7499 9000 AG Dra F. Sims 01/04/2019 3727 7275 985 SS Lep F. Sims 22/01/2019 3727 7276 918 AG Dra T. Lester 02/04/2019 4031 7950 14000 SS Lep J. Guarro 06/02/2019 4053 7499 9000 AXPer P. Somogyi 18/01/2019 3609 7886 683 SS Lep F. Sims 12/02/2019 3727 7276 941 AXPer F. Campos 24/01/2019 3822 7363 963 SS Lep J. Guarro 14/02/2019 4053 7499 9000 AXPer D. Boyd 28/01/2019 3901 7380 1118 stHa 32 F. Sims 25/01/2019 3725 7274 839 AXPer F. Sims 12/02/2019 3727 7276 899 StHa 55 F. Sims 02/01/2019 3901 7270 978 AXPer C. Boussin 17/02/2019 3701 7571 501 StHa 55 F. Sims 02/01/2019 3901 7270 978 AXPer D. Boyd 22/02/2019 3901 7380 1094 StHa 55 F. Sims 24/01/2019 3926 7266 923 AXPer C. Boussin 26/02/2019 3701 7571 502 StHa 55 F. Sims 08/02/2019 3726 7275 952 AXPer F. Sims 14/03/2019 3725 7274 1002 SU Lyn F. Campos 07/01/2019 3801 7343 794 AXPer F. Sims 15/03/2019 3727 7275 995 SU Lyn F. Campos 10/01/2019 6344 7111 4821 AXPer C. Boussin 18/03/2019 3701 7571 508 SU Lyn F. Sims 11/01/2019 3726 7275 889 AXPer F. Campos 24/03/2019 3854 7395 890 SU Lyn F. Sims 20/01/2019 3727 7276 858 AXPer D. Boyd 24/03/2019 3901 7380 1105 SU Lyn J. Guarro 26/01/2019 4053 7499 9000 BD Cam F. Sims 02/01/2019 3727 7276 972 SU Lyn F. Teyssier 03/02/2019 4034 7115 11000 BD Cam F. Campos 07/01/2019 3804 7348 818 SU Lyn F. Sims 08/02/2019 3727 7276 954 BD Cam J. Guarro 25/01/2019 3976 7753 9000 SU Lyn U. Sollecchia 08/02/2019 6392 6772 8710 BD Cam F. Sims 27/01/2019 3727 7276 860 SU Lyn J. Guarro 09/02/2019 4053 7499 9000 BD Cam V. Marik 12/02/2019 3724 7401 605 SU Lyn F. Sims 12/02/2019 3725 7274 967 BD Cam C. Boussin 17/02/2019 3701 7571 505 SU Lyn F. Teyssier 13/02/2019 4034 7115 11000 BX Mon F. Sims 22/01/2019 3726 7275 925 SU Lyn C. Boussin 16/02/2019 3701 7571 502 BX Mon F. Campos 05/02/2019 3801 7324 881 SU Lyn J. Guarro 16/02/2019 4053 7499 9000 BX Mon F. Sims 07/02/2019 3725 7274 952 SU Lyn D. Boyd 21/02/2019 3901 7380 1084 BX Mon U. Sollecchia 17/02/2019 6393 6757 8524 SU Lyn F. Teyssier 25/02/2019 4034 7115 11000 BX Mon J. Guarro 18/02/2019 4053 7499 9000 SU Lyn C. Boussin 26/02/2019 3701 7571 501 BX Mon D. Boyd 24/02/2019 3901 7380 1125 SU Lyn J. Guarro 02/03/2019 4053 7762 9000 BX Mon F. Campos 16/03/2019 3888 7427 864 SU Lyn F. Teyssier 07/03/2019 4035 7115 11000 BX Mon F. Teyssier 25/03/2019 4300 7100 11000 SU Lyn T. Lester 09/03/2019 4031 7950 14000 BX Mon J. Guarro 25/03/2019 4053 7762 9000 SU Lyn J. Guarro 10/03/2019 4053 7762 9000 CH Cyg J. Guarro 05/01/2019 4053 7499 9000 SU Lyn F. Campos 14/03/2019 6308 7074 6761 CH Cyg F. Teyssier 15/02/2019 4200 7100 11000 SU Lyn F. Sims 18/03/2019 3726 7275 985 CH Cyg T. Lester 24/03/2019 4031 7950 14000 SU Lyn O. Garde 20/03/2019 4040 7586 11000 CH Cyg F. Teyssier 30/03/2019 3969 7348 11000 SU Lyn T. Lester 24/03/2019 4031 7950 14000 CQ Dra V. Marik 12/02/2019 3697 7401 610 SU Lyn J. Guarro 25/03/2019 4053 7763 9000 CQ Dra F. Campos 15/02/2019 3895 7346 804 SU Lyn C. Boussin 29/03/2019 3701 7571 506 CQ Dra J. Guarro 23/03/2019 4053 7761 9000 SU Lyn JMichelet 31/03/2019 3800 7399 578

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 5 Symbiotics observed in January-March, 2019 1/2

Id. Observer Date Range Res. Id. Observer Date Range Res. T CrB F. Teyssier 15/02/2019 4500 7100 11000 V694 Mon F. Campos 06/01/2019 3798 7344 798 T CrB C. Boussin 16/02/2019 3701 7571 503 V694 Mon J. Guarro 12/01/2019 4053 7499 9000 T CrB P. Somogyi 24/02/2019 3602 7880 685 V694 Mon F. Sims 19/01/2019 3727 7275 865 T CrB F. Campos 16/03/2019 3886 7427 909 V694 Mon F. Sims 19/01/2019 3727 7275 881 T CrB C. Boussin 30/03/2019 3701 7571 504 V694 Mon F. Sims 20/01/2019 3727 7275 875 TX CVn T. Lester 13/03/2019 4031 7950 14000 V694 Mon F. Sims 23/01/2019 3727 7276 948 TX CVn F. Sims 15/03/2019 3727 7276 1025 V694 Mon F. Sims 24/01/2019 3727 7276 954 TX CVn C. Buil 21/03/2019 3562 5966 440 V694 Mon J. Guarro 25/01/2019 3989 7756 9000 TX CVn F. Campos 22/03/2019 3842 7381 925 V694 Mon J. Guarro 26/01/2019 4053 7499 9000 TX CVn C. Buil 22/03/2019 3562 6235 344 V694 Mon F. Sims 27/01/2019 3727 7276 922 TX CVn D. Boyd 28/03/2019 3901 7380 1100 V694 Mon F. Sims 28/01/2019 3726 7274 926 TX CVn J. Guarro 28/03/2019 4094 7727 9000 V694 Mon F. Teyssier 03/02/2019 4034 7115 11000 TX CVn S. Charbonnel 29/03/2019 3917 7118 11000 V694 Mon D. Boyd 04/02/2019 3902 7380 1101 TX CVn J. Guarro 29/03/2019 4062 7592 9000 V694 Mon F. Campos 05/02/2019 3800 7326 874 UV Aur J. Guarro 15/01/2019 4053 7499 9000 V694 Mon F. Sims 07/02/2019 3727 7276 951 UV Aur F. Sims 23/01/2019 3726 7276 932 V694 Mon J. Guarro 11/02/2019 4053 7499 9000 UV Aur D. Boyd 30/01/2019 3901 7379 1042 V694 Mon F. Sims 12/02/2019 3725 7274 958 UV Aur V. Marik 12/02/2019 3697 7401 605 V694 Mon F. Teyssier 13/02/2019 4200 7100 11000 UV Aur D. Boyd 26/02/2019 3901 7380 1119 V694 Mon C. Buil 15/02/2019 3447 7928 730 UV Aur D. Boyd 28/03/2019 3900 7380 1116 V694 Mon J. Guarro 19/02/2019 4053 7499 9000 V1329 Cyg D. Boyd 09/01/2019 3901 7380 1095 V694 Mon U. Sollecchia 21/02/2019 6393 6756 9050 V1329 Cyg D. Boyd 09/01/2019 3901 7380 1095 V694 Mon D. Boyd 21/02/2019 3901 7379 1100 V471 Per F. Campos 24/01/2019 3822 7362 930 V694 Mon V. Marik 24/02/2019 4100 7380 608 V471 Per D. Boyd 14/02/2019 3901 7380 1123 V694 Mon F. Teyssier 26/02/2019 4034 7115 11000 V627 Cas D. Boyd 08/01/2019 3901 7380 1106 V694 Mon Ibrahima 28/02/2019 4043 8420 600 Z And J. Guarro 07/01/2019 4053 7499 9000 V694 Mon U. Sollecchia 03/03/2019 6392 6762 8568 Z And J. Guarro 07/01/2019 4053 7499 9000 V694 Mon J. Guarro 03/03/2019 3980 7762 9000 Z And D. Boyd 09/01/2019 3901 7380 1057 V694 Mon J. Guarro 10/03/2019 3980 7762 9000 Z And J. Guarro 11/01/2019 4053 7499 9000 V694 Mon F. Teyssier 11/03/2019 4033 7115 11000 Z And J. Guarro 25/01/2019 3992 7743 9000 V694 Mon T. Lester 13/03/2019 4031 7950 14000 Z And D. Boyd 15/02/2019 3901 7380 1111 V694 Mon F. Campos 16/03/2019 3888 7427 879 ZZ CMi U. Sollecchia 06/02/2019 6393 6772 7688 V694 Mon P. Somogyi 17/03/2019 6505 6614 15916 ZZ CMi G. Martineau 20/02/2019 3602 7598 1100 V694 Mon F. Teyssier 20/03/2019 4300 7100 11000 ZZ CMi D. Boyd 22/02/2019 3900 7380 1121 V694 Mon F. Teyssier 22/03/2019 4060 7110 11000 ZZ CMi T. Lester 09/03/2019 4031 7950 14000 V694 Mon J. Guarro 23/03/2019 4053 7761 9000 ZZ CMi F. Campos 22/03/2019 3842 7385 831 V694 Mon P. Somogyi 23/03/2019 3856 4013 4494 V694 Mon F. Teyssier 24/03/2019 4036 7115 11000 V694 Mon D. Boyd 25/03/2019 3901 7380 1130 V694 Mon J. Guarro 28/03/2019 4053 7762 9000 V694 Mon J. Guarro 30/03/2019 4053 7762 9000

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 6 S AG Dra 2018 Y Coordinates (2000.0) 9 M AG Dra (V) B R.A. 16 01 41.0 Dec +66 48 10.1 I Mag V 9.8 9.5 O Continuous observations of AG Dra upon the

T request of J. Merc and R. Gàlis 10 I Ongoing survey until the next outburst ex- 2458100 2458190 2458280 2458370 2458460 2458550 2458640 pected during Spring 2019. 9.5 C Still in quiescent state late April. AG Dra (V) S

10 2458500 2458590 2458680

AG Dra 2019-04-19 23:39:24 R = 549 Ibrahima

25

20

15

10 relative intensity

5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) Spectrum obtnained by Ibrahima with Lhires III (150 l/mm)

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 7 S AG Dra 2019 Log of observations 2019-02 to 04 Y M Date Time JD Observer Res Range VMA Vincent Marik B 12/02/2019 23:06 2458527.469 VMA 660 3715-7400 DBO David Boyd 25/02/2019 23:13 2458540.489 DBO 1122 3901-7380 I 27/02/2019 2:53 2458541.649 FMT 11000 4200-7110 FMT François Teyssier 13/03/2019 6:09 2458555.800 LES 14000 4030-7950 LES Tim Lester O 17/03/2019 19:33 2458560.373 SOL 8543 6364-6748 SOL Umberto Sollecchia 18/03/2019 6:35 2458560.786 FAS 1008 3726-7275 T 22/03/2019 1:46 2458564.627 BUI 322 3497-5955 FAS Woody Sims 22/03/2019 18:41 2458565.351 SOL 9851 6728-7085 OGA Olivier Garde I 22/03/2019 21:03 2458565.426 OGA 11000 3915-7591 PSO Peter Somogyi 22/03/2019 21:25 2458565.385 PSO 2663 6463-7170 C 22/03/2019 22:11 2458565.421 PSO 1844 4507-5223 FCA Fran Campos 22/03/2019 23:46 2458565.508 FCA 917 3840-7381 BUI Christian Buil S 22/03/2019 23:53 2458565.481 PSO 3346 7992-8691 JGF Joan Guarro Flo 23/03/2019 1:20 2458565.611 BUI 326 3498-6051 23/03/2019 21:00 2458566.424 OGA 11000 4080-7582 CBO Christophe Boussin 23/03/2019 23:39 2458566.513 JGF 9000 4055-7670 SCH Stéphane Charbonnel 24/03/2019 4:44 2458566.755 LES 14000 4030-7950 MVE Michel Verlinden 24/03/2019 4:44 2458566.755 LES 14000 4030-7950 24/03/2019 18:41 2458567.361 SOL 8770 6505-6897 GM Gérard Martineau 24/03/2019 21:20 2458567.424 DBO 1136 3900-7379 YB Yvonne Buchet 24/03/2019 21:59 2458567.428 CBO 501 3700-7570 BER Paolo Berardi 24/03/2019 23:21 2458567.508 SCH 11000 3917-7593 25/03/2019 7:16 2458567.814 FAS 1021 3726-7275 IBR Ibrahima Diarrassouba, 25/03/2019 23:19 2458568.507 SCH 11000 3917-7117 27/03/2019 23:42 2458570.523 SCH 11000 3917-7117 28/03/2019 20:49 2458571.416 OGA 11000 4080-7586 28/03/2019 21:12 2458571.399 CBO 505 3700-7570 30/03/2019 3:06 2458572.653 FMT 11000 4300-7100 30/03/2019 19:12 2458573.364 SOL 8670 6505-6896 30/03/2019 19:12 2458573.364 SOL 8670 6505-6896 30/03/2019 22:13 2458573.418 PSO 3351 8006-8691 31/03/2019 18:31 2458574.343 SOL 8732 6509-6892 01/04/2019 0:41 2458574.564 SCH 11000 3917-7593 01/04/2019 5:50 2458574.754 FAS 985 3726-7274 02/04/2019 4:21 2458575.732 LES 14000 4030-7950 04/04/2019 21:02 2458578.398 FCA 878 3764-7283 05/04/2019 19:01 2458579.349 SOL 8962 6505-6894 06/04/2019 22:25 2458580.423 PSO 2778 6464-7170 06/04/2019 23:29 2458580.479 PSO 1896 4535-5250 10/04/2019 21:55 2458584.436 DBO 1132 3900-7379 10/04/2019 23:06 2458584.484 MVE 571 3630-7800 11/04/2019 23:24 2458585.504 IBR 537 4100-7390 11/04/2019 23:34 2458585.498 CBO 502 3700-7570 12/04/2019 0:32 2458585.557 SCH 11000 3917-7593 12/04/2019 0:49 2458585.563 FMT 11000 4300-7100 12/04/2019 21:58 2458586.436 GMYB 923 3704-7400 13/04/2019 5:33 2458586.743 FAS 990 3726-7275 13/04/2019 21:53 2458587.433 FCA 6110 4318-5040 13/04/2019 23:28 2458587.495 FCA 4792 6458-7225 14/04/2019 3:58 2458587.724 LES 14000 4030-7950 14/04/2019 5:44 2458587.751 FAS 990 3726-7275 17/04/2019 19:41 2458591.362 OGA 11000 4080-7586 19/04/2019 20:15 2458593.389 BER 3884 4608-5073 19/04/2019 20:45 2458593.388 DBO 999 3901-7379 19/04/2019 23:39 2458593.528 IBR 549 4130-7400 21/04/2019 0:05 2458594.529 CBO 503 3700-7570 22/04/2019 3:20 2458595.689 LES 14000 4030-7950 24/04/2019 20:52 2458598.429 SOL 7815 6509-6892 25/04/2019 21:24 2458599.415 DBO 1087 3901-7380 26/04/2019 20:40 2458600.388 FCA 6683 6457-7225 26/04/2019 20:44 2458600.400 SOL 8538 6509-6892 26/04/2019 22:18 2458600.455 FCA 5268 4333-5054 27/04/2019 6:44 2458600.792 FAS 874 3726-7275 27/04/2019 21:21 2458601.439 JGF 9000 4052-7762 28/04/2019 20:15 2458602.373 FMT 11000 4300-7300 30/04/2019 20:26 2458604.381 FMT 11000 4060-7300

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 8 S AG Dra 2018 Y M Pages 10-11: profiles of selected lines from Echelle spectra (R = 9000 to 13000) B I O

T AG Dra H alpha 50 I C 45 40 S 2019-04-30 2019-04-28 35 2019-04-27 2019-04-22 30 2019-04-17 2019-04-14 2019-04-12 25 2019-04-12 2019-04-02 arbitrary unit 20 2019-04-01 2019-03-28 2019-03-27 15 2019-03-25 2019-03-24 10 2019-03-24 2019-03-23 2019-03-22 5 2019-03-13 2019-02-27 0 -800 -400 0 400 800 [km/s]

