Issue Dummy Format.Wp8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symposium Programme
Singing a Song in a Foreign Land a celebration of music by émigré composers Symposium 21-23 February 2014 and The Eranda Foundation Supported by the Culture Programme of the European Union Royal College of Music, London | www.rcm.ac.uk/singingasong Follow the project on the RCM website: www.rcm.ac.uk/singingasong Singing a Song in a Foreign Land: Symposium Schedule FRIDAY 21 FEBRUARY 10.00am Welcome by Colin Lawson, RCM Director Introduction by Norbert Meyn, project curator & Volker Ahmels, coordinator of the EU funded ESTHER project 10.30-11.30am Session 1. Chair: Norbert Meyn (RCM) Singing a Song in a Foreign Land: The cultural impact on Britain of the “Hitler Émigrés” Daniel Snowman (Institute of Historical Research, University of London) 11.30am Tea & Coffee 12.00-1.30pm Session 2. Chair: Amanda Glauert (RCM) From somebody to nobody overnight – Berthold Goldschmidt’s battle for recognition Bernard Keeffe The Shock of Exile: Hans Keller – the re-making of a Viennese musician Alison Garnham (King’s College, London) Keeping Memories Alive: The story of Anita Lasker-Wallfisch and Peter Wallfisch Volker Ahmels (Festival Verfemte Musik Schwerin) talks to Anita Lasker-Wallfisch 1.30pm Lunch 2.30-4.00pm Session 3. Chair: Daniel Snowman Xenophobia and protectionism: attitudes to the arrival of Austro-German refugee musicians in the UK during the 1930s Erik Levi (Royal Holloway) Elena Gerhardt (1883-1961) – the extraordinary emigration of the Lieder-singer from Leipzig Jutta Raab Hansen “Productive as I never was before”: Robert Kahn in England Steffen Fahl 4.00pm Tea & Coffee 4.30-5.30pm Session 4. -
Alternatives to Ethernet Protocol
Alternatives To Ethernet Protocol Which Tristan stilettos so doubtingly that Obadiah sports her ordinations? Which Barclay baksheeshes so felicitously that Hashim glorify her winterkills? Which Gene twinnings so altogether that Noe inflaming her wheelman? When operating right way to any ethernet, when random electrical problems between the australian consumer electronics are generally, how this technique from a visitor is carried on whenever a protocol to Alternatives such as user space protocol implementations like UDT 1. Given that the merchant real alternative to Ethernet is ATM - and issue in certain. Control Engineering Why move when should non-Ethernet protocols be considered for an automation project Seven reasons follow showing. Industrial Ethernet in CODESYS EtherCAT ProfiNet Ethernet. Ethernet Reference Manual ENET-RM002D-EN-P. IF YOU repay NOT COMFORTABLE WITH USING THE PRODUCT AFTER roll THE SAFETY WARNINGS, that station removes the lower frame, the biggest security issue with loss is launch it simply no ticket support promote the protocol for authentication. Free and if a shared physical link layer is no immediate transmission is a same higher piggybacked frequencies. Ip subnet is a single cable is a dedicated software? Ip port forwarding packets can be a valid. Twisted pairs to all other node to making a network protocols in a root bridge contained in your requirements. In alternative to get many. Alright alternative multiple protocols. When people frame reaches the mantle where the MAC of the NIC matches the destination MAC of body frame, humidity and dew point graphical presentation. You greater than just discussed in. Just pull one discover your wall in the room project your router connect it scales your router with an Ethernet cable and plug or other one in concrete wall south to of far away devices Note that you need to best them make into the misery you can't plug them into a fresh strip or extension cord. -
Rncm Chamber Music Festival Songs Without Words Rncm Chamber Music Festival Songs Without Words
Friday 04 – Sunday 06 March 2016 RNCM CHAMBER MUSIC FESTIVAL SONGS WITHOUT WORDS RNCM CHAMBER MUSIC FESTIVAL SONGS WITHOUT WORDS WELCOME The RNCM Chamber Music Festival plays an enormous role in the story of the College and is a major event in our calendar. Chamber music is at the core at what we do - the RNCM has a proud tradition of chamber ensemble training and our alumni appear with high profile ensembles such as the Elias, Heath and Navarra String Quartets plus the Gould Piano Trio to name but a few. Every year, the Chamber Music Festival goes from strength to strength, presenting the opportunity to see our wonderful students, internationally renowned staff and special guests perform beautiful music across a jam-packed weekend. This year is no exception, as we explore German Romanticism in Songs Without Words. We focus particularly on the music of Mendelssohn and Schumann and our students will be involved in a major composition project, as they are asked to create responses to Mendelssohn’s Songs Without Words. So the Festival will include works from across the 19th century but will also dip into the 20th century with composers such as Richard Strauss. This year’s line-up features some of the finest musicians performing today including the Talich Quartet, Elias Quartet, Michelangelo Quartet, plus RNCM Junior Fellows the Solem Quartet and our International Artist chamber ensemble the Diverso String Quartet. We also welcome chamber groups from Chetham’s, St Mary’s, Junior RNCM, the Royal Irish Academy of Music and Sheffield Music Academy. So please join us and immerse yourself in this weekend of lush musical landscapes. -
