Summer Assignment 2019 the Summer Assignment Is to Help
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multivalent Metals and Polyatomic Ions 1
Name Date Comprehension Section 4.2 Use with textbook pages 189–193. Multivalent metals and polyatomic ions 1. Define the following terms: (a) ionic compound (b) multivalent metal (c) polyatomic ion 2. Write the formulae and names of the compounds with the following combination of ions. The first row is completed to help guide you. Positive ion Negative ion Formula Compound name (a) Pb2+ O2– PbO lead(II) oxide (b) Sb4+ S2– (c) TlCl (d) tin(II) fluoride (e) Mo2S3 (f) Rh4+ Br– (g) copper(I) telluride (h) NbI5 (i) Pd2+ Cl– 3. Write the chemical formula for each of the following compounds. (a) manganese(II) chloride (f) vanadium(V) oxide (b) chromium(III) sulphide (g) rhenium(VII) arsenide (c) titanium(IV) oxide (h) platinum(IV) nitride (d) uranium(VI) fluoride (i) nickel(II) cyanide (e) nickel(II) sulphide (j) bismuth(V) phosphide 68 MHR • Section 4.2 Names and Formulas of Compounds © 2008 McGraw-Hill Ryerson Limited 0056_080_BCSci10_U2CH04_098461.in6856_080_BCSci10_U2CH04_098461.in68 6688 PDF Pass 77/11/08/11/08 55:25:38:25:38 PPMM Name Date Comprehension Section 4.2 4. Write the formulae for the compounds formed from the following ions. Then name the compounds. Ions Formula Compound name + – (a) K NO3 KNO3 potassium nitrate 2+ 2– (b) Ca CO3 + – (c) Li HSO4 2+ 2– (d) Mg SO3 2+ – (e) Sr CH3COO + 2– (f) NH4 Cr2O7 + – (g) Na MnO4 + – (h) Ag ClO3 (i) Cs+ OH– 2+ 2– (j) Ba CrO4 5. Write the chemical formula for each of the following compounds. (a) barium bisulphate (f) calcium phosphate (b) sodium chlorate (g) aluminum sulphate (c) potassium chromate (h) cadmium carbonate (d) calcium cyanide (i) silver nitrite (e) potassium hydroxide (j) ammonium hydrogen carbonate © 2008 McGraw-Hill Ryerson Limited Section 4.2 Names and Formulas of Compounds • MHR 69 0056_080_BCSci10_U2CH04_098461.in6956_080_BCSci10_U2CH04_098461.in69 6699 PDF Pass77/11/08/11/08 55:25:39:25:39 PPMM Name Date Comprehension Section 4.2 Use with textbook pages 186–196. -
Crown Chemical Resistance Chart
Crown Polymers, Corp. 11111 Kiley Drive Huntley, IL. 60142 USA www.crownpolymers.com 847-659-0300 phone 847-659-0310 facisimile 888-732-1270 toll free Chemical Resistance Chart Crown Polymers Floor and Secondary Containment Systems Products: CrownShield covers the following five (4) formulas: CrownShield 50, Product No. 320 CrownCote, Product No. 401 CrownShield 40-2, Product No. 323 CrownShield 28, Product No. 322 CrownPro AcidShield, Product No. 350 CrownCote AcidShield, Product No. 430 CrownPro SolventShield, Product No. 351 CrownCote SolventShield, Product No. 440 This chart shows chemical resistance of Crown Polymers foundational floor and secondary containment product line that would be exposed to chemical spill or immersion conditions. The chart was designed to provide general product information. For specific applications, contact your local Crown Polymers Floor and Secondary Containment Representative or call direct to the factory. ; Resistant to chemical immersion up to 7 days followed by wash down with water 6 Spillage environments that will be cleaned up within 72 hours after initial exposure. 9 Not Recommended Chemical CrownShield SolventShield AcidShield Chemical CrownShield SolventShield AcidShield 1, 4-Dichloro-2-butene 9 6 6 Aluminum Bromate ; ; ; 1, 4-Dioxane 9 6 6 Aluminum Bromide ; ; ; 1-1-1 Trichloroethane 9 ; ; Aluminum Chloride ; ; ; 2, 4-Pentanedione 6 ; 6 Aluminum Fluoride (25%) ; ; ; 3, 4-Dichloro-1-butene 6 6 6 Aluminum Hydroxide ; ; ; 4-Picoline (0-50%) 9 6 6 Aluminum Iodine ; ; ; Acetic Acid (0-15%) 9 6 6 -
Synthesis of Protected 2′-Deoxy-2′-Fluoro-Β-D-Arabinonucleosides