AG Dra H beta AG Dra He II 4686 45 12

40 2019-04-30 10 2019-04-28 35 2019-04-30 2019-04-27 2019-04-28 2019-04-22 2019-04-27 30 2019-04-17 8 2019-04-22 2019-04-14 2019-04-17 2019-04-12 2019-04-14 25 2019-04-12 2019-04-12 2019-04-02 6 2019-04-12 20 2019-04-01 2019-04-02

arbitrary unit arbitrary unit 2019-04-01 2019-03-28 2019-03-28 2019-03-27 2019-03-27 15 2019-03-25 4 2019-03-25 2019-03-24 2019-03-24 10 2019-03-24 2019-03-24 2019-03-23 2 2019-03-23 2019-03-22 5 2019-03-22 2019-03-13 2019-03-13 2019-02-27 2019-02-27 0 0 -500 -250 0 250 500 -400 -200 0 200 400 Radial velocity [km/s] Radial velocity [km/s]

ARAS Eruptive Stars Information Letter #41 2019-01 - p. 9 S AG Dra 2018 Y M B I O T AG Dra He I 5875 AG Dra He I 6678 I 12 12

C 2019-04-30 10 2019-04-28 10 S 2019-04-27 2019-04-30 2019-04-22 2019-04-28 2019-04-17 2019-04-27 8 2019-04-14 8 2019-04-22 2019-04-12 2019-04-17 2019-04-12 2019-04-14 2019-04-02 2019-04-12 6 2019-04-01 6 2019-04-12 2019-03-28 2019-04-02

arbitrary unit 2019-03-27 arbitrary unit 2019-04-01 2019-03-25 2019-03-28 4 2019-03-24 4 2019-03-27 2019-03-24 2019-03-25 2019-03-23 2019-03-24 2019-03-22 2019-03-24 2 2019-03-13 2 2019-03-23 2019-02-27 2019-03-22 2019-03-13 2019-02-27 0 0 -400 -200 0 200 400 -400 -200 0 200 400 Radial velocity [km/s] Radial velocity [km/s]

ARAS Eruptive Stars Information Letter #41 2019-01 - p.10 ARAS Eruptive Stars Information Letter #41 2019-01 - p.11 S AG Dra 2019 02 to 04, 2019 Y M Equivalent widths of selected lines from Echelle spectra B AG Dra - EW Halpha AG Dra - EW Hbeta I 80 30 O T 70 20 I C 60 10 S 8540 8550 8560 8570 8580 8590 8600 8610 8540 8550 8560 8570 8580 8590 8600 8610 JD - 2450000 JD - 2450000

AG Dra - EW HeI4922 AG Dra - EW HeI5016 1 1

0.5 0.5

0 0 8540 8550 8560 8570 8580 8590 8600 8610 8540 8550 8560 8570 8580 8590 8600 8610 JD - 2450000 JD - 2450000

AG Dra - EW HeI5876 AG Dra - EW HeI6678 3 2

2 1.5

1 1 8540 8550 8560 8570 8580 8590 8600 8610 8540 8550 8560 8570 8580 8590 8600 8610 JD - 2450000 JD - 2450000

AG Dra - EW HeII4686 AG Dra - EW RamanOVI6830 20 8

7.5

15 7

AG Dra - EW HeI7065 2

1.5

1 8540 8550 8560 8570 8580 8590 8600 8610 JD - 2450000

6.5

10 6 8540 8550 8560 8570 8580 8590 8600 8610 8540 8550 8560 8570 8580 8590 8600 8610 JD - 2450000 JD - 2450000

ARAS Eruptive Stars Information Letter #41 2019-01 - p.11 S AG Dra 2019 Y M AG Dra 2019-03-23 01:20:33 R = 326 C Buil 2.5 B I 2 O T 1.5 I 1

C relative intensity S 0.5

0 3500 4000 4500 5000 5500 6000 Wavelength (A) UVEX prototype C. Buil showing the Balmer jump AG Dra 2019-03-22 23:53:50 R = 3346 P. Somogyi 2

1 relative intensity

0 8000 8100 8200 8300 8400 8500 8600 8700 Wavelength (A) Near IR spectrum obtained by Peter Somogyi with Lirhes III (600 l/mm) Ca II triplet in absorption. OI in fain emission. AG Dra 2019-04-19 20:15:47 R = 3884 Paolo Berardi 10

8

6

4 relative intensity

2

0 4600 4700 4800 4900 5000 5100 Wavelength (A) ARAS Eruptive Stars Information Letter #41 2019-01 - p.12 S AG Dra 2019 Y M B I AG Dra 2019-04-24 20:52:27 R = 7815 Umberto Sollecchia O 15 T

I 10 C S

5 relative intensity

0 6500 6600 6700 6800 6900 Wavelength (A)

AG Dra H alpha AG Dra He I 6678 45 9

40 8

2019-04-26 35 7

2019-04-26 2019-04-24 30 6

2019-04-24 2019-04-19 25 5

2019-04-19 2019-04-05 20 4 arbitrary unit arbitrary unit 2019-04-05 2019-03-31 15 3

2019-03-31 2019-03-30 10 2

2019-03-30 2019-03-24 5 1

2019-03-24 0 0 -1000 -500 0 500 1000 -500 -250 0 250 500 Radial velocity [km/s] Radial velocity [km/s]

Lines profiles from Umbert Sollecchia spectra (R = 8000)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.13 S AX Per Y Coordinates (2000.0) 10 M AX Pe r (V) B R.A. 01 36 22.7 10.5 Dec +54 15 02.4 11 I Mag 11.5 (2019-01) 11.5 O 12 The prototypical symbiotic AX Per 12.5 T is emerging from eclipse. The light- 2458250 2458430 2458610 I curve is significantly different from AAVSO (V) light curve and ARAS Spectra (blue dots) other orbital cycles. Spectra obtained C by David Boyd and Fran Campos in 10 S March indicate that AX Per entered in classical symbiotic outburst with 11 notably the desappearence of [Fe VII] high excitation lines (see e.g. F. Campos' spectrum below) 12

13 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V mag with respectect to phase. Current cycle: brown squares.

8

9

10

11

12

13

14 2444000 2446000 2448000 2450000 2452000 2454000 2456000 2458000 2460000

AX Per 2019-03-24 19:21:19 R = 890 F. Campos 14

12

10

8

6

relative intensity 4

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.14 S AX Per Y M B AX Per 2019 D. Boyd

I 2019-01-28.817 2019-02-22.823 1.6E-12 2019-03-24.826 O 2019-04-10.846 T I C 1.4E-12 S

1.2E-12

1E-12 )

8E-13-1 Relative intensity .A -1 .s -2

6E-13 Flux (erg.cm

4E-13

2E-13

0 4000 4500 5000 5500 6000 6500 7000

Wavelength (Angstrom)

Flux calibrated spectra obtained by David Boyd with LISA (R = 1000)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.15 S AX Per Y M B Spectroscopic evolution of the outburst with spectra obtained by Woody Sims and David Boyd with a LISA (R = 1000). I The blend NIII/CIII strongly inevesaed when [Fe VII] vanished O AX Per T I C 14

S NIII/CIII 4640-60

2019-04-10.846

12

2019-03-24.826

10

2019-03-14.116

8 [Fe VII] 6087 [Fe Arbitrary units

2019-02-22.823

6

2019-02-12.101

4

2019-01-28.817 2

2018-12-30.115

0 4000 4500 5000 5500 6000 6500 7000

Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.16 ARAS Eruptive Stars Information Letter #41 2019-01 - p.17 S AX Per Y M The outburst monitored by Chistophe Boussin with ALPY600 B I

O AX Per Christophe Boussin T I 8 C S

7

6

2019-04-24.854 5

4 Arbitrary units 2019-04-20.874

2019-04-11.867 3

2

2019-02-26.918

1

2019-02-17.865 0 4000 4500 5000 5500 6000 6500 7000 7500

Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.17 S AX Per Y M Line analysis by David Boyd on calibrated flux spectra using PlotSpectra (Tim Lester) B

I Date JD -2450000 Phase Ha Hb He II [Fe VII] 6087 He I 5876 He I 6678 O 21-nov-18 8444.351 0.000 31.8 5.1 4.6 1.57 2.7 0.5 13-déc-18 8466.243 0.032 32.3 4.8 4.6 1.26 2.4 0.5 T 29-déc-18 8482.355 0.056 31.4 5.0 4.8 1.38 2.2 0.5 28-janv-19 8512.348 0.100 41.0 5.9 6.1 1.21 2.3 1.6 I 22-févr-19 8537.405 0.136 46.5 8.8 8.2 0.88 1.7 1.9 24-mars-19 8567.330 0.180 110.1 18.9 15.6 0.17 5.1 9.4 C 10-avr-19 8584.337 0.205 147.7 36.8 19.4 0.00 7.4 12.4 S in units of 10-12 erg.cm-2.s-1

160 20 140 H alpha He II 4684 120 15 100 80 10 60 40 5 20 0 0 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600

40 10 H beta He I 5876 8 30

6 20 4

10 2

0 0 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600

10 2 He I 6678 [Fe VII] 6087 8

6

1 4

2

0 0 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600

Flux of Ha, Hb, [Fe VII], He II 4686, He I 5876, He I 6678 in units of 10-12 erg.cm-2.s-1

7 2

6 He I 5876 / He I 6678 He II / H beta

5

4 1 3

2

1

0 0 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600 8420 8440 8460 8480 8500 8520 8540 8560 8580 8600

Diagnostic lines ratios - The ratio He I triplets/singlets decreases before the outburst detected by the weakening of [Fe VII]. It is relevant to orbital phase.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.18 S AX Per Y M B I The symbiotic star AX Per is going into strong outburst O ATel #12660 T J. Merc (UPJS in Kosice, Charles University), R. Galis (UPJS in Kosice), F. Teyssier, D. Boyd, W. Sims, C. Boussin, F. Campos (ARAS) I on 13 Apr 2019; 11:21 UT C Credential Certification: Jaroslav Merc ([email protected]) S AX Per is a well-known eclipsing symbiotic binary consisting of a giant of type M4.5 - III(Muer set & Schmid 1999, A&AS, 137, 473) and probably a white dwarf. The orbital period of the bi- nary system is around 680 days (Mikolajewska & Kenyon 1992, AJ, 103, 579). The light curve of AX Per is characterized by the wave-like variations whose shape is changing from cycle to cycle. After major outbursts of the system in 1988-1992, a new activity stage has begun in 2007, with minor outbursts observed in 2009, 2010, 2012 and 2014 (Munari & Siviero 2009, CBET, No. 1757; Munari , Siviero, et al. 2010, CBET, No. 2555; ATel #4265, ATel #6382). All recent outbursts were sig- nificantly lower in magnitude (maximal V around 10) than the major outbursts in 90s (with V < 9).

In this Astronomer's Telegram, we report the beginning of a new outburst of AX Per with a strong increase in brightness. In the previous orbital cycle, the brightness of the symbiotic system reached the maximum of B=11.589 and V=10.873 (October 15, 2017; JD 2458042.319). During the binary eclipse in August/September 2018, the magnitudes decreased to the minimum of B=13.387 and V=12.355 on August 21, 2018 (JD 2458352.375). Since then, the brightness of AX Per has started to increase and the March 2019 measurements have shown that it has reached a similar level was higher than the previous maximum of B=11.516 and V=10.652 (March 24, 2019; JD 2458567.330). Our observation obtained on April 10, 2019 (JD 2458584.337) indicate that the AX Per brightness continues to rise (B=11.109 and V=10.330) in what looks like a promising major outburst of this symbiotic binary.

The low resolution spectroscopic observations (R < 1000) obtained during March and April 2019 showed significant changes in the prominent emission lines and in the continuum compared to the spectra acquired at the end of 2018. We note the disappearance of the highly ionized lines (e. g. [Fe VII]) or the change of the He I singlet/triplet ratio. Several emission lines of the He I which were not observable are fairly strong in the recent spectra, and similar behavior is observed in the case of Fe II lines. The Balmer lines equivalent widths have also increased significantly (1.3 times since December 2018). Nebular-to-auroral line ratio of [OIII] 5007/4363 has increased from 0.7 to 1.6. This behavior points to a classical symbiotic outburst during which a accreting layer on white dwarf expands and cools down. We will continue the photometric and spectroscopic monitoring of the AX Per current outburst. It will be interesting to see if the outburst is another of a series of minor out- bursts, or we will finally observe a major outburst of this symbiotic system. Recent spectroscopic observations could be found in the ARAS Spectral Database .

ARAS Eruptive Stars Information Letter #41 2019-01 - p.19 S BD Cam Y M Coordinates (2000.0) B R.A. 03 42 09.3 I Dec +63 13 00.0 Mag O

T Still no emission lines in visible range I C S

BD Cam 2019-01-02 02:15:53 R = 972 Forrest Sims

1.5

1

relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

BD Cam 2019-02-12 21:24:12 R = 605 V. Marik 1.5

1

0.5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.20 ARAS Eruptive Stars Information Letter #41 2019-01 - p.21 S BD Cam Y M B I BD Cam 2019-01-25 21 R = 9000 J. Guarro O 2 T I 1.5 C S 1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-01-25 Hbeta 2019-01-25 1.6 1.4

1.4 1.2

1.2 1

1 0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.21 S BX Mon Y Coordinates (2000.0) 9 M BX Mon B R.A. 19 23 53.5 Dec +29 40 29.17 I Mag 9.6 9.5 O

T 10 I 2457910 2458275 2458640 C S

BX Mon 2019-01-22 06:49:20 R = 925 Forrest Sims 3.5

3

2.5

2

1.5

relative intensity 1

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

BX Mon 2019-02-05 20:07:11 R = 881 FPC 4

3

2 relative intensity 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.22 S BX Mon Y M B I

O BX Mon 2019-02-18 20:57:22 R = 9000 J. Guarro T 5 I 4 C

S 3

2 relative intensity

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-02-17 Hbeta 2019-02-18 5 2

4.5 1.8

4 1.6 3.5 1.4 3 1.2 2.5

1 2

1.5 0.8

1 0.6 -1000 -500 0 500 1000 -500 0 500 velocity (km/s) velocity (km/s)

Halpha 2019-03-25 Hbeta 2019-03-25 FeII5018 2019-03-25 4.5 2 1.3

4 1.8 1.2 3.5 1.6 3 1.1

2.5 1.4

1 2 1.2 1.5 0.9 1 1

0.5 0.8 0.8 -500 0 500 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.23 S CH Cyg Y

6 M Coordinates (2000.0) CH Cygni (V) R.A. 19 24 33.1 B 7 I Dec +50 14 29.1 Mag ~ 7.2 (2017-07) 8 O Ongoing campaign upon the request of Augustin Skopal T 9 At least one spectrum a 2458200 2458260 2458320 2458380 2458440 2458500 2458560 2458620 I month (high resolution and C low resolution, with a -cor AAVSO V lightcurve (daily mean) and ARAS spectra (blue dots) from 2019-01-05 to 04-20 S rect atmospheric response) After its fading in the second part of 2018, CH Cygni remains at low luminosity (~ 8,5) but a short flare late march.