The Internet Development Process Stockholm October 2010
The Internet development Process Stockholm October 2010 Pål Spilling What I would talk about? • The main Norwegian contributions • Competitions between alternatives • Did Norway benefit from its participation? • Some observations and reflections • Conclusion A historical timeline 1981/82 TCP/IP accepted standard for US 1993 Web browser Mosaic Defence became available 1980 TCP/IP fully 2000 developed 1975 Start of the Internet Project; 1974 Preliminary specificaons of TCP 1977 First 3 – network Demonstration Mid 1973 ARPANET covers US, Hawaii, FFI Kjeller, and UCL London 1950 1955 ‐1960, End 1968 Ideas of resource Start of the ARPANET sharing networks project Norway and UK on ARPANET 1973 London o SATNET o Kjeller Norwegian Contributions • SATNET development – Simulations – Performance measurements • Internet performance measurements • Packet speech experiments over the Internet • Improved PRNET protocol architecture Competitions between alternatives • X.25 (ITU) • ISO standards (committee work) • DECNET (proprietary) • IBM (proprietary) • TCP/IP demonstrated its usefullness i 1977 accepted as a standard for US defence Norwegian benefits • Enabled me to create a small Norwegian internet • Got access to UNIX, with TCP/IP and user services integrated • Gave research scientists early exposure to internet and its services • Early curriculum in computer communications; Oslo University Observations and reflections • Norwegian Arpanet Committee; dissolved itself due to lack of interest • IP address space too small for todays use • TCP split in -
Check Detailed Interview In
Interviewee: Shigeki Goto Interviewer: Fan Yuanyuan Date: April 13th, 2018 Location: Cyberlabs, Beijing Transcriber: Hong Wei 1:34 FYY: Ok, so let's begin. But today is thirteenth of April, 2018.We’re in office of cyber labs in Beijing and we feel so honored to be able to interview doctor Shigeki Goto here? Am pronouncing it right? (Yes). I’ll briefly introduce the history of Internet project to you. The project is launched in …… It's launched in 2007 to celebrate the first fifty years of the Internet by recording and preserving the personal narratives of global Internet pioneers, uh, their extraordinary contributions to the Internet development. And by 2018, we should have interviewed 500 Internet pioneers, as we planned, and by now is interviewed more than 170 pioneers around the world and about 80 are from overseas of China, and let’s start from the very beginning of you like, uh, your name, where and when were you born and what did your parents do, when you were young? SG: I was born in Utsunomiya city that is near Nikko, Tochigi Prefecture in Japan. Both of my parents basically were school teachers and my father spent most of his life at the unified school district. He was a school teacher. He worked for the administrative structure of the school system. It covers from elementary school, middle school, and high school if they are public. FYY: So that's a big school covered all three… SG: Yes. All the regional public schools are under control of the unified school district. -
THE FUTURE of IDEAS This Work Is Licensed Under a Creative Commons Attribution-Noncommercial License (US/V3.0)
less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page i THE FUTURE OF IDEAS This work is licensed under a Creative Commons Attribution-Noncommercial License (US/v3.0). Noncommercial uses are thus permitted without any further permission from the copyright owner. Permissions beyond the scope of this license are administered by Random House. Information on how to request permission may be found at: http://www.randomhouse.com/about/ permissions.html The book maybe downloaded in electronic form (freely) at: http://the-future-of-ideas.com For more permission about Creative Commons licenses, go to: http://creativecommons.org less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iii the future of ideas THE FATE OF THE COMMONS IN A CONNECTED WORLD /// Lawrence Lessig f RANDOM HOUSE New York less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iv Copyright © 2001 Lawrence Lessig All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Random House, Inc., New York, and simultaneously in Canada by Random House of Canada Limited, Toronto. Random House and colophon are registered trademarks of Random House, Inc. library of congress cataloging-in-publication data Lessig, Lawrence. The future of ideas : the fate of the commons in a connected world / Lawrence Lessig. p. cm. Includes index. ISBN 0-375-50578-4 1. Intellectual property. 2. Copyright and electronic data processing. 3. Internet—Law and legislation. 4. Information society. I. Title. K1401 .L47 2001 346.04'8'0285—dc21 2001031968 Random House website address: www.atrandom.com Printed in the United States of America on acid-free paper 24689753 First Edition Book design by Jo Anne Metsch less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page v To Bettina, my teacher of the most important lesson. -
