Mobile Cloud Gaming: the Real-World Cloud Gaming Experience in Los Angeles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subjective Quality Assessment for Cloud Gaming
Article Subjective Quality Assessment for Cloud Gaming Abdul Wahab 1,* , Nafi Ahmad 1 , Maria G. Martini 2 and John Schormans 1 1 School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Nafi[email protected] (N.A.); [email protected] (J.S.) 2 School of Computer Science and Mathematics, Kingston University, River House, 53-57 High Street, Kingston upon Thames, Surrey KT1 1LQ, UK; [email protected] * Correspondence: [email protected] Abstract: Using subjective testing, we study the effect of the network parameters, delay and packet loss ratio, on the QoE of cloud gaming. We studied three different games, selected based on genre, popularity, content complexity and pace, and tested them in a controlled network environment, using a novel emulator to create realistic lognormal delay distributions instead of relying on a static mean delay, as used previously; we also used Parsec as a good representative of the state of the art. We captured user ratings on an ordinal Absolute Category Rating scale for three quality dimensions: Video QoE, Game-Playability QoE, and Overall QoE. We show that Mean Opinion Scores (MOS) for the game with the highest levels of content complexity and pace are most severely affected by network impairments. We also show that the QoE of interactive cloud applications rely more on the game playability than the video quality of the game. Unlike earlier studies, the differences in MOS are validated using the distributions of the underlying dimensions. A Wilcoxon Signed-Rank test showed that the distributions of Video QoE and Game Playability QoE are not significantly different. -
Cisco 200 Series Smart Switches Administration Guide 1.4.0.X
ADMINISTRATION GUIDE Cisco Small Business 200 Series Smart Switch Administration Guide Table of Contents 1 Table of Contents Chapter 1: Table of Contents 1 Chapter 2: Getting Started 8 Starting the Web-based Configuration Utility 8 Quick Start Device Configuration 12 Interface Naming Conventions 12 Window Navigation 14 Chapter 3: Status and Statistics 18 System Summary 18 Ethernet Interfaces 18 Etherlike Statistics 19 802.1X EAP Statistics 20 Health 21 RMON 22 View Log 29 Chapter 4: Administration: System Log 30 Setting System Log Settings 30 Setting Remote Logging Settings 32 Viewing Memory Logs 33 Chapter 5: Administration: File Management 35 System Files 35 Upgrade/Backup Firmware/Language 38 Download/Backup Configuration/Log 41 Cisco Small Business 200 Series Smart Switch Administration Guide 1 Table of Contents 1 Configuration Files Properties 46 Copy/Save Configuration 46 Auto Configuration/Image Update via DHCP 48 56 Chapter 6: Administration 57 Device Models 57 System Settings 59 Management Interface 61 User Accounts 61 Defining Idle Session Timeout 61 Time Settings 62 System Log 62 File Management 62 Rebooting the Device 62 Health 64 Diagnostics 65 Discovery - Bonjour 65 Discovery - LLDP 66 Discovery - CDP 66 Ping 66 Chapter 7: Administration: Time Settings 68 System Time Options 68 SNTP Modes 70 Configuring System Time 70 Chapter 8: Administration: Diagnostics 77 Copper Ports Tests 77 Displaying Optical Module Status 79 Cisco Small Business 200 Series Smart Switch Administration Guide 2 Table of Contents 1 Configuring Port and -
Video Games Review DRAFT5-16
Video Games: History, Technology, Industry, and Research Agendas Table of Contents I. Overview ....................................................................................................................... 1 II. Video Game History .................................................................................................. 7 III. Academic Approaches to Video Games ................................................................. 9 1) Game Studies ....................................................................................................................... 9 2) Video Game Taxonomy .................................................................................................... 11 IV. Current Status ........................................................................................................ 12 1) Arcade Games ................................................................................................................... 12 2) Console Games .................................................................................................................. 13 3) PC Standalone Games ...................................................................................................... 14 4) Online Games .................................................................................................................... 15 5) Mobile Games .................................................................................................................... 16 V. Recent Trends .......................................................................................................... -