The interesting thing is that CH Cyg (V and B) its getting fainter (abruptly) and in a relatively short time period; When this happened in the past, it indicated a jet ejection and dimming of the LC by the ejecta/dust in the inner circumbi- nary environment. So close spectral and pho- tometric monitoring in the next few months would be of a great interest. Margarita Karovska (communication to ARAS observers)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.24 S CH Cyg Y M

B The flare monitored by Echelle spectra 6 I (J. Guarro, T. Lester, F. Teyssier) CH Cygni (V) O 7

T 8 I 9 C 2458200 2458260 2458320 2458380 2458440 2458500 2458560 2458620 S

CH Cyg H alpha CH Cyg H beta CH Cyg [O III]5007] 50 35 18

45 16 30 2019-04-20 40 14 2019-04-20

25 35 12 2019-04-11 2019-04-20 2019-04-11 30 20 10

25 2019-04-11

arbitrary unit 2019-03-30 arbitrary unit arbitrary unit 8 2019-03-30 15 20

2019-03-30 6 15 10 2019-03-24 2019-03-24 4 10 2019-03-24

5 2019-02-15 5 2

2019-02-15 2019-02-15 0 0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -500 -250 0 250 500 Radial velocity [km/s] Radial velocity [km/s] Radial velocity [km/s]

ARAS Eruptive Stars Information Letter #41 2019-01 - p.25 S CH Cyg Echelle spectra Y M B CH Cyg I 1.8 O T 1.6 I 2019-04-20.048 C 1.4

S 1.2 2019-04-11.134

1

2019-03-30.185 0.8 Arbitrary units

0.6 2019-03-24.343

0.4

2019-02-15.181 0.2 The emission of Na I D is strongly anti- correlated with the luminosity 0 5865 5875 5885 5895 5905 Wavelength (Angstrom)

CH Cyg

0.7 2019-02-15.181 2019-03-24.343 0.6 2019-03-30.185 2019-04-11.134 2019-04-20.048 0.5

0.4

0.3 Relative intensity 0.2

0.1

0 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 Wavelength (Angstrom)

Variation of [OIII] profile

ARAS Eruptive Stars Information Letter #41 2019-01 - p.26 S CQ Dra Y

M Coordinates (2000.0) B R.A. 12 30 06.7 I Dec +69 12 04. O Mag V 4.9 T No emission lines I C S CQ Dra 2019-02-12 23:44:34 R = 610 V. Marik 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) CQ Dra 2019-02-15 22:13:43 R = 804 F. Campos 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.27 S CQ Dra Y M B I O T CQ Dra 2019-03-23 22:12:04 R = 9000 J. Guarro I 2.5 C S 2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-03-23 Hbeta 2019-03-23 1.2 1.6

1.4 1 1.2

0.8 1

0.8 0.6

0.6 0.4 0.4

0.2 0.2 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.28 S GH Gem Y

12 M Coordinates (2000.0) GH Gem B R.A. 07 01 25.3 12.5 Dec +12 08 05.7 I 13 Mag V O 13.5

T 14 I 2457180 2457545 2457910 2458275 2458640 2459005 C S GH Gem 2019-02-09 04:13:40 R = 893 Forrest Sims 1.5

1

0.5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

GH Gem 2019-02-15 20:10:39 R = 763 F. Campos 1.5

1

0.5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.29 S NQ Gem Y M Coordinates (2000.0) B R.A. 07 31 54.5 I Dec +24 30 12.5 O Mag V 8.0 T I C S

NQ Gem 2019-01-03 05:24:02 R = 973 Forrest Sims 1.5

1

0.5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 NQ Gem 2019-02-24 19:23:37 R = 1105 D. Boyd 6

5 1) - 1 A

- 4 2 s - 3

2 flux (erg cm 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.30 S NQ Gem Y NQ Gem 2019-03-03 22:22: R = 9000 J. Guarro M 2 B

I 1.5 O T 1 I

C relative intensity 0.5 S

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

NQ Gem 2019-03-28 20:41:51 R = 575551 S. Charbonnel 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Hbeta 2019-03-28 Halpha 2019-03-28 1.6 2.5

1.4

2 1.2

1 1.5 0.8

0.6 1

0.4

0.2 0.5 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s) S omi Cet Y M Coordinates (2000.0) 2 3 o Ce t (Vi s ) B R.A. 02 19 20.79 4 5 I Dec -02 58 39.4 6 Mag V 5.5 (2019-02) 7 O 8 9 T 10 11 I 2457550 2457915 2458280 2458645 C AAVSO Vis Light Curve S and ARAS spectra (blue dots)

Omi Cet 2019-01-14 19:18:36 R = 9000 J. Guaro 8

6

4 relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-01-14 Hbeta 2019-01-14 Hgamma 2019-01-14 1.1 4.5 20

4 1 15 3.5 0.9

3 10

0.8 2.5 5 0.7 2

0.6 1.5 0 -500 0 500 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s) velocity (km/s) S SS Lep= 17 Lep Y M Coordinates (2000.0) B R.A. 06 04 59.1 I Dec -16 29 04.0 O Mag V T I C S

SS Lep 2019-01-22 06:05:09 R = 918 Forrest Sims 4

3

2 relative intensity 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

SS Lep 2019-02-12 04:03:33 R = 941 Forrest Sims 3

2.5

2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) S StHa 32 Y M Coordinates (2000.0) B R.A. 04 37 45.6 I Dec -01 19 11.89 O Mag V 12.7 T I C StHa 32 2019-01-25 04:15:11 R = 839 Forrest Sims S 15

10

5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

StHa 32 2019-01-25 04:15:11 R = 839 Forrest Sims 5

4

3

2 relative intensity

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Ratio EW Flux OVI 6830 / Ha 0.04 0.05 He I 5876 / Hb 0.22 0.37 He II 4686 / Hb 0.70 0.58

ARAS Eruptive Stars Information Letter #41 2019-01 - p.34 S StHa 55 Y M Coordinates (2000.0) B R.A. 05 46 42.07 I Dec +06 43 47.07 O Mag V T I C StHa 55 2019-01-02 06:17:53 R = 978 Forrest Sims S 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) StHa55 2019-02-08 04:12:46 R = 952 Forrest Sims 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.35 S SU Lyn Y M Coordinates (2000.0) B R.A. 06 42 55.1 I Dec +55 28 27.2 O Mag V ~ 8.5 T I C S 10-11 SU Lyn 2019-02-21 19:15:52 R = 1084 D. Boyd 1

] 0.8 -1 .Å -1

.s 0.6 -2

0.4

Flux [erg.cm 0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

SU Lyn 2019-03-31 19:25:10 R = 578 J Michelet 2.5

2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.36 S SU Lyn Y M B Ha and [OIII] variations - Echelle spectra R = 9000 to 13000 I O T I Halpha 6562.8 - SU Lyn [O III] 5006.84 - SU Lyn C 9 3.5 S 8 2019-03-31.827 3

2019-03-31.827 2019-03-25.818 7 2019-03-24.010 2019-03-25.818 2.5 2019-03-20.773 2019-03-24.010 6 2019-03-20.773 2019-03-10.781

2019-03-09.137 2019-03-10.781 2 5 2019-03-07.783 2019-03-09.137

2019-03-02.876 2019-03-07.783 4 Arbitrary units Arbitrary units 1.5 2019-02-25.801 2019-03-02.876

2019-02-16.904 2019-02-25.801 3 2019-02-13.772 2019-02-16.904 1 2019-02-09.968 2019-02-13.772 2 2019-02-03.781 2019-02-09.968

2019-01-26.878 0.5 2019-02-03.781 1

2019-01-26.878

0 0 -500 -250 250 500 -500 -250 250 500

Velocity (Km/sec) Velocity (Km/sec)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.37 S T CrB Y 9 M T CrB Coordinates (2000.0)

B R.A. 15 57 24.4 9.5 I Dec +26 03 38.8 O Mag V 9.8 10

T 10.5 2457000 2457365 2457730 2458095 2458460 2458825 I C S

T CrB 2019-02-16 02:23:55 R = 503 Christophe Boussin 5

4

3

2 relative intensity

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

T CrB 2019-03-16 23:23:35 R = 909 F. Campos 5

4

3

2 relative intensity

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.38 S T CrB Y M B T CrB 2019-03-30 23:20:14 R = 1901 P. Somogyi 5 I O 4 T I 3 C 2

S relative intensity

1

0 4500 4600 4700 4800 4900 5000 5100 5200 Wavelength (A)

T CrB 2019-03-23 01:14:11 R = 3393 P. Somogyi 2

1.5

1 relative intensity 0.5

0 8000 8100 8200 8300 8400 8500 8600 8700 Wavelength (A)

Halpha 2019-03-24 7

6

5

4

3

2

1

0 -1000 -500 0 500 1000 velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.39 S TX CVn Y M Coordinates (2000.0) B R.A. 12 44 42.0 I Dec +36 45 50.6 O Mag V 10.2 T I C S

TX CVn 2019-03-21 23:11:14 R = 440 C. Buil 1.2

1

0.8

0.6

0.4 relative intensity

0.2

0 4000 4500 5000 5500 6000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.40 S TX CVn Y M B

I TX CVn 2019-03-15 06:14:45 R = 1025 Forrest Sims O 1.2

T 1 I C 0.8 S 0.6

0.4 relative intensity

0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-13 TX CVn 2019-03-28 21:51:23 R = 1100 D. Boyd 5

] 4 -1 .Å -1

.s 3 -2

2

Flux [erg.cm 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.41 S TX CVn Y M B TX CVn 2019-03-29 00:04:33 R = 11000 S. Charbonnel I 1.5 O T

I 1 C S 0.5 relative intensity

0 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-03-29 Hbeta 2019-03-29 1.2 1.4

1 1.2

0.8 1

0.6 0.8

0.4 0.6

0.2 0.4 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.42 S V471 Per Y M Coordinates (2000.0) B R.A. 01 58 49.7 I Dec +52 53 48.46 Mag 13.05 O T I C V471 Per 2019-01-24 20:08:42 R = 930 Fran Campos

S 40

30

20 relative intensity 10

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 V471 Per 2019-02-14 19:19:51 R = 1123 D. Boyd 1.2

] 1 -1 .Å

-1 0.8 .s -2 0.6

0.4 Flux [erg.cm 0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.43 S V627 Cas Y M Coordinates (2000.0) B R.A. 22 57 41.0 Dec +58 49 12.6 I Mag 12.16 O T I C S

10-13 V627 Cas 2019-01-08 19:54:22 R = 1106 D. Boyd

6 ]

-1 5 .Å -1

.s 4 -2

3

2 Flux [erg.cm 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.44 S V694 Mon = MWC 560 Y

8.5 M Coordinates (2000.0) V694 Mon B R.A. 07 25 51.28 9 Dec -07 44 08.07 9.5 I Mag 9.0 O 10 T V694 Mon is in strong optical out- 10.5 burst, at V mag = 8.95 in 2019, April. 11 I The lines profiles are atypical for this star 2455500 2455865 2456230 2456595 2456960 2457325 2457690 2458055 2458420 2458785 dring the current event. The emission lines C of Balmer series, He I and Fe II shows a clas- Fig. 1 - AAVSO (Vis) Light Curve (15 days mean) and ARAS Spectra (blue dots) sical P Cygni while the classical broad ab- S sorption is absent or very weak (see Fig. 2)

H alpha H beta Fe II 5169 |2019-03-13 15 H alpha H beta Fe II 5169 10

arbitrary unit 5

0 -1000 -500 0 500 1000 8.5 velocity (km/s) V694 Mon 9 Fig. 2 - Ha, Hb and Fe II l 5169 profiles in the spectrum obtained

by Tim Lester on 2019-03-13 (JD 2458556). The maximum veloc- 9.5 ity of Ha is ~ 800 km.s-1. The P Cygni profiles peaks respectively at -1 -85, -60 and -20 km.s . 10

10.5

11 2457000 2457365 2457730 2458095 2458460 2458825

V694 Mon | H beta V694 Mon | H beta 12 4 2016-02-23 2016-02-23 2019-03-22 3.5 2019-03-22 10 3 8 2.5

6 2

1.5 relative intensity 4 relative intensity 1 2 0.5

0 0 -3000 -2000 -1000 0 1000 2000 3000 -3000 -2000 -1000 0 1000 2000 3000 velocity (km/s) velocity (km/s)

Fig. 3 - Comparison of Hb profiles during the two last optical outburts of V694 Mon - F. Teyssier R = 11000 During the 2016 outburst, the classical broad absorption was strong with a maximum velocity ~ 2200 km.s-1

ARAS Eruptive Stars Information Letter #41 2019-01 - p.45 S V694 Mon = MWC 560 Y

8 M V694 Mon B 9 I 10

O 11

T 12 I 2445500 2449150 2452800 2456450 2460100 Fig. 3 - AAVSO (Vis) Light Curve (15 days mean) showing the two recent optical outburts (2016, 2018-2019) at the C same level as 1990 one. S

8.5 V694 Mon 9

9.5

10

10.5

11 2457000 2457365 2457730 2458095 2458460 2458825

V694Mon D.Boyd 4.5E-12 2019-02-21.871 2016-02-10.917 4E-12

3.5E-12

3E-12

2.5E-12

2E-12

1.5E-12 Flux (erg/cm2/sec/A)

1E-12

5E-13

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (Angstrom)

Fig. 4 - Flux calibrated spectra obtained by David Boyd in 2016 and 2019. The SED is almost the same.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.46 S V694 Mon = MWC 560 Y M Typical Echelle spectrum during this peculiar phase, obtnained by Tim Lester B I V694 Mon 2019-03-13 00:00:56 R = 14000 T. Lester 10 O

T 8 I C 6 S 4 relative intensity

2

0 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 Wavelength (A) V694 Mon 2019-03-13 00:00:56 R = 14000 T. Lester 5

4

3

2 relative intensity

1

0 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 Wavelength (A) V694 Mon 2019-03-13 00:00:56 R = 14000 T. Lester 5

4

3

2 relative intensity

1

0 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.47 S V694 Mon = MWC 560 Y

M Echelle spectra - Log of observations B Id. Observer Date Range Res. 8.5 I V694 Mon J. Guarro 12/01/2019 4053 7499 9000 V694 Mon V694 Mon J. Guarro 25/01/2019 3989 7756 9000 9 O V694 Mon J. Guarro 26/01/2019 4053 7499 9000 V694 Mon F. Teyssier 03/02/2019 4034 7115 11000 9.5 T V694 Mon J. Guarro 11/02/2019 4053 7499 9000 10 I V694 Mon F. Teyssier 13/02/2019 4200 7100 11000 V694 Mon J. Guarro 19/02/2019 4053 7499 9000 10.5 C V694 Mon F. Teyssier 26/02/2019 4034 7115 11000 V694 Mon J. Guarro 03/03/2019 3980 7762 9000 11 S V694 Mon J. Guarro 10/03/2019 3980 7762 9000 2458000 2458365 2458730 V694 Mon F. Teyssier 11/03/2019 4033 7115 11000 V694 Mon T. Lester 13/03/2019 4031 7950 14000 V694 Mon P. Somogyi 17/03/2019 6505 6614 15916 V694 Mon F. Teyssier 20/03/2019 4300 7100 11000 V694 Mon F. Teyssier 22/03/2019 4060 7110 11000 V694 Mon J. Guarro 23/03/2019 4053 7761 9000 V694 Mon F. Teyssier 24/03/2019 4036 7115 11000 V694 Mon J. Guarro 28/03/2019 4053 7762 9000 V694 Mon J. Guarro 30/03/2019 4053 7762 9000

V694 Mon H alpha V694 Mon H beta V694 Mon Fe II 5169 20 20 20

18 18 18 2019-04-12 2019-04-12 2019-04-12

2019-03-30 2019-03-30 2019-03-30 16 16 16 2019-03-28 2019-03-28 2019-03-28

2019-03-23 2019-03-23 2019-03-23 14 14 14 2019-03-22 2019-03-22 2019-03-22

2019-03-20 2019-03-20 2019-03-20 12 12 12 2019-03-13 2019-03-13 2019-03-13

2019-03-11 2019-03-11 2019-03-11 10 10 10 2019-03-10 2019-03-10 2019-03-10 arbitrary unit arbitrary unit arbitrary unit 2019-03-03 2019-03-03 2019-03-03 8 8 8 2019-02-26 2019-02-26 2019-02-26

2019-02-19 2019-02-19 2019-02-19 6 6 6 2019-02-13 2019-02-13 2019-02-13

2019-02-11 2019-02-11 2019-02-11 4 4 4 2019-02-03 2019-02-03 2019-02-03

2019-01-26 2019-01-26 2019-01-26 2 2 2 2019-01-12 2019-01-12 2019-01-12

0 0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 Radial velocity [km/s] Radial velocity [km/s] Radial velocity [km/s]

ARAS Eruptive Stars Information Letter #41 2019-01 - p.48 S V694 Mon = MWC 560 Y M B 8.5 V694 Mon I 9 O V694 Mon He I 5875 V694 Mon Na I D 9.5 T 20 20 10 I 18 10.5 18 C 2019-04-12 2019-04-12 11 2019-03-30 2019-03-30 2458000 2458365 2458730 S 16 16 2019-03-28 2019-03-28

2019-03-23 2019-03-23 14 14 2019-03-22 2019-03-22

2019-03-20 2019-03-20 12 12 2019-03-13 2019-03-13

2019-03-11 2019-03-11 10 10 2019-03-10 2019-03-10 arbitrary unit arbitrary unit 2019-03-03 2019-03-03 8 8 2019-02-26 2019-02-26

2019-02-19 2019-02-19 6 6 2019-02-13 2019-02-13

2019-02-11 2019-02-11 4 4 2019-02-03 2019-02-03

2019-01-26 2019-01-26 2 2 2019-01-12 2019-01-12

0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 Radial velocity [km/s] Radial velocity [km/s]

ARAS Eruptive Stars Information Letter #41 2019-01 - p.49 S V694 Mon = MWC 560 Y M V694 Mon | H beta V694 Mon | H alpha B 5

V694 Mon | H alpha

15 2019-01-12 2019-03-13 2019-04-12

10

relative intensity relative 5

0 -1000 -500 0 500 1000 2019-01-12 velocity (km/s) 15 2019-01-12 I 2019-03-13 2019-03-13 2019-04-12 O 4 2019-04-12 T 3 10

I 2 C relative intensity relative intensity 5 S 1 0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s) V694 Mon | Fe II 4924 4 V694 Mon | He I 5875 2019-01-12 2 2019-03-13 2019-01-12 2019-04-12 2019-03-13 3 2019-04-12 1.5

2 1 relative intensity

1 relative intensity 0.5

0 -1000 -500 0 500 1000 0 velocity (km/s) -1000 -500 0 500 1000 velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.50 S V694 Mon = MWC 560 Y M B I O T V694 Mon 2019-03-23 20:55:53 R = 4494 P. Somogyi I 2.5 C S 2