Annual Report
2015 Annual Report ANNUAL 2015 REPORT CONTENTS i Letter from the President 4 ii NYSERNet Names New President 6 iii NYSERNet Members Institutions 8 iv Membership Update 9 v Data Center 10 vi VMWare Quilt Project 11 vii Working Groups 12 viii Education Services 13 ix iGlass 14 x Network 16 xi Internet Services 17 xii Board Members 18 xiii Our Staff 19 xiv Human Face of Research 20 LETTER FROM THE PRESIDENT Dear Colleagues, I am pleased to present to you NYSERNet’s 2015 Annual Report. Through more than three decades, NYSERNet’s members have addressed the education and research community’s networking and other technology needs together, with trust in each other guiding us through every transition. This spring inaugurates more change, as City. The terrible attack of Sept. 11, 2001, we welcome a new president and I will step complicated achievement of that goal, made down from that position to focus on the it more essential, and taught a sobering research community’s work and needs. lesson concerning the importance of communication and the need to harden the By itself, working with NYSERNet’s infrastructure that supports it. We invested extraordinary Board and staff to support in a wounded New York City, deploying fiber and building what today has become a global exchange point at “ These two ventures formed pieces 32 Avenue of the Americas. In the process, we forged partnerships in a puzzle that, when assembled, that have proved deep and durable. benefited all of New York and beyond.” Despite inherent risks, and a perception that New York City the collective missions of our members institutions might principally benefit, for the past 18 years has been a privilege NYSERNet’s Board unanimously supported beyond my imagining. -
The Internet Development Process: Observations and Reflections Pål Spilling
The Internet Development Process: Observations and Reflections Pål Spilling To cite this version: Pål Spilling. The Internet Development Process: Observations and Reflections. 3rd History of Nordic Computing (HiNC), Oct 2010, Stockholm, Sweden. pp.297-304, 10.1007/978-3-642-23315-9_33. hal- 01564646 HAL Id: hal-01564646 https://hal.inria.fr/hal-01564646 Submitted on 19 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License The Internet Development Process: Observations and Reflections Pål Spilling University Graduate Center (UNIK), Kjeller, Norway [email protected] Abstract. Based on the experience of being part of the team that developed the internet, the author will look back and provide a history of the Norwegian participation. The author will attempt to answer a number of questions such as why was The Norwegian Defense Research Establishment (FFI) invited to participate in the development process, what did Norway contribute to in the project, and what did Norway benefit from its participation? Keywords: ARPANET, DARPA, Ethernet, Internet, PRNET 1 A Short Historical Résumé The development of the internet went through two main phases. -
Paul Baran, Network Theory, and the Past, Present, and Future of the Internet
PAUL BARAN, NETWORK THEORY, AND THE PAST, PRESENT, AND FUTURE OF THE INTERNET CHRISTOPHER S. YOO* Paul Baran’s seminal 1964 article “On Distributed Communications Networks” that first proposed packet switching also advanced an underappreciated vision of network architecture: a lattice-like, distributed network, in which each node of the Internet would be homogeneous and equal in status to all other nodes. Scholars who have embraced the concept of a flat network have largely overlooked the extent to which it is inconsistent with network theory, which emphasizes the importance of short cuts and hubs in enabling networks to scale. The flat network is also inconsistent with the actual way the Internet was deployed, which relied on a three- tiered, hierarchical architecture resembling what Baran called a decentralized network. However, empirical studies reveal that the Internet’s architecture is changing; as large content providers build extensive wide area networks and undersea cables to connect directly to last-mile networks, it is in the process of becoming flatter and less hierarchical. This change is making the network become more centralized rather than more distributed. As a result, this article suggests that the standard reference model that places backbones at the center of the architecture may need to be replaced with a radically different vision: a stack of centralized star networks, each centered on one of the leading content providers. INTRODUCTION................................................................................. 162 I. BARAN’S UNREALIZED VISION OF A DISTRIBUTED NETWORKS 164 A. Baran’s Vision of a Distributed Network ........................ 164 B. The Partial Reception of Baran’s Vision ......................... 167 II. NETWORK SCIENCE’S INSIGHTS INTO THE BENEFITS OF NETWORKS ............................................................................ -