Synthesis of Protected UNIT 1.7 2′-Deoxy-2′-fluoro-β-D-arabinonucleosides This unit describes in detail the preparation of protected 2′-deoxy-2′-fluoroarabinonu- cleosides. These building blocks are required for the synthesis of 2′-deoxy-2′-fluoroarabi- nonucleic acid (2′F-ANA), an oligonucleotide analog exhibiting very promising antisense properties (Damha et al., 1998; Wilds and Damha, 2000; Lok et al., 2002). The preparation of phosphoramidites from these building blocks and the synthesis of 2′F-ANA are described in UNIT 4.15. SYNTHESIS AND CHARACTERIZATION OF N2-ISOBUTYRYL-9- BASIC [2-DEOXY-2-FLUORO-5-O-(4-METHOXYTRITYL)-β-D- PROTOCOL 1 ARABINOFURANOSYL]GUANINE Synthesis of araF-G (S.6; Figure 1.7.3) was accomplished via the condensation of 2,6-dichloropurine with either 2-deoxy-2-fluoro-1,3,5-tri-O-benzoyl-α-D-arabinofura- nose (S.2; Figure 1.7.1) or 2-deoxy-2-fluoro-3,5-di-O-benzoyl-α-D-arabinofuranosyl bromide (S.3) as a key chemical step (Figure 1.7.2). Starting from S.3 gives a higher yield of S.4 and simplifies its purification. The versatile intermediate N9-β-glycoside (S.4) was transformed into araF-G in three steps (Figure 1.7.3). Treatment of S.4 with NaN3 in ethanol gave the 2,6-diazido derivative (Wower et al., 1994). This product was then subjected to reduction with SnCl2 in a mixture of dichloromethane/methanol to give its 2,6-diamino derivative (Tennila et al., 2000). Standard debenzoylation and deamination gave araF-G. -
Carbon–Fluorine Bond Formation
Carbon–Fluorine Bond Formation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Furuya, Takeru, Christian A. Kuttruff, and Tobias Ritter. 2008. Carbon–fluorine bond formation. Current Opinion in Drug Discovery and Development 11(6): 803–819. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8301597 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Carbon–Fluorine Bond Formation Takeru Furuya, Christian A. Kuttruff, and Tobias Ritter* Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge, MA 02138 [email protected] Phone 617 496 0750 Fax 617 496 4591 1 Abstract We present a selection of carbon–fluorine bond formations that have been developed in the recent past. An overview of the most common fluorination reagents is followed by fluorination reactions organized by reactivity. We have distinguished between nucleophilic and electrophilic fluorinations as well as aliphatic and aromatic fluorinations. Each section is divided into more specific reaction classes and examples for syntheses of pharmaceuticals, 18F-radiolabeling, and mechanistic investigations are provided. Keywords Fluorination; carbon–fluorine bond formation; nucleophilic fluorination; electrophilic fluorination; fluorinating -
Gas Conversion Factor for 300 Series
300GasTable Rec # Gas Symbol GCF Density (g/L) Density (g/L) 25° C / 1 atm 0° C / 1 atm 1 Acetic Acid C2H4F2 0.4155 2.7 2.947 2 Acetic Anhydride C4H6O3 0.258 4.173 4.555 3 Acetone C3H6O 0.3556 2.374 2.591 4 Acetonitryl C2H3N 0.5178 1.678 1.832 5 Acetylene C2H2 0.6255 1.064 1.162 6 Air Air 1.0015 1.185 1.293 7 Allene C3H4 0.4514 1.638 1.787 8 Ammonia NH3 0.7807 0.696 0.76 9 Argon Ar 1.4047 1.633 1.782 10 Arsine AsH3 0.7592 3.186 3.478 11 Benzene C6H6 0.3057 3.193 3.485 12 Boron Trichloride BCl3 0.4421 4.789 5.228 13 Boron Triflouride BF3 0.5431 2.772 3.025 14 Bromine Br2 0.8007 6.532 7.13 15 Bromochlorodifluoromethane CBrClF2 0.3684 6.759 7.378 16 Bromodifluoromethane CHBrF2 0.4644 5.351 5.841 17 Bromotrifluormethane CBrF3 0.3943 6.087 6.644 18 Butane C4H10 0.2622 2.376 2.593 19 Butanol C4H10O 0.2406 3.03 3.307 20 Butene C4H8 0.3056 2.293 2.503 21 Carbon Dioxide CO2 0.7526 1.799 1.964 22 Carbon Disulfide CS2 0.616 3.112 3.397 23 Carbon Monoxide CO 1.0012 1.145 1.25 24 Carbon Tetrachloride CCl4 0.3333 6.287 6.863 25 Carbonyl Sulfide COS 0.668 2.456 2.68 26 Chlorine Cl2 0.8451 2.898 3.163 27 Chlorine Trifluoride ClF3 0.4496 3.779 4.125 28 Chlorobenzene C6H5Cl 0.2614 4.601 5.022 29 Chlorodifluoroethane C2H3ClF2 0.3216 4.108 4.484 30 Chloroform CHCl3 0.4192 4.879 5.326 31 Chloropentafluoroethane C2ClF5 0.2437 6.314 6.892 32 Chloropropane C3H7Cl 0.308 3.21 3.504 33 Cisbutene C4H8 0.3004 2.293 2.503 34 Cyanogen C2N2 0.4924 2.127 2.322 35 Cyanogen Chloride ClCN 0.6486 2.513 2.743 36 Cyclobutane C4H8 0.3562 2.293 2.503 37 Cyclopropane C3H6 0.4562 -