1.5

1 relative intensity

0.5

0 3850 3900 3950 4000 Wavelength (A)

Halpha 2019-02-21 Halpha 2019-03-17 Halpha 2019-04-06 35 40 50

30 35 40 30 25 25 30 20 20 15 20 15 10 10 10 5 5

0 0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.51 S V694 Mon = MWC 560 Y M B I O T V694 Mon 2019-02-15 19:48:37 R = 730 C. Buil I 20 C S 15

10 relative intensity 5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

V694 Mon 2019-02-15 19:48:37 R = 730 C. Buil 3

2.5

2

1.5

1 relative intensity

0.5

0 3900 4400 4900 Wavelength (A)

Spectrum obtained by C. Buil with UVEX and crop on the near UV/Blue range

ARAS Eruptive Stars Information Letter #41 2019-01 - p.52 S V694 Mon = MWC 560 Y M B I 10-11 V694 Mon 2019-02-21 20:53:58 R = 1100 D. Boyd O 1.5 ]

T -1 .Å

I -1 .s C -2 1 S

0.5 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) 10-11 V694 Mon 2019-03-25 20:05:33 R = 1130 D. Boyd 1.5 1) -

1 A 1 - 2 s -

0.5 flux (erg cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-11 V694 Mon 2019-02-04 21:23:57 R = 1101 D. Boyd 1.5 ] -1 .Å

-1 1 .s -2

0.5 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.53 S V694 Mon = MWC 560 Y M B I O T I V694 Mon C

S 14

12

2019-04-01.139

10 2019-03-16.861

2019-02-12.199

8 2019-02-07.223

2019-01-28.267 Arbitrary units

6 2019-01-27.249

2019-01-23.247

4 2019-01-20.203

2019-01-19.352

2

2019-01-19.301

0 4000 4500 5000 5500 6000 6500 7000

Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.54 ARAS Eruptive Stars Information Letter #41 2019-01 - p.55 S V1329 Cyg Y M Coordinates (2000.0) B R.A. 20 51 01.2 Dec +35 34 54.1 I Mag 13.8 (2018-10) O T I C S

10-13 V1329 Cyg 2019-01-09 18:53:53 R = 1095 D. Boyd

8 ] -1

.Å 6 -1 .s -2

4

Flux [erg.cm 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-13 V1329 Cyg 2019-01-09 18:53:53 R = 1095 D. Boyd 2 ]

-1 1.5 .Å -1 .s -2 1

0.5 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.55 S Z And Y

8.5 M Coordinates (2000.0) Z And (V) B R.A. 23 33 39.5 9 Dec 48 49 5.4 9.5 10 I Mag V 9.8 (2019-01) O 10.5 Return to quiescent state after 11 T 2018 outburst 2458100 2458190 2458280 2458370 2458460 2458550 2458640 I C

S 10-11 Z And 2019-01-09 20:26:59 R = 1057 D. Boyd 1

] 0.8 -1 .Å -1

.s 0.6 -2

0.4

Flux [erg.cm 0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 Z And 2019-02-15 20:09:29 R = 1111 D. Boyd

8 1) -

1 A 6 - 2 s - 4

flux (erg cm 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.56 S Z And Y M B Z And 2019-01-25 R = 9000 J. Guarro I 35 O 30 T 25

I 20

C 15 S relative intensity 10

5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-01-25 Hbeta 2019-01-25 35 30

30 25

25 20

20 15 15

10 10

5 5

0 0 -1000 -500 0 500 1000 -500 0 500 velocity (km/s) velocity (km/s)

HeII4686 2019-01-25 HeI5876 2019-01-25 HeI6678 2019-01-25 20 6 3.5

5 3 15 4 2.5

10 3 2

2 1.5 5 1 1

0 0 0.5 -500 0 500 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s) velocity (km/s)

[FeVII]6087 2019-01-25 [OIII]5007 2019-01-25 3 5

2.5 4

2 3

1.5

2 1

1 0.5

0 0 -500 0 500 -500 ARAS0 Eruptive Stars500 Information Letter #41 2019-01 - p.57 velocity (km/s) velocity (km/s) S ZZ CMi Y M Coordinates (2000.0) B R.A. 07 24 14.0 Dec +08 53 51.8 I Mag V 10.1 (2019-04) O T I C S

ZZ CMi 2019-02-20 22:21:08 R = 1100 Martineau Buchet 3.5

3

2.5

2

1.5

relative intensity 1

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) ZZ CMi 2019-03-22 20:36:49 R = 831 F. Campos 4

3

2 relative intensity 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) ARAS Eruptive Stars Information Letter #41 2019-01 - p.58 S ZZ CMi Y M B ZZ CMi 2019-02-06 18:05:27 R = 7688 Umberto Sollecchia I 8 O

T 6 I C 4 S relative intensity 2

0 6400 6500 6600 6700 Wavelength (A)

Halpha 2019-02-06 6

5

4

3

2

1

0 -500 0 500 velocity (km/s) S ZZ CMi Y M B I O T I ZZ CMi 2019-03-09 00:25:21 R = 14000 T. Lester C S 10

8

6

4 relative intensity

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2019-03-09 Hbeta 2019-03-09 HeI5876 2019-03-09 6 6 1.2

1.1 5 5 1 4 4 0.9 3 0.8 3 2 0.7 2 1 0.6

0 1 0.5 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -500 0 500 velocity (km/s) velocity (km/s) velocity (km/s)

[OI]6300 2019-03-09 [OIII]5007 2019-03-09 2.4 0.35

2.2 0.3 2

0.25 1.8

1.6 0.2

1.4 0.15 1.2

1 0.1 -1000 -500 0 500 1000 -500 0 500 velocity (km/s) velocity (km/s) S Campaign: Suspected Symbiotics Stars Y M This campaign is initiated by Adrian Lucy and Jeniffer Sokolovski (Columbia University). The aim is to de- tect symbiotic stars among a list of suspected tragets proposed by Adran Lucy. B AAVSO Alert Notice https://www.aavso.org/aavso-alert-notice-650 I One of the target has been clearly identified as a symbiotic star (Lucy & al., based on spectra obtained by O Terry Bohlsen) T Share results and check the status of the campaign on ARAS forum: I http://spectro-aras.com/forum/viewtopic.php?f=37&t=2124 C S

ASASSN -V J081823 2019-01-12 22:41:07 R = 872 Fran Campos 2

1.5

1 relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

GDS J0731468-195434 2019-03-29 20:12:41 R = 941 Fran Campos 2.5

2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.61 S Campaign: Suspected Symbiotics Stars Y M B I Suspected Symbiotics Stars O Summary of Observations T Observations I 2018 2019 Name RA (2000.0) Dec (2000.0) V mag* M giant Em. Lines 05 09 10 11 12 01 02 03 04 C 1 GAIA DR2 4636654969717900032 01 50 49.53 -76 49 42.6 12.9 no 1 S 2 UCAC3 157:43452 06 55 51.36 -11 44 05.3 12.3 no 1 3 GDS J0731468-195434 07 31 46.82 -19 54 34.5 13.2 1 4 ASASSN-V_J081823.00-111138.9 08 18 23.00 -11 11 38.9 12.5 no 1 5 UCAC3 80:46364 08 34 45.15 -50 26 58.2 13.7 no 1 6 GSC9507:2249 11 03 10.83 -83 57 11.3 11.2 1 7 12 01 20.93 -79 20 14.7 12.3 8 GAIA DR2 4131587500273361280 16 39 59.65 -18 44 38.1 13.9 1 9 ASASSN-V J164007.54-382216.1 16 40 07.54 -38 22 16.1 13.86-14.74 10 GAIA DR2 6019720819446985984 16 45 31.78 -36 22 31.6 12.9 11 V2096 Oph 16 56 05.46 -24 06 37.0 12.9-14.0 12 ER Oph 17 00 42.14 -26 10 12.4 11.8-<14.8 13 ASASSN-V J170231.98-275954.2 17 02 31.98 -27 59 54.4 13.98-14.94 14 GAIA DR2 4334886650491663104 17 06 08.44 -10 58 33.0 14.3 15 SS 295 17 07 38.16 -07 44 48.6 13.1 1 16 V2525 Oph 17 15 05.27 -09 23 50.1 11.9-<15.1 17 GAIA DR2 4115021291723497088 17 17 45.67 -21 31 16.9 13.7 18 GSC 09276-00130 17 18 09 -67 57 26.0 13.6 19 GAIA DR2 4168021909706732672 17 25 26.34 -07 48 27.5 14.3 20 GAIA DR2 4111779763989583232 17 26 18.27 -22 12 46.4 14.1 21 GAIA DR2 4120809606303456896 17 27 08.69 -21 39 04.5 13.1 22 GAIA DR2 5919388180059095296 17 30 58.39 -56 29 53.4 12.6 no 1 23 ASASSN-V J173832.43-492840.2 17 38 32.42 -49 28 40.1 13.96-14.55 24 FASTT 1100 17 53 45.30 -01 07 46.8 14.04-14.30 H a 1 25 GAIA DR2 4150446010182968192 17 56 04.34 -13 10 03.4 13.1 M4 1 26 GAIA DR2 4150099732733146112 17 59 43.87 -13 58 32.0 13.9 27 SY Cra 18 03 21.54 -42 37 56.8 13.0-16.5p 28 GAIA DR2 6345873798283774848 18 14 18.07 -85 59 06.5 11.7 no 1 29 GAIA DR2 4048168377818693632 18 28 31.28 -28 45 02.9 11.9 no 1 30 ASASSN-V J185421.70-274827.4 18 54 21.70 -27 48 27.8 12.89-13.63 31 EN Sgr 19 22 42.08 -13 59 56.5 11.95-14.61 H I 2 2 32 ASASSN-V J192916.53-224040.3 19 29 16.53 -22 40 40.3 12.52-13.02 M 3.5 Ha Hb 1 33 ASAS J195948-8252.7 19 49 48.4 -82 52 37.5 11.6 yes 2

ARAS Eruptive Stars Information Letter #41 2019-01 - p.62 ARAS Eruptive Stars Information Letter #41 2019-01 - p.63 S AG Dra: a mysterious l 5018 line during outbursts Y M B We have obtained 122 Echelle spectra of AG Dra since 2016. In some spectra, during outbursts, an I emission line appears at l ~ 5016.0 Å , l ~5018.5 Å once the systemic radial velocity (-147.7 km.s-1) is deduced. O T 3 I C 2

S ? 5018 Å

1 relative intensity

0 5000 5005 5010 5015 5020 5025 5030 Wavelength (A)

Fig.1 Echelle spectrum obtained near the peak of 2016 outburst, on JD 2457523.364

The Fe II lines are common in symbiotic binaries, but they are missing in AG Dra spectra due to the low metallicity of the yellow giant donor. At first glance, it is very unlikely that the line detected at l5016.0 Å is Fe II. As a matter of fact, the other lines of the multiplet 42 (ll5016, 5169) are not dectected (see fig. 2)

AG Dra 2016-05-14.853 F Teyssier

5 Fe II 4923.92 4.5 Fe II 42 5018.43 Fe II 42 5169.03 4

3.5

3

2.5

Relative intensity 2

1.5

1

0.5 -400 -300 -200 -100 100 200 300 400 Velocity (Km/sec)

Fig. 2 Fe II 42 multiplet, systemic radial velocity is deduced. Only l 5018 appears. The other emission lines are He I ll 4922 and 5016

ARAS Eruptive Stars Information Letter #41 2019-01 - p.63 S AG Dra: a mysterious l 5018 line during outbursts Y M A second line appears clearly only in blue part of the singlet He I 5016 Å. A very weak bump appears rarely in the blue edge of the other F → P transition He I 6678Å B I 1 3 O T 2 I 0.5 C 1 relative intensity S relative intensity

0 0 4460 4465 4470 4475 4480 4910 4915 4920 4925 4930 Wavelength (A) Wavelength (A) 3

2.5

3 2

1.5 2 1 relative intensity relative intensity 1 0.5

0 0 5005 5010 5015 5020 5025 5865 5870 5875 5880 Wavelength (A) Wavelength (A)

4

3 ? 3 2 2 relative intensity relative intensity 1 1

0 0 7055 7060 7065 7070 7075 6665 6670 6675 6680 6685 Wavelength (A) Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.64 ARAS Eruptive Stars Information Letter #41 2019-01 - p.65 S AG Dra: a mysterious l 5018 line during outbursts Y

M The intensity of the 5018 line is strongly correlated to the outburst activity of AG Dra. It weakens and B disappears between outburts. The shape of the intensities of singlet and triplet lines are different during outbursts, especillay during 2017 outburst (see p. 13). The behavior of l 5018 is closer to the I bahavior of singlets lines., but slighly different. O AG Dra - EW 5018 T 0.7 I 0.6 0.5 C 0.4 S 0.3 0.2 0.1 0 7200 7400 7600 7800 8000 8200 8400 8600 JD - 2450000 Note : measures under 0.15 should be read as ~ 0

AG Dra - EW He I 5016 3 2.5 2 1.5 1 0.5 0 7200 7400 7600 7800 8000 8200 8400 8600 JD - 2450000

ratio EW(5018)/ EW(He I 5016) 0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800

At the peak of the outbursts, the ratio of the equivalent widths l 5018 / He I 6678 is 0.3 to 0.35.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.65 S AG Dra: a mysterious l 5018 line during outbursts Y AG Dra - EW He I 5876 M 5 B 4 I 3 O 2 T 1 I 0 7200 7400 7600 7800 8000 8200 8400 8600 C JD - 2450000 AG Dra - EW He I 7065 S 4

3

2

1

0 7200 7400 7600 7800 8000 8200 8400 8600 JD - 2450000 AG Dra - EW He I 6678 5

4

3

2

1

0 7200 7400 7600 7800 8000 8200 8400 8600 JD - 2450000

AG Dra - EW He I 4922 3 2.5 2 1.5 1 0.5 0 7200 7400 7600 7800 8000 8200 8400 8600 JD - 2450000

Equivalent widths of the main He I lines

ARAS Eruptive Stars Information Letter #41 2019-01 - p.66 ARAS Eruptive Stars Information Letter #41 2019-01 - p.67 S AG Dra: a mysterious l 5018 line during outbursts Y At first sight, the shapes of He I 5876 and l 5018 vary toghether. Notably during 2018 outburst the lines M appear to have at least a double component. B AG Dra 2016-05-14 20:28:45 R = 11000 fteyssier AG Dra 2018-04-20 20:01:12 R = 11000 FMTeyssier I 3 1

O 2.5 0.8 T 2 0.6 I 1.5 0.4 C 1 relative intensity relative intensity S 0.5 0.2

0 0 5005 5010 5015 5020 5025 5005 5010 5015 5020 5025 Wavelength (A) Wavelength (A) AG Dra 2018-05-15 20:53:11 R = 11000 FMTeyssier AG Dra 2018-04-21 04:10:44 R = 12000 tlester 1.5 2

1.5 1

1

0.5

relative intensity relative intensity 0.5

0 0 5005 5010 5015 5020 5025 5005 5010 5015 5020 5025 Wavelength (A) Wavelength (A)

AG DRA 2017-05-19 20:03:27 R = 9000 J. Guarro AG Dra 2018-04-24 20:44:26 R = 11000 Olivier Garde 3 1.5

2.5

2 1

1.5

1 0.5 relative intensity relative intensity 0.5

0 0 5005 5010 5015 5020 5025 5005 5010 5015 5020 5025 Wavelength (A) Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.67 S AG Dra: a mysterious l 5018 line during outbursts Y M B I AG DRA He I 5016

2015-04-11 2015-04-12 2015-04-13 2015-04-13 2016-04-16 2016-04-18 O 2 2 2 2 2 2 T 1 1 1 1 1 1 0 0 0 0 0 0

I -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2016-04-23 2016-04-27 2016-04-28 2016-04-29 2016-05-01 2016-05-03 C 2 2 2 2 2 2 1 1 1 1 1 1 S 0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2016-05-14 2017-03-29 2017-04-02 2017-04-02 2017-04-05 2017-04-06 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-04-07 2017-04-11 2017-04-12 2017-04-18 2017-04-19 2017-04-23 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-04-23 2017-04-26 2017-04-28 2017-05-09 2017-05-11 2017-05-13 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-05-15 2017-05-15 2017-05-16 2017-05-16 2017-05-16 2017-05-17 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-05-19 2017-05-20 2017-05-20 2017-05-22 2017-05-23 2017-05-24 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-05-24 2017-05-24 2017-05-25 2017-05-25 2017-05-26 2017-05-26 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-05-27 2017-05-30 2017-05-31 2017-05-31 2017-06-01 2017-06-03 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-06-05 2017-06-09 2017-06-11 2017-06-12 2017-06-16 2017-06-21 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-07-03 2017-07-04 2017-07-05 2017-07-14 2017-07-18 2017-07-26 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400