The Effects of Latency on Player Performance and Experience in A
The Effects of Latency on Player Performance and Experience in a Cloud Gaming System Robert Dabrowski, Christian Manuel, Robert Smieja May 7, 2014 An Interactive Qualifying Project Report: submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science Approved by: Professor Mark Claypool, Advisor Professor David Finkel, Advisor This report represents the work of three WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. Abstract Due to the increasing popularity of thin client systems for gaming, it is important to un- derstand the effects of different network conditions on users. This paper describes our experiments to determine the effects of latency on player performance and quality of expe- rience (QoE). For our experiments, we collected player scores and subjective ratings from users as they played short game sessions with different amounts of additional latency. We found that QoE ratings and player scores decrease linearly as latency is added. For ev- ery 100 ms of added latency, players reduced their QoE ratings by 14% on average. This information may provide insight to game designers and network engineers on how latency affects the users, allowing them to optimize their systems while understanding the effects on their clients. This experiment design should also prove useful to thin client researchers looking to conduct user studies while controlling not only latency, but also other network conditions like packet loss. Contents 1 Introduction 1 2 Background Research 4 2.1 Thin Client Technology . -
Mobile Gaming Playbook
MOBILE GAMING PLAYBOOK BEST PRACTICES FOR MARKETING AND MONETIZING MOBILE GAMES Nadeem Almoayyed ([email protected]) https://www.linkedin.com/in/nadeemalmoayyed/ Kathy Liao ([email protected]) https://www.linkedin.com/in/liaokathy/ Ivan Zakharov ([email protected]) https://www.linkedin.com/in/ivan-zakharov-vc TUCK CENTER FOR DIGITAL STRATEGIES PAGEPAGE 01 01 PRISMA INC . TABLE OF CONTENTS INTRODUCTION 2 MARKETING 3 Importance of Soft Launches 4 Measuring Marketing Success 6 Creative Assets: In-House vs Outside Agency 8 Customer Segmentation 9 Advertising Optimization 11 CRM: Customer Relationship Management System 12 Influencer Marketing 13 Offline Attribution 15 MANAGING IP 1 6 ( INTELLECTUAL PROPERTY ) BUSINESS MODELS IN AAA 1 9 GAMING Evolution of Monetization in Gaming 19 How the Subscription World Looks Today 21 What Mobile Can Learn from AAA around Subscriptions 22 Subscription Platforms 23 What Works and What Doesn't in Subscription Platforms 25 What Should Mobile Game Developers Do? 27 FINANCING AND PRICING 2 8 STRATEGY Game Development Cost Trends 28 Key Pricing Trends 29 THETUCK CENTER CENTERTUCK CENTERFOR FOR DIGITAL DIGITAL FOR DIGITALSTRATEGIES STRATEGIES STRATEGIES PAGEPAGE 0402 02 INTRODUCTION As mobile technology improves and mobile phone penetration increases around the world, mobile games have seen their popularity increase over the years. The mobile game industry is currently worth $68.5B, and many of the largest gaming companies are investing heavily in the space. Activision acquired King Digital Entertainment several years ago to solidify its position in the mobile gaming space, Blizzard has invested heavily in Hearthstone’s mobile presence, and Riot Games is developing a mobile version of its hugely popular League of Legends IP due out in 2020. -
OFFLINE GAMING VS CLOUD GAMING (ONLINE GAMING) Mr
ISSN: 0974-3308, VOL. 11, NO. 2 DECEMBER 2018 @ SRIMCA 99 OFFLINE GAMING VS CLOUD GAMING (ONLINE GAMING) Mr. Amit Khatri Abstract—Games has always been a major source of entertainment in every generation and so exiting their history is, because it has various factor involved like Video Games Industry and various generations of video games. Due to improvements in graphics, a revolution has occurred in computer games. Storage for Video Games has always been a problem whether it is a Gaming Console or a PC but has been resolved generation by generation. Games also attracted the uninterested audience. Offline Gaming has been very popular for a year but has various drawbacks. Cloud Gaming is the resolution against Offline Gaming. This paper talks about how Cloud Gaming is taking