Alfa Laval Black and Grey List, Rev 14.Pdf 2021-02-17 1678 Kb
Alfa Laval Group Black and Grey List M-0710-075E (Revision 14) Black and Grey list – Chemical substances which are subject to restrictions First edition date. 2007-10-29 Revision date 2021-02-10 1. Introduction The Alfa Laval Black and Grey List is divided into three different categories: Banned, Restricted and Substances of Concern. It provides information about restrictions on the use of Chemical substances in Alfa Laval Group’s production processes, materials and parts of our products as well as packaging. Unless stated otherwise, the restrictions on a substance in this list affect the use of the substance in pure form, mixtures and purchased articles. - Banned substances are substances which are prohibited1. - Restricted substances are prohibited in certain applications relevant to the Alfa Laval group. A restricted substance may be used if the application is unmistakably outside the scope of the legislation in question. - Substances of Concern are substances of which the use shall be monitored. This includes substances currently being evaluated for regulations applicable to the Banned or Restricted categories, or substances with legal demands for monitoring. Product owners shall be aware of the risks associated with the continued use of a Substance of Concern. 2. Legislation in the Black and Grey List Alfa Laval Group’s Black and Grey list is based on EU legislations and global agreements. The black and grey list does not correspond to national laws. For more information about chemical regulation please visit: • REACH Candidate list, Substances of Very High Concern (SVHC) • REACH Authorisation list, SVHCs subject to authorization • Protocol on persistent organic pollutants (POPs) o Aarhus protocol o Stockholm convention • Euratom • IMO adopted 2015 GUIDELINES FOR THE DEVELOPMENT OF THE INVENTORY OF HAZARDOUS MATERIALS” (MEPC 269 (68)) • The Hong Kong Convention • Conflict minerals: Dodd-Frank Act 1 Prohibited to use, or put on the market, regardless of application. -
Oxidation Trifluoride (DAST) Selectfluor™
Vol. 5 No. 1 Synthetic Methods Iodotoluene difluoride Diethylaminosulfur Oxidation trifluoride (DAST) Selectfluor™ Ishikawa’s Reagent Other Reagents for Fluorination Dess–Martin Periodinane Bis(pyridine)iodonium tetrafluoroborate Magnesium bis(monoperoxyphthalate) hexahydrate Chloramine-T Other Reagents for Oxidation Advancing Science 2 Introduction Oxidation is one of the most common transformations in all of organic chemistry. As a result, the number of oxidizing agents and reactions at the research chemist’s disposal number in the hundreds; Sigma-Aldrich is proud to offer a new series of ChemFiles—called however, few provide extended utility across a broad range of Synthetic Methods—to our Organic Chemistry and Drug Discovery substrates while remaining able to selectively oxidize one group customers. Each piece will highlight a specific motif or selected over another. Fewer yet remain effective under mild conditions. At organic transformation, and the range of products Sigma-Aldrich Sigma-Aldrich, we are committed to being your preferred supplier offers in this area. Our first installment focuses on oxidation for reagents used in oxidation—and we’d like to highlight some chemistry. In the future, we will highlight other synthetic methods new, popular, and versatile oxidation reagents in this ChemFile. such as asymmetric synthesis and reduction. We trust you will find these pieces useful, and we welcome your comments for Listed on the following pages is a selection of oxidation reagents future installments. If you cannot find a product for your specific available from Sigma-Aldrich. For a complete listing of oxidation research in organic synthesis or drug discovery, we encourage your reagents, please visit sigma-aldrich.com/oxidation. -