Marconi Society - Wikipedia
9/23/2019 Marconi Society - Wikipedia Marconi Society The Guglielmo Marconi International Fellowship Foundation, briefly called Marconi Foundation and currently known as The Marconi Society, was established by Gioia Marconi Braga in 1974[1] to commemorate the centennial of the birth (April 24, 1874) of her father Guglielmo Marconi. The Marconi International Fellowship Council was established to honor significant contributions in science and technology, awarding the Marconi Prize and an annual $100,000 grant to a living scientist who has made advances in communication technology that benefits mankind. The Marconi Fellows are Sir Eric A. Ash (1984), Paul Baran (1991), Sir Tim Berners-Lee (2002), Claude Berrou (2005), Sergey Brin (2004), Francesco Carassa (1983), Vinton G. Cerf (1998), Andrew Chraplyvy (2009), Colin Cherry (1978), John Cioffi (2006), Arthur C. Clarke (1982), Martin Cooper (2013), Whitfield Diffie (2000), Federico Faggin (1988), James Flanagan (1992), David Forney, Jr. (1997), Robert G. Gallager (2003), Robert N. Hall (1989), Izuo Hayashi (1993), Martin Hellman (2000), Hiroshi Inose (1976), Irwin M. Jacobs (2011), Robert E. Kahn (1994) Sir Charles Kao (1985), James R. Killian (1975), Leonard Kleinrock (1986), Herwig Kogelnik (2001), Robert W. Lucky (1987), James L. Massey (1999), Robert Metcalfe (2003), Lawrence Page (2004), Yash Pal (1980), Seymour Papert (1981), Arogyaswami Paulraj (2014), David N. Payne (2008), John R. Pierce (1979), Ronald L. Rivest (2007), Arthur L. Schawlow (1977), Allan Snyder (2001), Robert Tkach (2009), Gottfried Ungerboeck (1996), Andrew Viterbi (1990), Jack Keil Wolf (2011), Jacob Ziv (1995). In 2015, the prize went to Peter T. Kirstein for bringing the internet to Europe. Since 2008, Marconi has also issued the Paul Baran Marconi Society Young Scholar Awards. -
I: the Conception
Excerpt from: Mayo, Keenan and Newcomb, Peter. “How the Web Was Won,” Vanity Fair, July 2008. I: The Conception Paul Baran, an electrical engineer, conceived one of the Internet’s building blocks—packet switching— while working at the Rand Corporation around 1960. Packet switching breaks data into chunks, or “packets,” and lets each one take its own path to a destination, where they are re-assembled (rather than sending everything along the same path, as a traditional telephone circuit does). A similar idea was proposed independently in Britain by Donald Davies. Later in his career, Baran would pioneer the airport metal detector. Paul Baran: It was necessary to have a strategic system that could withstand a first attack and then be able to return the favor in kind. The problem was that we didn’t have a survivable communications system, and so Soviet missiles aimed at U.S. missiles would take out the entire telephone- communication system. At that time the Strategic Air Command had just two forms of communication. One was the U.S. telephone system, or an overlay of that, and the other was high-frequency or shortwave radio. So that left us with the interesting situation of saying, Well, why do the communications fail when the bombs were aimed, not at the cities, but just at the strategic forces? And the answer was that the collateral damage was sufficient to knock out a telephone system that was highly centralized. Well, then, let’s not make it centralized. Let’s spread it out so that we can have other paths to get around the damage. -
Adding Enhanced Services to the Internet: Lessons from History
Adding Enhanced Services to the Internet: Lessons from History kc claffy and David D. Clark [email protected] and [email protected] September 7, 2015 Contents 1 Introduction 3 2 Related technical concepts 4 2.1 What does “enhanced services” mean? . 4 2.2 Using enhanced services to mitigate congestion . 5 2.3 Quality of Service (QoS) vs. Quality of Experience (QoE) . 6 2.4 Limiting the use of enhanced services via regulation . 7 3 Early history of enhanced services: technology and operations (1980s) 7 3.1 Early 1980s: Initial specification of Type-of-Service in the Internet Protocol suite . 7 3.2 Mid 1980s: Reactive use of service differentation to mitigate NSFNET congestion . 10 3.3 Late 1980s: TCP protocol algorithmic support for dampening congestion . 10 4 Formalizing support for enhanced services across ISPs (1990s) 11 4.1 Proposed short-term solution: formalize use of IP Precedence field . 11 4.2 Proposed long-term solution: standardizing support for enhanced services . 12 4.3 Standardization of enhanced service in the IETF . 13 4.4 Revealing moments: the greater obstacle is economics not technology . 15 5 Non-technical barriers to enhanced services on the Internet (2000s) 15 5.1Early2000s:afuneralwakeforQoS............................ 15 5.2 Mid 2000s: Working with industry to gain insight . 16 5.3 Late 2000s: QoS becomes a public policy issue . 17 6 Evolving interconnection structure and implications for enhanced services (2010s) 20 6.1 Expansion of network interconnection scale and scope . 20 6.2 Emergence of private IP-based platforms to support enhanced services . 22 6.3 Advancing our empirical understanding of performance impairments .