ARAS Eruptive Stars Information Letter #41 2019-01 - p.68 S AG Dra: a mysterious l 5018 line during outbursts Y M B AG Dra He I 5016 AG DRA He I 5016 I 2017-07-28 2017-08-01 2017-08-04 2017-08-06 2017-08-10 2017-08-14 2 2 2 2 2 2 2015-04-11 2015-04-12 2015-04-13 2015-04-13 2016-04-16 2016-04-18 2 2 2 2 2 2 O 1 1 1 1 1 1 1 1 1 1 1 1 T 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-08-17 2017-09-01 2017-10-17 2018-02-26 2018-04-20 2018-04-20 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 I 2 2 2 2 2 2 2016-04-23 2016-04-27 2016-04-28 2016-04-29 2016-05-01 2016-05-03 2 2 2 2 2 2 C 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 S -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-04-21 2018-04-21 2018-04-23 2018-04-23 2018-04-24 2018-04-25 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2016-05-14 2017-03-29 2017-04-02 2017-04-02 2017-04-05 2017-04-06 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-04-25 2018-04-26 2018-04-26 2018-04-27 2018-04-28 2018-05-01 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-04-07 2017-04-11 2017-04-12 2017-04-18 2017-04-19 2017-04-23 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-05-01 2018-05-02 2018-05-02 2018-05-02 2018-05-03 2018-05-04 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-04-23 2017-04-26 2017-04-28 2017-05-09 2017-05-11 2017-05-13 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-05-06 2018-05-08 2018-05-13 2018-05-15 2018-05-17 2018-05-18 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-05-15 2017-05-15 2017-05-16 2017-05-16 2017-05-16 2017-05-17 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-05-19 2018-05-19 2018-05-20 2018-05-23 2018-05-24 2018-05-24 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-05-19 2017-05-20 2017-05-20 2017-05-22 2017-05-23 2017-05-24 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-06-02 2018-06-11 2018-06-24 2018-06-29 2018-07-03 2018-07-12 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-05-24 2017-05-24 2017-05-25 2017-05-25 2017-05-26 2017-05-26 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-07-17 2018-08-04 2018-08-21 2018-08-23 2018-09-28 2018-10-12 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2 2 2 2 2017-05-27 2017-05-30 2017-05-31 2017-05-31 2017-06-01 2017-06-03 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2018-10-19 2019-02-27 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2 2 2017-06-05 2017-06-09 2017-06-11 2017-06-12 2017-06-16 2017-06-21 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 2017-07-03 2017-07-04 2017-07-05 2017-07-14 2017-07-18 2017-07-26 2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400

ARAS Eruptive Stars Information Letter #41 2019-01 - p.69 S AG Dra: a mysterious l 5018 line during outbursts Y M B I O T He I 6678.15 - AG Dra A very weak bump is 4 I 2017-05-20.933 Olivier Garde sometimes detected in 3.5 2018-04-23.843 FMTeyssier 2018-05-15.870 FMTeyssier C the red part of the bright 3 S singlet He I 6678 Å at ~ +220 km.s-1 2.5 2

1.5 Relative intensity 1

0.5

0 -800 -600 -400 -200 200 400 600 800 Velocity (Km/sec) Radial velocity of the sytem is deduced

Provisional findings

1. An emission line appear sometimes at l 5018 Å in the spectra of AG Dra, once deduced the system- ic radial velocity. 2. At firts glance, this line is unlikely Fe II 5018 because other lines the Fe II (42) multiplet are absent 3. The line appears during outbursts and then weakens/dessappears 4. The trend of the intensity (measured as EW) is similar to He I 5016 Å 5. The profile of the line seems similar to He I 5016 Å 6. We do not dectect a counterpart in the blue edge of He I 5016 Å 7. The some phenomenon isn't detected in other He I lines unless, perhaps the bright singlet line 6678, but at much lower intensity and at a different radial velocity. 8. The SNR of the rare Echelle spectra under 4000 Å is too low to investigate the behavior of the 4p2s transition l 3964 Å

From 4. & 5., the l5018 line could be to be a "ghost" of He I l 5016 line displaced by ~ 170 km.s-1 with respect to He I 5018, whose intensity peaks at ~ 0.35 times He I l 5016 at the peak of outbursts, dis- placed by ~ + 170 km.s-1. But the lack of a such a conterpart in other He I lines make this hypothesis unlikely.

Occasionnaly in other symbiotics, Fe II 5018 can appear while the other lines of the multiplet are undetectable, see p. 71-73. At the date, the identification of the line could be Fe II (notwithstanding with the abnomalous ratio bteween the thre lines of the multiplet. The upcoming outburst of AG Dra while be the occasion to reinforce the hypothesis. Thus, appeareance of 5018 could become a signa- ture of outburst in AG Dra system (R. Galis, private communication)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.70 S AG Dra: a mysterious l 5018 line during outbursts Y M B Fe II (42) multiplet in various symbiotic satrs I O

T AGPeg |2015-12-07 AGPeg |2016-10-29 10 I FeII 4924 4 FeII 4924 8 FeII 5018 FeII 5018 FeII 5169 FeII 5169 C 3 S 6 2 4 arbitrary unit arbitrary unit

2 1

0 0 -300 -150 0 150 300 -300 -150 0 150 300 velocity (km/s) velocity (km/s)

AXPer |2016-09-09 AXPer |2017-10-27 10 3 FeII 4924 FeII 4924 FeII 5018 FeII 5018 8 FeII 5169 FeII 5169 2 6

4 arbitrary unit 1 arbitrary unit 2

0 0 -300 -150 0 150 300 -300 -150 0 150 300 velocity (km/s) velocity (km/s)

BFCyg |2015-09-01 BFCyg |2016-09-21

3 FeII 4924 3 FeII 4924 FeII 5018 FeII 5018 FeII 5169 FeII 5169 2 2

arbitrary unit 1 arbitrary unit 1

0 0 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.71 S AG Dra: a mysterious l 5018 line during outbursts Y M B I O

T CHCyg |2015-04-21 CHCyg |2015-10-02 I 3 FeII 4924 FeII 4924 FeII 5018 FeII 5018 C FeII 5169 10 FeII 5169 2 S

arbitrary unit 1 arbitrary unit 5

0 0 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s)

CICyg |2016-10-29 CICyg |2017-04-23

5 FeII 4924 FeII 4924 FeII 5018 3 FeII 5018 4 FeII 5169 FeII 5169

3 2

2 arbitrary unit arbitrary unit 1 1

0 0 -300 -150 0 150 300 -300 -150 0 150 300 velocity (km/s) velocity (km/s)

RAqr |2017-10-09 Vend47 |2018-10-18 15 10 FeII 4924 FeII 4924 FeII 5018 FeII 5018 8 FeII 5169 FeII 5169 10 6

4

arbitrary unit 5 arbitrary unit 2

0 0 -300 -150 0 150 300 -300 -150 0 150 300 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.72 S AG Dra: a mysterious l 5018 line during outbursts Y M B V443Her |2016-09-08 I 8 FeII 4924 O FeII 5018 6 T FeII 5169 I 4 arbitrary unit C 2

S 0 -300 -150 0 150 300 velocity (km/s)

V694Mon |2019-02-11 V694Mon |2017-02-16 4 FeII 4924 4 FeII 4924 FeII 5018 FeII 5018 3 FeII 5169 3 FeII 5169

2 2 arbitrary unit arbitrary unit 1 1

0 0 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s)

ZAnd |2015-11-25

3 FeII 4924 FeII 5018 FeII 5169 2

arbitrary unit 1

0 -300 -150 0 150 300 velocity (km/s)

ZAnd |2017-01-26 ZAnd |2018-02-25 2.5 3 FeII 4924 FeII 4924 FeII 5018 FeII 5018 2 FeII 5169 FeII 5169 2 1.5

1 arbitrary unit 1 arbitrary unit 0.5

0 0 -300 -150 0 150 300 -300 -150 0 150 300 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.73 S AG Dra: a mysterious l 5018 line during outbursts Y M Log of observations B AG Dra Echelle spectra (R = 9000 to 13000) in ARAS database (1/2)

I Date Time (UT) J.D. mid Observer Resolution l_min l_max File 12/04/2015 19:40 2457125.345 FMT 11000 4211 7163 asdb_agdra_20150412_820.fit O 13/04/2015 20:02 2457126.377 BUI 11000 4279 7360 asdb_agdra_20150413_835.fit 13/04/2015 23:20 2457126.525 BUI 11000 4279 7360 asdb_agdra_20150413_973.fit T 16/04/2016 21:45 2457495.423 FMT 11000 4144 7161 asdb_agdra_20160416_907.fit 18/04/2016 19:57 2457497.353 FMT 11000 4144 7161 asdb_agdra_20160418_831.fit I 23/04/2016 21:21 2457502.402 FMT 11000 4144 7161 asdb_agdra_20160423_890.fit 27/04/2016 20:26 2457506.373 FMT 11000 4144 7161 asdb_agdra_20160427_852.fit C 28/04/2016 20:36 2457507.375 FMT 11000 4144 7161 asdb_agdra_20160428_859.fit 29/04/2016 20:32 2457508.398 OGA 11000 4178 7314 asdb_agdra_20160429_856.fit S 01/05/2016 20:18 2457510.367 FMT 11000 4144 7161 asdb_agdra_20160501_846.fit 03/05/2016 20:28 2457512.371 FMT 11000 4144 7161 asdb_agdra_20160503_853.fit 14/05/2016 20:28 2457523.364 FMT 11000 4144 7161 asdb_agdra_20160514_853.fit 29/03/2017 20:44 2457842.434 OGA 11000 4185 7313 asdb_agdra_20170329_864.fit 02/04/2017 1:03 2457845.6 JGF 11000 3979 7497 asdb_agdra_20170402_044.fit 02/04/2017 21:20 2457846.411 FMT 11000 4208 7396 asdb_agdra_20170402_890.fit 05/04/2017 19:58 2457849.402 OGA 11000 4185 7314 asdb_agdra_20170405_833.fit 06/04/2017 19:44 2457850.352 FMT 11000 4210 7150 asdb_agdra_20170406_823.fit 07/04/2017 22:29 2457851.466 JGF 11000 3979 7497 asdb_agdra_20170407_937.fit 11/04/2017 19:43 2457855.35 FMT 11000 4300 7150 asdb_agdra_20170411_822.fit 12/04/2017 21:14 2457856.476 OGA 11000 4185 7313 asdb_agdra_20170412_885.fit 18/04/2017 21:04 2457862.406 FMT 11000 4207 7396 asdb_agdra_20170418_878.fit 19/04/2017 19:53 2457863.357 FMT 11000 4210 7150 asdb_agdra_20170419_829.fit 23/04/2017 20:07 2457867.366 FMT 11000 4208 7394 asdb_agdra_20170423_839.fit 23/04/2017 21:50 2457867.438 JGF 9000 4052 7497 asdb_agdra_20170423_910.fit 23/04/2017 21:50 2457867.438 JGF 11000 4052 7497 asdb_agdra_20170423_910.fit 26/04/2017 20:19 2457870.375 FMT 11000 4208 7394 asdb_agdra_20170426_847.fit 28/04/2017 21:18 2457872.434 JGF 9000 4052 7497 asdb_agdra_20170428_888.fit 09/05/2017 20:14 2457883.372 FMT 11000 4208 7159 asdb_agdra_20170509_844.fit 11/05/2017 19:58 2457885.369 JGF 9000 4052 7497 asdb_agdra_20170511_832.fit 13/05/2017 20:13 2457887.371 FMT 11000 4208 7159 asdb_agdra_20170513_843.fit 13/05/2017 20:13 2457887.371 FMT 11000 4208 7159 asdb_agdra_20170513_843.fit 15/05/2017 19:35 2457889.365 OGA 11000 4185 7314 asdb_agdra_20170515_816.fit 15/05/2017 19:35 2457889.365 OGA 11000 4185 7314 asdb_agdra_20170515_816.fit 16/05/2017 19:32 2457890.363 OGA 11000 4185 7314 asdb_agdra_20170516_814.fit 16/05/2017 20:00 2457890.397 JGF 9000 4052 7497 asdb_agdra_20170516_834.fit 17/05/2017 20:33 2457891.413 JGF 9000 4052 7497 asdb_agdra_20170517_857.fit 19/05/2017 20:03 2457893.373 JGF 9000 3979 7497 asdb_agdra_20170519_836.fit 20/05/2017 20:25 2457894.403 JGF 11000 4052 7497 asdb_agdra_20170520_851.fit 20/05/2017 22:23 2457894.53 OGA 11000 4185 7313 asdb_agdra_20170520_933.fit 22/05/2017 20:08 2457896.386 JGF 9000 3979 7497 asdb_agdra_20170522_839.fit 23/05/2017 21:05 2457897.425 JGF 9000 3979 7497 asdb_agdra_20170523_879.fit 24/05/2017 20:05 2457898.375 JGF 9000 4046 7748 asdb_agdra_20170524_837.fit 24/05/2017 20:06 2457898.375 JGF 9000 4052 7497 asdb_agdra_20170524_838.fit 24/05/2017 20:42 2457898.391 FMT 11000 4210 7150 asdb_agdra_20170524_863.fit 25/05/2017 20:42 2457899.388 FMT 11000 4210 7150 asdb_agdra_20170525_863.fit 25/05/2017 20:18 2457899.393 JGF 9000 3979 7497 asdb_agdra_20170525_846.fit 26/05/2017 20:21 2457900.395 JGF 9000 3979 7497 asdb_agdra_20170526_848.fit 26/05/2017 20:54 2457900.401 FMT 11000 4210 7150 asdb_agdra_20170526_871.fit 26/05/2017 20:54 2457900.401 FMT 11000 4210 7150 asdb_agdra_20170526_871.fit 27/05/2017 22:58 2457901.492 JFG 11000 4052 7760 asdb_agdra_20170527_957.fit 30/05/2017 21:19 2457904.41 FMT 11000 4210 7150 asdb_agdra_20170530_889.fit 31/05/2017 20:56 2457905.394 FMT 11000 4208 7159 asdb_agdra_20170531_873.fit 31/05/2017 20:56 2457905.394 FMT 11000 4208 7159 asdb_agdra_20170531_873.fit 31/05/2017 20:16 2457905.397 JGF 11000 3979 7497 asdb_agdra_20170531_845.fit 01/06/2017 21:02 2457906.398 FMT 11000 4142 7159 asdb_agdra_20170601_877.fit 03/06/2017 21:07 2457908.417 JGF 11000 4052 7760 asdb_agdra_20170603_880.fit 05/06/2017 20:25 2457910.404 JGF 11000 4052 7497 asdb_agdra_20170605_851.fit 09/06/2017 20:28 2457914.417 JGF 11000 4058 7667 asdb_agdra_20170609_853.fit 11/06/2017 20:47 2457916.422 JGF 9000 3979 7760 asdb_agdra_20170611_867.fit 12/06/2017 21:37 2457917.422 FMT 11000 4208 7159 asdb_agdra_20170612_901.fit 16/06/2017 21:34 2457921.423 FMT 11000 4208 7159 asdb_agdra_20170616_899.fit 21/06/2017 20:26 2457926.401 JGF 9000 4052 7497 asdb_agdra_20170621_852.fit 03/07/2017 20:30 2457938.41 JGF 9000 4052 7497 asdb_agdra_20170703_854.fit 04/07/2017 3:00 2457938.66 LES 13000 4030 7949 asdb_agdra_20170704_125.fit ARAS Eruptive Stars Information Letter #41 2019-01 - p.74 S AG Dra: a mysterious l 5018 line during outbursts Y M Log of observations B AG Dra Echelle spectra (R = 9000 to 13000) in ARAS database (2/2)