Chemical Resistance 100% SOLIDS EPOXY SYSTEMS
Chemical Resistance 100% SOLIDS EPOXY SYSTEMS CHEMICAL 8300 SYSTEM 8200 SYSTEM 8000 SYSTEM OVERKOTE PLUS HD OVERKOTE HD OVERKRETE HD BASED ON ONE YEAR IMMERSION TESTING –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Acetic Acid (0-15%) G II Acetonitrile LLG L Continuous Immersion Acetone (0-20%) LLL Acetone (20-30%) Suitable for continuous immersion in that chemical (based on LLG Acetone (30-50%) L G I ONE YEAR testing) to assure unlimited service life. Acetone (50-100%) G II Acrylamide (0-50%) LLL G Short-Term Exposure Adipic Acid Solution LLL Alcohol, Isopropyl LLL Suitable for short-term exposure to that chemical such as Alcohol, Ethyl LLG secondary containment (72 hours) or splash and spill Alcohol, Methyl LLI (immediate clean-up). Allyl Chloride LLI Allylamine (0-20%) L L I Allylamine (20-30%) L G I I Not Suitable Allylamine (30-50%) GGI Not suitable for any exposure to that chemical. Aluminum Bromide LL– Aluminum Chloride L L – Aluminum Fluoride (0-25%) L L – This chart shows chemical resistance of our various Aluminum Hydroxide LLL 1 topping materials (90 mils – ⁄4"). These ratings are based on Aluminum Iodide LL– temperatures being ambient. At higher temperatures, chemical Aluminum Nitrate LL– resistance may be effected. When chemical exposure is Aluminum Sodium Chloride L L – minimal to non-existent, a 9000 System–FlorClad™ HD or Aluminum Sulfate LLL 4600 System– BriteCast™ HD may be used. Alums L L L 2-Aminoethoxyethanol Resistance data is listed with the assumption that the material GGG has properly cured for at least four days, at recommended Ammonia – Wet L L – temperatures, prior to any chemical exposure. -
(12) Patent Application Publication (10) Pub. No.: US 2007/0128680 A1 Lopes Et Al
US 2007.0128680A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0128680 A1 Lopes et al. (43) Pub. Date: Jun. 7, 2007 (54) HYDRAZINES AND DERVATIVES (30) Foreign Application Priority Data PRODUCTION PROCESS FROM HYDRAZINES AND DICARBOXYLIC ACID Nov. 25, 2003 (BR)...................................... PIO3O7864-7 (76) Inventors: Claudio Cerqueira Lopes, Del Publication Classification Castilho (BR); Rosangela Sabattini Capella Lopes, Rio de Janeiro (BR): (51) Int. Cl. Jari Nobrega Cardoso, Rio de Janeiro CI2O I/66 (2006.01) (BR); Jacqueline Alves da Silva, Rio C07D 237/28 (2006.01) de Janeiro (BR); Leticia Gomes Ferreira, Rio de Janeiro (BR) (52) U.S. Cl. .............................. 435/8; 544/235; 564/148; 564/149 Correspondence Address: POWELL GOLDSTEIN LLP ONE ATLANTC CENTER (57) ABSTRACT FOURTEENTH FLOOR 1201 WEST PEACHTREE STREET NW ATLANTA, GA 30309-3488 (US) The present invention describes a process to form hydrazides from the reaction of a hydrazine and a dicar (21) Appl. No.: 10/595,943 boxylic, using a Lewis acid as a main reagent of the reaction. The reaction occurs in a safe reactional environment, ulti (22) PCT Filed: Nov. 25, 2004 lizing Smooth conditions, neither involving high tempera (86) PCT No.: PCT/BRO4/OO236 tures nor high pressures, producing the desired products with high yields, between 90-95%. The invention also S 371(c)(1), describes a kit for utilization of chemiluminescent sub (2), (4) Date: May 22, 2006 stances, comprised of two solutions. US 2007/0128680 A1 Jun. 7, 2007 HYDRAZINES AND DERVATIVES PRODUCTION 0005 There are many applications for chemiluminescent PROCESS FROM HYDRAZINES AND substances besides forensics. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Thermal-Chem Corp. High Performance Epoxy Topcoats Products
Polyurethane Thermal-Chem Corp. High Performance Epoxy Topcoats Products Chemical Resistance Chart E56 E = Excellent G = Good F = Fair Clear surfacer Plus 3.0 DecoTop < = Occasional Spillage U = Do Not Use AcidGard VersiGard ArmorTred Resurfacer Resurfacer ArmorClad Resurfacer Re DecoThane ArmorBond SolventGard DecoTop P92 Chemical 750 755 757 728 731 736 705 748 1056 1060 Polyurethane Thermal-Chem Corp. High Performance Epoxy Topcoats Products Chemical Resistance Chart E56 E = Excellent G = Good F = Fair Clear surfacer Plus 3.0 DecoTop < = Occasional Spillage U = Do Not Use AcidGard VersiGard ArmorTred Resurfacer Resurfacer ArmorClad Resurfacer Re DecoThane ArmorBond SolventGard DecoTop P92 Chemical 750 755 757 728 731 736 705 748 1056 1060 1, 4-Dichloro-2-butene U E E U U U U U U U 1, 4-Dioxane U < < U U U U U U U 1-1-1 Trichloroethane E E E F F G G F G G 2, 4-Pentanedione F E E < < < < < F F 3, 4-Dichloro-1-butene < E E U U U U U U U 4-Picoline (0-50%) U < < U U U U U U V Acetic Acid (0-5%) E E E G G G G G G G Acetic Acid (5-15%) < E E < < < < < F F Acetone(0-20%) E E E F G G G G E F Acetone (20-30% < E E < < < < < < < Acetone (30-50%) < E E < < < < < < < Acetone (50-100%) < F F < < < < < E < Acetonitrile F E E < < < < < < < Acrylamide (0-50%) E E E F G G G G E F Adipic Acid Solution E E E E E E E E E G Alcohol, Ethyl E E E F F F F F G F Alcohol, Isopropyl E E E F F F F F G F Alcohol, Methyl < E E < < < < < < < Allyl Chloride < E E U U U U U < < Allylamine (0-20%) < E E U U U U U < < Allylamine (20-30%) < E E U U U U U < < Allylamine (30-50%) U < < U U U U U U U Aluminum Bromate E E E F G G G G E E Aluminum Bromide E E E E E E E E E E Aluminum Chloride E E E E E E E E E E Aluminum Fluoride (25%) E E E E E E E E E E Polyurethane Thermal-Chem Corp. -
BOSC Review of US EPA ORD Research Programs
May 8, 2017 Robert Kavlock, Ph.D. Acting Assistant Administrator Office of Research and Development U.S. Environmental Protection Agency Dear Dr. Kavlock: On behalf of the Board of Scientific Counselors (BOSC), I am pleased to provide you a collection of reports addressing Charge Questions posed by five of the National Research Program areas and the four cross- cutting Roadmap programs. In general, we have found these programs to be on track to meet the objectives in their current Strategic Research Action Plans (StRAPs) and Roadmaps. We provide a series of recommendations to continue to strengthen the excellent research being done in ORD, and look forward to working with you in the future on these programs. Sincerely, Deborah L. Swackhamer, Ph.D. Chair, BOSC Cc: Bruce Rodan, Associate Director of Science REVIEW OF U.S. EPA OFFICE OF RESEARCH AND DEVELOPMENT’S RESEARCH PROGRAMS BOSC EXECUTIVE COMMITTEE Chair Deborah L. Swackhamer, Ph.D. James N. Galloway, Ph.D. I. Leslie Rubin, M.D. University of Minnesota University of Virginia Developmental Pediatric Specialists Viney Aneja, Ph.D. Earthea A. Nance, Ph.D., P.E. Sandra Smith, M.S. North Carolina State University Texas Southern University AECOM Shahid Chaudhry Paula Olsiewski, Ph.D., P.E. Gina Solomon, M.D., M.P.H. California Energy Commission Alfred P. Sloan Foundation California EPA Elizabeth Corley, Ph.D. Diane E. Pataki, Ph.D. Ponisseril Somasundaran, Ph.D. Arizona State University The University of Utah Columbia University Susan E. Cozzens, Ph.D. Robert Richardson, Ph.D. Tammy P. Taylor, Ph.D. Georgia Institute of Technology Michigan State University Pacific Northwest National Laboratory Courtney Flint, Ph.D.