I Date Time (UT) J.D. mid Observer Resolution l_min l_max File 05/07/2017 20:41 2457940.404 JGF 11000 4052 7497 asdb_agdra_20170705_862.fit O 14/07/2017 20:53 2457949.419 JGF 9000 4052 7760 asdb_agdra_20170714_871.fit 18/07/2017 4:05 2457952.713 LES 13000 4030 7949 asdb_agdra_20170718_171.fit T 26/07/2017 20:29 2457961.41 JGF 9000 4052 7760 asdb_agdra_20170726_854.fit 28/07/2017 20:38 2457963.416 JGF 9000 4052 7760 asdb_agdra_20170728_860.fit I 01/08/2017 20:43 2457967.421 JGF 9000 4052 7497 asdb_agdra_20170801_864.fit 04/08/2017 20:47 2457970.394 JGF 9000 4052 7497 asdb_agdra_20170804_866.fit C 06/08/2017 20:16 2457972.366 FMT 11000 4206 7159 asdb_agdra_20170806_845.fit 10/08/2017 21:06 2457976.428 JGF 9000 4052 7760 asdb_agdra_20170810_879.fit S 14/08/2017 20:22 2457980.405 JGF 9000 4052 7760 asdb_agdra_20170814_849.fit 17/08/2017 1:11 2457982.606 LES 13000 4030 7949 asdb_agdra_20170817_049.fit 17/10/2017 18:28 2458044.317 FMT 11000 4141 7394 asdb_agdra_20171017_770.fit 26/02/2018 7:50 2458175.883 LES 13000 4030 7948 asdb_agdra_20180226_327.fit 18/04/2018 1:45 2458226.584 BUI 11000 3869 5286 asdb_agdra_20180418_073.fit 20/04/2018 20:01 2458229.363 FMT 11000 4209 7394 asdb_agdra_20180420_834.fit 20/04/2018 20:49 2458229.452 OGA 11000 4185 7314 asdb_agdra_20180420_868.fit 21/04/2018 4:10 2458229.738 LES 12000 4030 7947 asdb_agdra_20180421_174.fit 21/04/2018 20:22 2458230.362 BUI 11000 4055 7358 asdb_agdra_20180421_849.fit 23/04/2018 20:13 2458232.372 FMT 11000 4210 7350 asdb_agdra_20180423_843.fit 23/04/2018 22:21 2458232.477 BUI 11000 3869 7358 asdb_agdra_20180423_931.fit 24/04/2018 20:44 2458233.448 OGA 11000 4185 7315 asdb_agdra_20180424_864.fit 25/04/2018 2:44 2458233.642 JGF 9000 3979 7498 asdb_agdra_20180425_114.fit 25/04/2018 20:05 2458234.366 FMT 11000 4300 7350 asdb_agdra_20180425_837.fit 26/04/2018 20:13 2458235.391 BUI 11000 3867 7359 asdb_agdra_20180426_843.fit 26/04/2018 20:50 2458235.452 OGA 11000 4185 7313 asdb_agdra_20180426_868.fit 27/04/2018 4:07 2458235.728 LES 13000 4030 7947 asdb_agdra_20180427_172.fit 28/04/2018 20:12 2458237.356 FMT 11000 4210 7350 asdb_agdra_20180428_842.fit 01/05/2018 3:19 2458239.702 LES 13000 4030 7947 asdb_agdra_20180501_138.fit 01/05/2018 20:00 2458240.422 BUI 11000 3860 7359 asdb_agdra_20180501_834.fit 02/05/2018 2:50 2458240.682 LES 13000 4030 7947 asdb_agdra_20180502_118.fit 02/05/2018 20:21 2458241.377 FMT 11000 4210 7350 asdb_agdra_20180502_848.fit 02/05/2018 21:20 2458241.424 JGF 9000 3979 7498 asdb_agdra_20180502_889.fit 03/05/2018 20:24 2458242.379 FMT 11000 4210 7350 asdb_agdra_20180503_850.fit 04/05/2018 20:11 2458243.37 FMT 11000 4210 7350 asdb_agdra_20180504_841.fit 06/05/2018 2:12 2458244.656 LES 13000 4030 7947 asdb_agdra_20180506_092.fit 08/05/2018 1:38 2458246.632 LES 12000 4030 7947 asdb_agdra_20180508_069.fit 13/05/2018 3:37 2458251.7 LES 13000 4030 7947 asdb_agdra_20180513_151.fit 15/05/2018 20:53 2458254.403 FMT 11000 4300 7350 asdb_agdra_20180515_870.fit 17/05/2018 1:19 2458255.612 LES 13000 4030 7947 asdb_agdra_20180517_055.fit 18/05/2018 20:32 2458257.385 FMT 11000 4300 7350 asdb_agdra_20180518_856.fit 19/05/2018 20:36 2458258.387 FMT 11000 4300 7350 asdb_agdra_20180519_858.fit 19/05/2018 20:28 2458258.396 BUI 11000 3864 7360 asdb_agdra_20180519_853.fit 20/05/2018 20:34 2458259.386 FMT 11000 4300 7350 asdb_agdra_20180520_857.fit 23/05/2018 2:23 2458261.656 LES 13000 4030 7947 asdb_agdra_20180523_100.fit 24/05/2018 20:48 2458263.396 FMT 11000 4300 7350 asdb_agdra_20180524_867.fit 24/05/2018 21:33 2458263.451 OGA 11000 4090 7587 asdb_agdra_20180524_898.fit 02/06/2018 20:59 2458272.404 FMT 11000 4300 7350 asdb_agdra_20180602_875.fit 11/06/2018 21:11 2458281.411 JGF 11000 3979 7762 asdb_agdra_20180611_883.fit 16/06/2018 20:53 2458286.412 JGF 11000 3979 7762 asdb_agdra_20180616_870.fit 24/06/2018 20:36 2458294.408 JGF 9000 3979 7762 asdb_agdra_20180624_859.fit 29/06/2018 20:44 2458299.406 JGF 9000 3979 7762 asdb_agdra_20180629_864.fit 03/07/2018 20:37 2458303.401 JGF 9000 3979 7761 asdb_agdra_20180703_859.fit 12/07/2018 20:29 2458312.396 JGF 9000 3979 7762 asdb_agdra_20180712_854.fit 17/07/2018 22:14 2458317.455 SCH 9000 3920 7595 asdb_agdra_20180717_927.fit 04/08/2018 22:20 2458335.453 FMT 11000 4290 7350 asdb_agdra_20180804_931.fit 21/08/2018 20:21 2458352.372 FMT 11000 4300 7150 asdb_agdra_20180821_848.fit 28/09/2018 18:28 2458390.301 FMT 11000 4286 7389 asdb_agdra_20180928_770.fit 12/10/2018 18:14 2458404.304 JGF 9000 4052 7762 asdb_agdra_20181012_760.fit 19/10/2018 18:42 2458411.314 SCH 11000 4036 7592 asdb_agdra_20181019_779.fit 27/02/2019 2:53 2458541.649 FMT 11000 4200 7110 asdb_agdra_20190227_121.fit

ARAS Eruptive Stars Information Letter #41 2019-01 - p.75 C TCP J05390410+4748030 Dwarf nova in outburst A T R.A. 05h39m04.10s, Decl. C +47°48'03.0" (J2000.0) 2019 Mar. 14.4227 UT, 13.3 mag (CCD, Y unfiltered) S Discoverer: Yuji Nakamura (Kameya- ma, Mie, ) M I Paolo Berardi obtained a spectrum (Lhires III, 150 l/mm, R = 6000) on 2019-03-15.759 typical C of a dwarf nova in outburst: Ha and Hb in emission (with perhaps a weak broad absorption), as well as He I 5856, 6678, He II 4686 and the complex NIII/CIII. The FWHM of the Ha and He S I 6678 emissions are respectively ~ 900 km.s-1 and 800 km.s-1.

TCP J05390410+4748030 2019-03-15 18:13:01 R = 628 Paolo Berardi 4

3

2 relative intensity 1

0 4500 5000 5500 6000 6500 7000 Wavelength (A)

TCP J05390410+4748030 2019-03-15 19:54:09 R = 549 L Franco 7

6

5

4

3

relative intensity 2

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.76 C TCP J05390410+4748030 Dwarf nova in outburst A T C Y S Spectral evolution during the decline of the outburst (disk coolling) M I C TCP J05390410+4748030 Paolo Berardi 1.4E-13

S 2019-03-15.759 2019-03-17.772 2019-03-22.775

1.2E-13 NIII/CIII 4640-60 He II 4686

1E-13 H b

8E-14 H a He I 5876

Relative intensity 6E-14 He I 6678

4E-14

2E-14

0 4500 5000 5500 6000 6500 7000 Wavelength (Angstrom) New Online Database of Symbiotic Variables

Jaroslav Merc, Rudolf Gális, Marek Wolf

Symbiotic variables belong to an interesting class of cal Group (e.g. Gonçalves et al., 2008, 2012, 2015; interacting binary stars. These objects are unique Kniazev et al., 2009; Mikołajewska et al., 2014, astrophysical laboratories in studying accretion pro- 2017; Roth et al. 2018). Subsequently, the number cesses, winds, jets, and moreover, may be one of the of known systems is growing rapidly. Although new progenitors of type Ia supernovae. These objects are approaches and techniques are explored in interesting not only from theoretical but also an ob- to identify new systems (e.g. machine-learning al- servational point of view. They display a wide vari- gorithms; Akras et al., 2019a), the majority of the ety of photometric and spectroscopic activity. Not surveys is still based on spectroscopic methods. only they vary over long timescales, but they found Spectroscopic observations, e.g. the presence of the to be conspicuously variable from night to night and Raman-scattered OVI lines in the spectra (Akras et some even from hour to hour. Their outbursts are al., 2019b), play a dominant role in the confirmation accompanied by remarkable spectral changes and of the symbiotic nature of candidate binaries as well. increases of brightness, vanishing or emerging of the emission lines. Cataloging of the systems and the New Online Database of Symbiotic Variables Search for symbiotic binaries The growing number of objects is allowing more sys- In the previous century, most of the symbiotic bina- tematic (and statistical) research. The latest catalog ries were found accidentally, but in the last decades, of symbiotic binaries (Belczyński et al., 2000) was systematic search for such objects have begun. This almost two decades old when Akras et al. (2019b) effort has brought the first results. The surveys have published a new census of galactic and extragalactic led to discoveries of many new objects and dozens symbiotics with valuable discussion on their IR SEDs of candidates in the Milky Way (e.g. Miszalski et al., or the presence of the OVI lines. 2013; Miszalski & Mikołajewska, 2014) and the Lo-

Galaxy Confirmed Suspected Milky Way 276 204 Draco Dwarf 1 0 IC 10 1 0 LMC 10 29 M31 31 13 M33 13 0 M81 0 1 M87 0 9 NGC 55 0 3 NGC 185 1 0 NGC 205 1 2 NGC 300 0 8 NGC 2403 0 1 NGC 6822 1 11 SMC 12 10 Total 347 291 Table 1 - Numbers of confirmed and suspected symbiotic stars in the database. Please refer to an online version of the database for up-to-date numbers.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.78 ARAS Eruptive Stars Information Letter #41 2019-01 - p.79 New Online Database of Symbiotic Variables

Jaroslav Merc, Rudolf Gális, Marek Wolf

We have decided to prepare a new, online database ties (orbital period, orbital ephemeris, presence of of the galactic and extragalactic symbiotic systems eclipses, etc.) and parameters of the binary compo- (Merc et al., 2019). In addition to the catalog of data nents (their spectral types, effective temperatures, for all known symbiotic systems with consistent ref- masses, radii, , presence of pulsations, erences, we created a web-portal for easy access to etc.). this information. Making the whole database on- The data of symbiotic variables are presented in line allows us the addition of new objects as soon the form of tables, which can be explored directly as they are discovered and adding or updating data through the web-portal or can be downloaded and when available. In this way, up-to-date lists of sym- used offline in different formats (csv, xlsx, txt and biotic variables and information about objects can pdf). Moreover, for all symbiotic binaries included in be available to the community at any time. the database, we have prepared their object pages The database contains data about the position of the covering all available information, references, notes, objects, their brightness in different spectral regions and useful links. For example, the object pages of and bands and other observational properties (e.g. symbiotic stars observed by ARAS Group will contain presence of outbursts, flickering, detectable X-ray the link to the ARAS database of observations. or radio emission, symbiotic type), orbital proper-

Figure 1 - Example of the object page of symbiotic star LIN 9.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.79 New Online Database of Symbiotic Variables

Jaroslav Merc, Rudolf Gális, Marek Wolf

The database is divided into two main parts ac- ever, the list of galactic symbiotic was already pub- cording to the location of symbiotic variables. The lished on the website recently. The latest version first part consists of 71 confirmed and 87 suspect- of the web-portal and the New Online Database of ed extragalactic symbiotic systems which are lo- Symbiotic Variables, including the up-to-date lists of cated in 14 (LMC, SMC, Draco Dwarf, IC 10, all known symbiotic variables and candidates as well M31, M33, M81, M87, NGC 55, NGC 185, NGC 205, as the documentation, is available at the address: NGC 300, NGC 2403, NGC 6822). The second part of http://astronomy.science.upjs.sk/symbiotics/ the database, consisting of more than 480 galactic objects will be fully released later this . How- The detailed User’s Guide is available there too.

Figure 2 - Distribution of the galactic symbiotic stars overlaid on the 2MASS infrared image of the sky. Confirmed and suspected symbiotic stars are denoted by blue dots and red squares, respectively.

Several systems are poorly studied. Moreover, for tween amateur and professional astronomers. The some systems, which were suspected to be symbi- list of the symbiotics which need the spectroscopic otic based on their photometric behavior, spectro- observation will be published on the website of the scopic information is completely missing. Therefore, database. ARAS observers might obtain the first we think there is a great space for cooperation be- spectra for some of the interesting objects.

References

• Akras, S., Leal-Ferreira, M. L., Guzman-Ramirez, L., et al. 2019a, MNRAS, 483, 5077 • Akras, S., Guzman-Ramirez, L., Leal-Ferreira, M. L., et al., 2019, ApJS, 240, 21 • Belczyński, K., Mikołajewska, J., Munari, U., Ivison, R. J., Friedjung, M. 2000, Astronomy and Astrophysics Supplement Series, 146, 407 • Gonçalves, D. R., Magrini, L., Munari, U., et al. 2008, MNRAS, 391, L84 • Gonçalves, D. R., Magrini, L., Martins, L. P., et al. 2012, MNRAS, 419, 854 • Gonçalves, D. R., Magrini, L., de la Rosa, I. G., et al. 2015, MNRAS, 447, 993 • Kniazev, A. Y., Väisänen, P., Whitelock, P. A., et al. 2009, MNRAS, 395, 1121 • Merc, J., Gális, R., Wolf, M. 2019, Research Notes of the American Astronomical Society, 3, 28 • Mikołajewska, J., Caldwell, N., & Shara, M. M. 2014, MNRAS, 444, 586 • Mikołajewska, J., Shara, M. M., Caldwell, N., et al. 2017, MNRAS, 465, 1699 • Miszalski, B., Mikołajewska, J., & Udalski, A. 2013, MNRAS, 432, 3186. • Miszalski, B., & Mikołajewska, J. 2014, MNRAS, 440, 1410 • Roth, M. M., Sandin, C., Kamann, S., et al. 2018, A&A, 618, A3

ARAS Eruptive Stars Information Letter #41 2019-01 - p.80 Spin, angular momentum, and how they govern your spectra Steve Shore

The 150th anniversary of the publication of Men- Realizing that the Pickering line series in O star spec- deleev's periodic table of the elements and the 90th tra provided the clue to what sets the scaling for the anniversary of Russell, Shenstone, and Turner's stan- energies. The series, which is He II, has lines nearly dardization of spectroscopic notation provide a his- coinciding with every H I line but with what appear torical background for our discussion of state classi- as interlaced series with the same sequences but fication. When the "periodicity'' of electrochemical different separations. The difference in the nuclear and structural properties of the elements was first , two for He, i enough even in the indepen- systematized, it wasn't at all clear why atoms should dent particle picture to provide the scaling. This know about some specific order. It was Moseley's was taken as a confirmation of the original Bohr- X-ray spectyroscopy (what we would now refer to as Sommerfeld model for atoms in which the electrons the resonance lines) that revealed the link between are treated as massive, charged bodies in definite the nuclear charge -- the atomic number -- and the orbits. Although we still ruin young minds with this systematic displacement of the resonance lines in a fiction, forget the Bohr atom: the microworld is not row of that table. a shrunken solar system. This pseudo-mechanical fantasy required unacceptable, arbitrary tweaks to Recollections of a chemical childhood insure atomic stability and spectroscopic fidelity. Bohr required two properties, however, that actu- Atomic structure is modeled as a set of shells but ally still hold: (a) any motions (we'll say structure) these are really descriptions of the base state. be closed on itself, therefore coherent on some pe- Atomic neutrality guarantees that the number of riodic (angular) coordinate around the nucleus and, electrons is equal to that of the protons (I know this (b) a set of integer numbers describe the angular is childish but it's better too start from the real ba- and radial distributions of individual electrons. But sics) so one would expect that with infinite super- in the same way a bicycle wheel rotates when seen imposability you could combine the electrons in any in one plane and oscillates between fixed extremes mean charge distribution that would minimize the when viewed orthogonally, we're going to make the total energy of the system. Rutherford's scattering same pass with atomic structure: replace orbits by experiment already demonstrated that this doesn't oscillations and then ask where the electron would work since the charge distribution is not mixed and be most likely seen if sampled at random1. there is no way to place electrons in the nucleus. Instead, and this was, at first, an inference from the Levels as states chemical and spectroscopic properties, the elec- trons sort into shells with definite gaps and occupa- Let's first treat atoms. All energy levels in bound tions. The first (first row of the PT), has 2 members, systems, be it an atom or molecule, are discrete the next has 8, and so on. The right hand column (we'll return to one exceptional, but related case, doesn't form compounds under normal laboratory at the end of our discussion). The constituent par- conditions, hence the moniker ``noble'', while the ticles, protons and neutrons -- nucleons -- on one first column is extremely reactive (e.g., Li or Na). hand, and electrons on the other, are all you need Looking at the spectral line distribution for He, Ne, for this discussion. The mass ratio of the nucleons and Ar, you see similarities in the distribution of the to the electron is about 2000, sufficiently great that strongest lines across the elements. But it's the pat- atomic structure is centrally symmetric with the nu- tern that's similar, the wavelengths differ. The astro- cleons located, as you'd guess from their name, in nomical contribution the central nucleus whose size is and properties are

1As an aside, think of taking a time exposure of a lantern swinging on a cord in the dark. You're going to have the strongest exposure at the extremes of the oscillation because the time spent there is longer than in the mid-passage. Harmonic oscillators are the analogy of choice because they're, well, harmonic: they're strictly periodic with fixed frequency and overtones and we know how to solve this motion in closed form for a small amplitude. While this isn't strictly true for any arbitrary motion, strictly periodic motions allow this representation.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.81 Spin, angular momentum, and how they govern your spectra Steve Shore

determined by the combination of the strong and is particular energy associated with each l combina- Coulomb (electromagnetic) forces. This symmetry tion when they superimpose: the electron clouds is essential: the interaction between the electrons must combine in phase-coherent ways, so only cer- and the nucleus depends only on radius and is me- tain combined values of the total L are permitted for diated through the opposite but equal in magnitude a set of individual l values. Even the next simplest charges of the proton and electron. Since the sim- atom, He0, challenges the independent particle pic- plest symmetry with a fixed point is a sphere, the ture2. base state of a one electron atom -- hydrogen -- is isotropic with a single radius, called the Bohr radius. The intrinsic attribute called "spin" A state, in our case, is a level in a bound system. It has a definite energy. But it won't have a specific Spin is an internal property of electrons, depending ``identifier''. By that, I mean the classification we've neither on spatial coordinates nor time, that mani- been using all along, based on the combination of fests itself only relative to something else. In effect, attributes (spin, angular momentum) of the individ- a free electron has a spin of ħ/2, where ħ=h/2p (h ual electrons by which the state is produced. The is the Planck constant) just as it has a charge, e. But electric that binds the individual electrons to this matters only if the electron interacts with either the nucleus is purely radial, depending only on the light, an external field, or other particles. This isn't atomic number of the nucleus. at all counter-intuitive or difficult: analogously, you can't tell the color of a picture in the dark although, Now to get a bit more detailed and this is where chemically, it has this attribute. Any scattering -ex classification of the state enters. I suggest thinking periment with another particle is partly mediated by of the atom as a cloud of electrons rather than sin- their spins, which are summed over to get the total gle particles, even at the risk of recalling the original cross section. Thomson picture. This is a natural pictorial realiza- The occupation of a state is amusingly similar to sit- tion of the time exposure of the oscillators. Com- ting in a theater. The seats are arranged in integer bining the clouds with different radii and different occupation sites and with a fixed number per row. symmetries (nodes) in an allowed manner produces Full occupation means each seat is taken but if peo- a state. It's the rules for those combinations that ple were identical they could be permuted among are called a classification scheme. I'll treat the most the seats without changing either the occupation familiar one, what was originally called Russell- number or the total energy of the state. Now that's Saunders or spin-orbit coupling, but others are pos- in a civilized audience. Add the possibility that each sible. These serve one purpose: they allow a simple seat actually can sustain two occupants, one sitting labeling of the states and predict what lines can on the other's lap3. Again, the laps that are either arise from transitions between states. Attributing occupied or not can be permuted without changing any nonsphericity to a state is the same, in quantum any state attribute but there is a maximum multi- mechanics, as describing the angular dependence plicity for each row equal to twice the number of with an angular momentum, l. This is the same as available seats. The rows are filled in order, starting saying that the harmonic oscillator has overtones, from the bottom. To make the analogy more spe- the radial contribution is not the same for all pos- cific, the H row has two places, the Li row 8, and so sible of the angular momentum and, instead, there on. To extend the analogy, each person can be sit-

2 While I don't mean to be too polemical here, I want to offer a parenthetical observation. The language we still employ in quantum mechanics when describing atoms has conserved in its vocabulary this solar system picture that, I think, interferes with understanding. Angular momen- tum is another way of talking about a spatial symmetry, not that the electrons are orbiting. Orbitals, a term you know from chemistry, are the same. Spin was chosen as a because it seemed to be the quantum mechanical analog of the only previously untreated property of the microworld solar system, like the spins of planets. But in each of these cases, you're forced to make the arbitrary leap of imagining that what in the macroworld is a continuously variable quantity, magically becomes discrete (quantized) on a microscale. It's too late to hope for a reform of the language but at least try to think of symmetries instead of motions. This is natural from crystals and molecular models. 3 OK, we could imagine them head or feet up too but that requires acrobatic skills.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.82 Spin, angular momentum, and how they govern your spectra Steve Shore

ting upright or upside down indifferently. So there only one permitted pairing, s1 and s2 have to cancel are two possible alignments. If one person climbs so the total S vanishes. This gives a unique state, 1s2 1 over the seat back to get to the next row, that leaves S0 for the ground state. An excited state, 1s2s now an unoccupied seat in one row and occupies a seat has two different n values so there are two possible in another so this is a distinct difference in configu- combinations for the projections of spin, one with S ration and, therefore, a different energy. But as the = 1 and another with S = 0 for the same angular mo- front row obscures the view from the back, the same mentum. Thus there are two, non-identical combi- 1 for the nucleus and the electrons. A single occupied nations leading to slightly different energies, S0 and 3 seat in the third row with the first two occupied is S1. No passage is possible between the two since not the same as a single occupant of the first row. that would require a change in the projection of the Put more precisely, the electrons screen the nuclear spin, which is not possible in the central field of the charge and the more inner shells are occupied the atom. It could be induced if the right radiation were greater the screening; hence the scaling is not based to excite one of the states, but it has no dipole mo- only on the protons but also on the particular state ment so cannot happen as a permitted transition. 3 occupation and how that screens the nucleus for More to the point, the S1 state is pseudo-stable each electron. since, like the transition between the sublevels, the state can't decay by dipole emission. Then each This is where spin becomes vital. The individual excited state of He I has the same pairing, a singlet electrons don't only interact through their charge, and triplet sequence depending on the combina- they also overlap in this internal property and have tion of the two electrons. The original observation a limited set of permitted combinations. Pairwise, that pointed to the incompleteness of this descrip- they can be either both head up or head both down tion was that while there is a singlet for the ground or one up and one down indifferently. This is the state transition of neutral helium, there is no corre- point where one applies the Pauli exclusion princi- sponding line for the triplets. The analog system is ple that, remember, is an axiom: no two electrons H-. This too has a 1s2 configuration but with a hitch: can have precisely the same label, i.e., precisely the the nucleus has only one proton so the electrons are same quantum numbers. Since every electron has much more weakly bound than in neutral hydrogen.

a radial quantum number, n, angular momentum l More to the point, an excited state (i, s)1(n,l)2 sees a and its projection ml (although this is really a set of very screened nuclear charge from the 1, and so is the possible projected values that l can take if an very weakly bound. The ionization energy of oH is axis is arbitrarily defined, to put two electrons in the 13.6 eV, that of H- is less than 1 eV while for Heo it is same shell requires another number, in this case s. about 25 eV. Note that while l can have any positive integer value, s is unique, 1/2. For H, this is simple. Having only Imposing an external magnetic field one electron, each state has two possible projec- tions ofs relative to the nucleus so each state is real- One way of imagining spin-field interactions I owe ly a doublet, regardless of its (n,l) value. Transitions to my siamese cats. Ptolemy was a trusting little fel- occur only between states of different angular sym- low. Held belly up in your arms he would remain metry so δl = ±1 (so 2s → 1s is, for example, strictly that way if tossed lightly upward, being firmly con- forbidden for the hydrogen atom (this is, actually, a vinced he'd be caught (which he always was, so the two-photon transition but that's a different story: behavior was a self-reinforcing belief system). But it's observed in nebular spectra as a blue continuum Hodge, who was far more skeptical, would always but not in comparatibvely normal sources such as flip. Both sensed that there was a field providing stellar atmospheres). a preferred direction in space (gravity, down) and their internal process made them react to it (and Again using the He atom, in its ground state, 1s2, differently): Ptolemy was like a boson, Hodge like a both electrons have l = 0 and the same n. There is fermion.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.83 Spin, angular momentum, and how they govern your spectra Steve Shore

Now that's for a steady field. For the electron, it be- is. In LS coupling (Russell-Saunders, the classifi- haves as if it has a polarizability such that if a mag- cation scheme used in Moore's Revised Multiplet netic field is introduced, there are two possible sub- Table and listed in the NIST database, the individual states of "aligned'' and "anti-aligned'' electrons. This electron configurations produce multiplets are la- is the Zeeman effect. The magnitude of the splitting beled by the combined orbital L, spin, S, and total, 3 in energy depends on the projections of the overall J, angular momenta as (2S+1)LJ, e.g., D1. To obtain polarizability produced by the combined electrons these, the projections are summed and only those in a state and the transitions between these sublev- combinations that respect the exclusion principle els produce an ensemble of very closely spaced lines are permitted (the difference between, say, the nd2 whose separations also depend linearly on the field and ndn'd basis state. Noting that no transition is strength (if the field is relatively weak). Since the ever truly impossible, merely highly improbable (a states are individually coherent, the transitions are line from The Hitchhiker's Guide to the ), any polarized (as Christian Buil's beautiful spectropolari- process that requires only the spin to change is for- metric observations show for magnetic stars). If no bidden as an electric dipole transition (so there is field is imposed, the states are degenerate; there is no permitted conversion of triplet to singlet states no discernible difference between the different sub- for neutral helium, for example). In a recombination states for a given total (L,S) combination. Relative cascade, one multiplicity will not combine with an- to the nucleus the electrons also polarize depending other except by collisional de-excitation (since the on their dipole strengths. This comes from the dual collisions mix the spin states). So in stellar atmo- polarizability of the protons and electrons. I need spheres, there is collisional coupling even between to again emphasize that the spins are not a spatial multiplets. It's important to keep in mind that the property so the proton and electron individually electron configuration is what matters, the coupling have this intrinsic property that shows itself when rules label the states. The usual procedure for iden- they interact. Thus, the 1s state of H is very slightly tification is actually an inverse process: computing split, corresponding to the 21 cm transition of inter- the separations based on a coupling approximation stellar fame, but with so weak a transition strength and scaling the energies to the observed spectrum that the flip occurs with a characteristic transition for an ion. timescale of megayears instead of nanoseconds. Finally, there's one case that arises from the strong Now imagine you excite the state by irradiating interaction of the electrons in a basis configuration: the atom with a time dependent electromagnetic autoionization. This is the most extreme example of field. If you think of the polarizability as a two state a state mixing, caused in part by the electron's spin. system, it has a specific frequency at which it reso- It's possible that the combination of the different nates. A transition between states, when separated spin-orbit values produces a level that lies above the by a steady state field, causes the system to emit or ionization limit. Although hydrogen doesn't show absorb at a specific frequency, a resonance. In MRI, this, all other atoms do. This is the same as say- this uses the nuclear spins and their combined reac- ing the electron is metastably bound, that it can re- tion to other nuclei in their vicinity (as in a molecule, main bound for a time but then becomes free. The in which the atoms are linked by bonds so respond alternate picture is that absorption leads to more collectively. The molecules are individual but the at- than one electron transitioning at a time so the final oms aren't. configuration is not the same as would happen with only one "valence'' electron. Such states are also Selection rules and transitions possible in the inverse process to ionization, when the cascade internally excites transitions (radiation- As a final point, once the states have been specified less), a process called dielectronic recombination. within a coupling scheme, you also know what tran- Both are observed in stellar spectra, and DR is very sitions can occur and what their intrinsic strength important in the ionization balance of the corona

ARAS Eruptive Stars Information Letter #41 2019-01 - p.84 ARAS Eruptive Stars Information Letter #41 2019-01 - p.85 Spin, angular momentum, and how they govern your spectra Steve Shore

and the interstellar medium (diffuse media that are nearly collisionless).

Coda

I want to thank Francois for suggesting the topic this issue. I hope the topic has been interesting and this discussion helpful. As you get progressively deeper in your use of spectroscopic diagnostics , it can be useful to understand on what physical assumptions they're based and atomic structure is the most es- sential. In the next column,I'll generalize this dis- cussion to molecules since, as you get more familiar with cool stellar spectra, diatomic molecules will become familiar friends. Thank you and warmest wishes for your observing success, I hope to see you at OHP in August. Please let me know if there's any- thing you'd like to suggest or ask or critique.

Some sugested resources for the stout-hearted, beside the notes in the NIST Atomic Database website:

Osterbrock, D. and Ferland, G. 2005, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd Ed (Sacramento: University Science Books) Merrill, P. 1958, Lines of the chemical elements in astronomical spectra (http://adsabs.harvard.edu/abs/1958lcea.book.....M) (it doesn't get better!) Hubeny, I. and Mihalas, D. 2015, Theory of Stellar Atmsopheres (Princeton: Princeton Univ. Press) Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley: Univ. of California Press) (heavy, computationally oriented, but it's all here; Cowan authored the basic code that was extended by Kurucz for computing the line lists used for model stellar atmospheres) Griem, H. R. 1997, Principles of Plasma Spectroscopy (Cambridge: Cambridge Univ. Press) (more accessible, and current, than the classic from 1962) Ünsold, A. 1955, Physik der Sternatmosphären (Berlin: Springer) (the genuine classic, still worth the trouble; for my German speaking friends) Saltzmann, D. 1998, Atomic physics in hot plasmas, (Oxford: Oxford University Press) Jeries, J. 1968, Spectral Line Formation (Mass: Blaisdell) (leaning toward the Sun, this has real insights without heavy mathematics) Cowley, C. R. 1970, The Theory of Stellar Spectra (NY: Gordon and Breach) (a sadly little known gem on atmospheres, spectra, and more) Letokhov, Vl. and Johansson, S. 2009, Astrophysical Lasers (Oxford: Oxford Univ. Press) (by the master of laboratrory spectroscopy, Johansson was the worthy successor to Ångström at Lund) ... and although I hesitate on this one, Shore, S. N. 2003, The Tapestry of Modern Astrophysics (NY: Wiley-Interscience)

ARAS Eruptive Stars Information Letter #41 2019-01 - p.85 Recent publications

Symbiotics

A Census of Symbiotic Stars in the 2MASS, WISE, and Gaia Surveys Akras, Stavros; Guzman-Ramirez, Lizette; Leal-Ferreira, Marcelo L.; Ramos-Larios, Gerardo The Astrophysical Journal Supplement Series, Volume 240, Issue 2, article id. 21, 23 pp. (2019)

We present a new census of Galactic and extragalactic symbiotic stars (SySts). This compilation contains 323 known and 87 candidate SySts. Of the confirmed SySts, 257 are Galactic and 66 extragalactic. The spectral energy distributions (SEDs) of 348 sources have been constructed using 2MASS and AllWISE data. Regarding the Galactic SySts, 74% are S types, 13% D, and 3.5% D′. S types show an SED peak between 0.8 and 1.7 μm, whereas D types show a peak at longer wavelengths between 2 and 4 μm. D′ types, on the other hand, display a nearly flat profile. Gaia distances and effective temperatures are also presented. According to their Gaia distances, S types are found to be members of both thin and thick Galactic disk populations, while S+IR and D types are mainly thin disk sources. Gaia temperatures show a reasonable agreement with the temperatures derived from SEDs within their uncertainties. A new census of the O VI λ6830 Raman-scattered line in SySts is also presented. From a sample of 298 SySts with available optical spectra, 55% are found to emit the line. No significant preference is found among the different types. The report of the O VI λ6830 Raman-scattered line in non-SySts is also discussed as well as the correlation between the Raman-scattered O VI line and X-ray emission. We conclude that the presence of the O VI Raman-scattered line still provides a strong criterion for identifying a source as a SySt.

Hen 3-160 - the First Symbiotic Binary with Mira Variable S Star Gałan, C.; Mikołajewska, J.; Monard, B.; Iłkiewicz, K.; Pieńkowski, D.; Gromadzki, M. Acta Astronomica, vol 69, no 1, p. 25-44

Hen 3-160 is reported in Belczyński et al. catalog as a symbiotic binary system with M7 giant donor. Using V- and I-band photometry collected over 20 years we have found that the giant is a Mira variable pulsating with 242.5-day period. The period-luminosity relation locates Hen 3-160 at the distance of about 9.4 kpc, and its Galactic coordinates (l=267.°7, b=-7.°9) place it ≍1.3 kpc above the disk. This position combined with relatively high proper motions (μαcosδ=-1.5 mas/yr, μ_δ=+2.9 mas/yr, Gaia DR2) indicates that Hen 3-160 has to be a Galactic extended thick-disk object. Our red optical and infrared spectra show the presence of ZrO and YO molecular bands that appear relatively strong compared to the TiO bands. Here we propose that the giant in this system is intrinsic S star, enriched in products of slow neutron capture processes occurring in its interior during an AGB phase which would make Hen 3-160 the first symbiotic system with Mira variable S star.

First Release of the New Online Database of Symbiotic Variables Merc, Jaroslav; Gális, Rudolf; Wolf, Marek Research Notes of the American Astronomical Society, Volume 3, Issue 2, article id. 28 (2019).

Spectroscopic observations of symbiotic stars in 2018-Q4 Teyssier, F.; Boyd, D.; Guarro, J.; Sims, F.; Foster, J.; Somogyi, P.; Berardi, P.; Sollecchia, U.; Charbonnel, S.; Bohlsen, T.; Campos, F.; Martineau, G.; Buchet, Y.; Graham, K.; Boussin, C.; Boubault, F.; Franco, L.; Rodda, T.; Marik, V.; Buil, C. Kantola, T.; Coffin, J. Eruptive Stars Information Letter, vol.40, p. 4-75

202 spectra of 26 symbiotic stars at resolution from 500 to 15000 were obtained during 2018-Q4. AG Dra has recovered its quiescent state afterApril 2018 outburst. CH Cyg has been monitoring at a high cadency during its monotonically decline from mag V = 6.4 early august to V = 8.5. More than 700 spectra of CH Cygni are now gathered in the database. First spectrum of the poorly studied EF Aql in the database. Spectra of the new symbiot- ic Hen 3-1768 detected within the context of the program "suspected symbiotic stars" show strong He II l 4686 and Raman OVI 6830. The new- symbiot ic star HbHa 1704-058 observed during its decline show increasing raman OVI band (EW = -3.3) while [OIII] and [Fe VII] remain very weak if present. V694 Mon, at high luminosity (V 9) , presents unusual shape of Balmer and Fe II lines: the common broad absorption is replaced by P Cygni profiles at much low- er velocities (maximum of absorption -100 km s-1). The prototypical Z And returns to quiescent state after the outburst which occurred inJanuary2018.

An investigation of the eclipsing symbiotic binary BF Cyg during a period of activity after 2014 Tomov, Nikolai A.; Tomova, Mima T.; Bisikalo, Dmitry V. Bulgarian Astronomical Journal, Vol. 30, p. 60 The symbiotic system BF Cyg is an eclipsing binary. It flared in 2006 and in 2016 its optical brightness was in its fifth orbital minimum (eclipse) from the beginning of the eruption. We investigated the behaviour of the brightness during this minimum and considered the evolution of the accretion structure surrounding the outbursting compact object. We obtained the basic parameters of this structure from UBVR_{C}I_{C} data at the time of the fifth orbital minimum.

Infrared Spectroscopy of Symbiotic Stars. XII. The Neutron Star SyXB System 4U 1700+24 = V934 Herculis Hinkle, Kenneth H.; Fekel, Francis C.; Joyce, Richard R.; Mikołajewska, Joanna; Gałan, Cezary; Lebzelter, Thomas The Astrophysical Journal, Volume 872, Issue 1, article id. 43, 17 pp. (2019). The X-ray symbiotic (SyXB) V934 Her = 4U 1700+24 is an M giant-neutron star (NS) binary system. Employing optical and infrared radial velocities spanning 29 yr combined with the extensive velocities in the literature, we compute the spectroscopic orbit of the M giant in that system. We determine an orbital period of 4391 days, or 12.0 yr, the longest for any SyXB and far longer than the 404 day orbit commonly cited for this system in the literature. In addition to the 12.0 yr orbital period, we find a shorter period of 420 days, similar to the one previously found. Instead of orbital motion, we attribute this much shorter period to long secondary pulsation of the M3 III SRb variable. Our new orbit supports earlier work that concluded that the orbit is seen nearly pole-on, which is why X-ray pulsations associated with the NS have not been detected. We estimate an orbital inclination of 11.°3 ± 0.°4. Arguments are made that this low inclination supports a pulsation origin for the 420 day secondary period. We also measure the CNO and Fe peak abundances of the M giant and find it to be slightly metal-poor compared to the Sun, with no trace of the NS-forming supernova event. The basic properties of the M giant and NS are derived. We discuss the possible evolutionary paths that this system has taken to get to its current state.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.86 Recent publications

Symbiotics

High-velocity equatorial mass ejections and some other spectroscopic phenomena of the symbiotic star CH Cygni in an active stage Iijima, T.; Naito, H.; Narusawa, S. Astronomy & Astrophysics, Volume 622, id.A45, 15 pp.

TCH Cyg is one of the most studied symbiotic stars. Its properties, however, are still not well known. Two main periods, about 15 years and 750 days, are known in the photometric and spectroscopic variations, and two models are proposed for these origins. One is a binary system with an orbital period of 15 years consisting of a hot component and pulsating red giant with a 750-day period. The other is a triple system consisting of an inner symbiotic binary with an orbital period of about 750 days and third component with an orbital period of 15 years. Several active stages have been observed since the 1970s during which the object brightened up by ∆U = 3-5 mag and prominent emission lines appeared. Large mass outflows were observed at some active stages. Aims: The spectral variation of CH Cyg has been monitored at Asiago Observatories to understand the problems mentioned above. We have analysed spectra obtained in the time period from 1995 to 2004 which covers an active stage during the years 1998-2000. Methods: High- and low-resolution optical spectra obtained at the Asiago Observatories are used. Results: Narrow absorption lines of Fe I, Cr I, Ti I, and so on appeared in 1998 at an early phase of the active stage. These lines are clearly distin- guished from those of the M-type giant and are typically found on the spectrum of early A-type dwarfs. They were redshifted by about 30 km s-1 with respect to the absorption lines of the M-type giant. Assuming that their radial velocities represent the orbital motion of the hot component, its semi-amplitude is estimated to be 37.0 ± 0.5 km s-1. The masses of the hot component and the M-type giant are estimated to be 0.32 ± 0.02 M☉ and 4.6 ± 0.2 M☉, respectively, where a circular orbit with a period of 756 days is adopted. If the inner binary system has an elliptical orbit, e = 0.33, and a period of 750.1 days, the masses of the two components are 0.21 ± 0.01 M☉ and 2.2 ± 0.1 M☉, respectively. Our results lend sup- port to the triple system model, because if the period of the symbiotic binary were 15 years, the mass of the hot component would be expected to exceed the Chandrasekhar limit. Highly blueshifted absorption components of H I and He I lines appeared at a later phase of the active stage. Mass ejections with velocities on the order of 1000 km s-1 seem to have occurred along the orbital plane from December 1998 to March 1999. The highest outflow velocity, - 2383 km s-1, was observed on 1999 February 26. Narrow absorption components of Na I D1, D2, and Fe II lines redshifted by 10-15 km s-1 coexisted with the highly blueshifted broad absorption components of H I and He I lines. This phenomenon might have been related to an inner disc inflow expected in wind-compressed discs. In contrast to the bipolar mass outflows at the past active stages, high- velocity equatorial mass ejections likely occurred at the active stage during the years 1998-2000. There should have been an eclipse of the hot component by the M-type giant in the inner binary system in the time period of December 1998 to January 1999. A clear light curve of the eclipse, however, was not detected. Possibly, the luminosity of the hot component was due mainly to free-free emission from the ejected circumstellar matter which was likely more extended than the M-type giant. On the other hand, another eclipse by the third component with the period of 15 years began at the end of May 1999 during which the hot component as well as the emitting regions of Hβ and Fe II lines were well eclipsed. The obscuring matter around the third component should have been much more extended than the M-type giant, and it was likely semi-transparent, because the spectrum of the M-type giant was well seen during the eclipse. The third component appears to be similar to the invisible secondary component in the long-period eclipsing binary ∊ Aur. The spectra and velocities are only available at the CDS via anonymous ftp to http://cdsarc.u- strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A45

FUSE Spectroscopic Analysis of the Slowest Symbiotic Nova AG Peg During Quiescence Sion, Edward M.; Godon, Patrick; Mikolajewska, Joanna; Katynski, Marcus The Astrophysical Journal, Volume 874, Issue 2, article id. 178, 8 pp. (2019).

We present a far-UV (FUV) spectroscopic analysis of the slowest known symbiotic nova AG Peg that underwent a nova explosion in 1850 followed by a very slow decline that did not end until ∼1996, marking the beginning of quiescence. In 2015 June, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ∼1.5 mag. We used accretion disk and WD synthetic spectral modeling of a Far-Ultraviolet Spectroscopic Explorer (FUSE) spectrum obtained on 2003 June 5.618. The spectrum is heavily affected by ISM absorption as well as strong emis- sion lines. We dereddened the FUSE fluxes assuming E(B-V)=0.10, which is the maximum galactic reddening in the direction of AG Peg. We discuss our adoption of the pre-Gaia distance over the Gaia parallax. For a range of white dwarf surface gravities and surface temperatures, we find that the best-fitting photosphere is a hot WD with a temperature T wd = 150,000 K, and a low gravity log(g) ∼ 6.0─6.5. For a distance of 800 pc, the scaled WD radius is R wd ∼ 0.06 × R ☉, giving log(g) = 6.67 for a 0.65 M ☉ WD mass. The Luminosity we obtain from this model is L = 1729 L ☉. The hot photosphere models provide better fits than the accretion disk models, which have FUV flux deficits toward the shorter wavelengths of FUSE, down to the Lyman limit. Given the uncertainty of the nature of a true symbiotic accretion disk, and, while a very hot low gravity degenerate star dominates the FUV flux, the presence of a steady-state (standard) accretion disk cannot be summarily ruled out.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.87 Recent publications

Novae

Optical spectroscopic and polarization properties of 2011 outburst of the recurrent nova T Pyxidi Pavana, M.; Anche, Ramya M.; Anupama, G. C.; Ramaprakash, A. N.; Selvakumar, G. Astronomy & Astrophysics, Volume 622, id.A126, 14 pp.

We aim to study the spectroscopic and ionized structural evolution of T Pyx during its 2011 outburst, and also study the variation in degree of polarization during its early phase. Methods: Optical spectroscopic data of this system obtained from day 1.28-2415.62 since discovery, and optical, broadband imaging polarimetric observations obtained from day 1.36-29.33 during the early phases of the outburst were used in the study. The physical conditions and the geometry of the ionized structure of the nova ejecta was modelled for a few epochs using the photo-ionization code, CLOUDY in 1D and pyCloudy in 3D. Results: The spectral evolution of the nova ejecta during its 2011 outburst is similar to that of the previous outbursts. The variation in the line profiles is seen very clearly in the early stages due to good coverage during this period. The line profiles vary from P Cygni (nar- rower, deeper, and sharper) to emission profiles that are broader and structured, which later become narrower and sharper in the late post-outburst phase. The average ejected mass is estimated to be 7.03 × 10-6 M☉. The ionized structure of the ejecta is found to be a bipolar conical structure with equatorial rings, with a low inclination angle of 14.75 ° ±0.65°. The spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A126

A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD Selvelli, Pierluigi; Gilmozzi, Roberto Astronomy & Astrophysics, Volume 622, id.A186, 16 pp.

We combine the results of our earlier study of the UV characteristics of 18 classical novae (CNe) with data from the literature and with the recent precise distance determinations from the Gaia satellite to investigate the statistical properties of old novae. All final param- eters for the sample include a detailed treatment of the errors and their propagation. The physical properties reported here include the absolute magnitudes at maximum and minimum, a new maximum magnitude versus rate of decline (MMRD) relation, and the inclination-corrected 1100-6000 Å accretion disk luminosity. Most importantly, these data have allowed us to derive a homogenous set of accretion rates in quiescence for the 18 novae. All novae in the sample were super-Eddington during outburst, with an average at maximum of -7.5 ± 1.0. The average absolute magnitude at minimum corrected for inclination is 3.9 ± 1.0. The median mass accretion rate is log Ṁ1 M☉ = -8.52 (using 1 M☉ as WD mass for all novae) or log ṀMWD = -8.48 (using the individual WD masses). These values are lower than those assumed in studies of CNe evolution and appear to attenuate the need for a hibernation hypothesis to interpret the nova phenomenon. We identified a number of correlations among the physical parameters of the quies- cent and eruptive phases, some already known but others new and even surprising. Several quantities correlate with the speed class t3 including, unexpectedly, the mass accretion rate (Ṁ). This rate correlates also with the absolute magnitude at minimum corrected for inclination, and with the outburst amplitude, providing new and simple ways to estimate Ṁ through its functional dependence on (more) easily observed quantities. There is no correlation between Ṁ and the orbital period. Based mainly on INES data from the IUE satellite. Other UV data utilized in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST), see Paper I. This work has made use of data from the European Space Agency (ESA) mission Gaia (http://https://www.cos- mos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, http://https://www.cosmos.esa.int/web/ gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Hubble Space Telescope Far-UV Spectroscopy of the Short Orbital Period Recurrent Nova CI Aql: Implications for White Dwarf Mass EvolutionSelvelli, Pierluigi; Gilmozzi, Roberto Sion, Edward M.; Wilson, R. E.; Godon, Patrick; Starrfield, Sumner; Williams, Robert E.; Darnley, M. J. The Astrophysical Journal, Volume 872, Issue 1, article id. 68, 6 pp. (2019).

An Hubble Space Telescope Cosmic Object Spectrograph Far UV spectrum (1170 Å to 1800 Å) was obtained for the short orbital pe- riod recurrent novae (T Pyxidis subclass), CI Aquilae. CI Aql is the only classical Cataclysmic variable (CV) known to have two eclipses of a sensible depth per orbit cycle and also to have pre- and post-outburst light curves that are steady enough to allow estimates of mass and orbital period changes. Our far-ultraviolet (FUV) spectral analysis with model accretion disks and non-LTE high-gravity , together with the Gaia parallax, reveal that CI Aql's FUV light is dominated by an optically thick accretion disk with an accretion rate of the order of 4 × 10-8 M ☉ yr-1. Its database of light curves, radial velocity curves, and eclipse timings is among the best for any CV. Its orbit period (P), dP/dt, and reference time are rederived via a simultaneous analysis of the three data types, giv- ing a dimensionless post-outburst dP/dt of (-2.49 ± 0.95) × 10-10. The lack of information on the loss of orbital to rotational angular momentum leads to some uncertainty in the translation of dP/dt to the white dwarf (WD) mass change rate, dM1/dt, but within the modest range of +4.8× {10}-8 to +7.8 × 10-8 {M}☉ {yr}}-1. The estimated WD mass change through outburst for CI Aql, based on simple differencing of its pre- and post-outburst orbit period, is unchanged from the previously published +5.3× {10}-6{M}☉ . At the WD's estimated mass increase rate, it will terminate as a Type Ia supernova within 10 million years.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.88 Recent publications

Novae

Astro2020 Science White Paper: A Shocking Shift in Paradigm for Classical Novae Chomiuk, Laura; Aydi, Elias; Babul, Aliya-Nur; Derdzinski, Andrea; Kawash, Adam; Li, Kwan-Lok; Linford, Justin; Metzger, Brian D.; Mukai, Koji; Rupen, Michael P.; Sokoloski, Jennifer; Sokolovsky, Kirill; Steinberg, Elad 2019arXiv190308134C

The discovery of GeV gamma-rays from classical novae has led to a reassessment of these garden-variety explosions, and highlight- ed their importance for understanding radiative shocks, particle acceleration, and dust formation in more exotic, distant transients. Recent collaboration between observers and theorists has revealed that shocks in novae are energetically important, and can even dominate their bolometric luminosity. Shocks may also explain long-standing mysteries in novae such as dust production, super- Eddington luminosities, and `flares' in optical light curves. Here, we highlight the multi-wavelength facilities of the next decade that will further test our nova shock model and fulfill the promise of novae as powerful astrophysical laboratories.

The UBV Color Evolution of Classical Novae. III. Time-stretched Color─Magnitude Diagram of Novae in Outburst Hachisu, Izumi; Kato, Mariko The Astrophysical Journal Supplement Series, Volume 241, Issue 1, article id. 4, 67 pp. (2019).

We propose a modified color─magnitude diagram for novae in outburst, i.e., (B − V)0 versus (M V − 2.5 log f s), where f s is the time- scaling factor of a (target) nova against a comparison (template) nova, (B − V)0 is the intrinsic B − V color, and M V is the absolute V magnitude. We dub it the time-stretched color─magnitude diagram. We carefully reanalyzed 20 novae based on the time-stretching method and revised their extinctions E(B − V), distance moduli in the V-band (m − M) V , distances d, and time-scaling factors f s against the template nova LV Vul. We have found that these 20 nova outburst tracks broadly follow one of the two template tracks, the LV Vul/V1668 Cyg or V1500 Cyg/V1974 Cyg group, in the time-stretched color─magnitude diagram. In addition, we estimate the white dwarf masses and (m − M) V of the novae by directly fitting the absolute V model light curves (M V ) with observational ap- parent V magnitudes (m V ). A good agreement of the two estimates of (m − M) V confirms the consistency of the time-stretched color─magnitude diagram. Our distance estimates are in good agreement with the results of Gaia Data Release 2.

ARAS Eruptive Stars Information Letter #41 2019-01 - p.89 Eruptive stars spectroscopy Cataclysmics, Symbiotics, Novae

ARAS Eruptive Stars Information Letter #41 2019-01 - p.90