place of Offline Gaming with much powerful hardware systems and processes. Keywords—Gaming, Cloud Gaming, Gaming PC, Gaming Console, Video Games. I. GAMING AND ITS HISTORY Computerized game playing, whether it is over a personal computer, mobile phone or a video game console can be referred to as Gaming. An individual who plays video games is recognized as a gamer [1]. In every generation of technology evolution, graphics of the game have been improved. When we think the history of video games we usually think of games like Tic- tac-toe, Tetris, Pacman, pong and many more but now these games use graphics seems like reality. In the 1950s, People can’t think of playing card games such as Solitaire, Blackjack, Hearts, Spider Solitaire and so on, on tv or computer but now the stage has reached more ahead from that [1]. -
Esports: a Network Focus
Esports: A Network Focus ©2019 Extreme Networks, Inc. All rights reserved Esports: A Network Focus ESPORTS Latency/ Visibility Security ClouD/ISP Tools/Network- Performance #1 Management 2 ©2019 Extreme Networks, Inc. All rights reserved Esports: A Network Focus Latency/Jitter “Anything over 1 or 2 Mbps download speed is going to be sufficient for most online gaming. - What matters for online gamers is low latency. Latency (defined as the average time it takes a network packet to travel from you, to a server, and back) is that lag you can sometimes see online, be it in a web page download stuttering or game struggling to keep up.” IND (Interpolation Delay) is in some games Stat’s Display. IND is the small buffer of time between when your client gets information from the server, and when it's shown to you in the game. This is normally around 50-60ms for normal games. RTT (RounD Trip Time) https://www.imperva.com/learn/performance/round-trip-time-rtt/ Round-trip time (RTT) is the duration, measured in milliseconds, from when a browser sends a request to when it receives a response from a server. It’s a key performance metric for web applications and one of the main factors, along with Time to First Byte (TTFB), when measuring page load time and network latency Protocols Online gaming uses TCP for non-critical traffic such as chat, game lobbies, etc. The Game traffic uses UDP. 3 ©2019 Extreme Networks, Inc. All rights reserved Esports: A Network Focus Visibility If you can’t see it, you can’t manage it. -
Cloud Gaming: Enabling a Next Generation Gaming and Streaming Paradigm
CLOUD GAMING: ENABLING A NEXT GENERATION GAMING AND STREAMING PARADIGM Analysts: Eric Abbruzzese, Michael Inouye TABLE OF CONTENTS 1. A CONFLUENCE OF GAMING AND STREAMING MARKETS 1. A CONFLUENCE OF GAMING AND The immense video streaming market is already laying the groundwork for high-volume, STREAMING MARKETS ....................... 1 high-bandwidth content potential, so the onset of cloud gaming excitement was not a sur- 1.1. Gaming Market Dynamics .........................3 prise. The gaming market is responsible for more than US$150 billion in revenue overall. 1.2. Video Market Dynamics and Any new service or technology that can tap into even a sliver of that revenue is promising. Similarities to Gaming ...............................4 2. STATE OF THE CLOUD GAMING MARKET 6 Cloud gaming promises a layer of flexibility not previously possible in the market. Low end- 2.1. Business Models Today and to-end latency enables data centers to take the place of processing needed by a user’s Shifting toward Cloud Gaming in the Near Future ........................................7 Personal Computer (PC), console, or mobile device. New spectrum availability and wired 2.2. Technical Details .......................................8 broadband opportunity, mature existing infrastructure from the video market, and increas- 2.3. Competition and Differentiators .............10 ingly powerful and efficient cloud-native technologies all contribute to this progression. Pro- 2.4. Gamification Outside of Gaming .............11 cessing in the cloud allows for any device to have the processing power of a high-end PC 2.5. Immersive Technologies as an without the local hardware cost. Cloud gaming represents a first step in cloud infrastructure Upcoming Feature for Cloud Gaming .....12 usage, with distributed and load-balanced compute in the future allowing more scalable 3. -
ENSURING the GAME IS ALWAYS “ON” High-Performance, Highly Granular and Versatile Ddos Mitigation for Gaming Providers
SOLUTION BRIEF ENSURING THE GAME IS ALWAYS “ON” High-performance, Highly Granular and Versatile DDoS Mitigation for Gaming Providers The online gaming industry is constantly combating Distributed Denial of Service Challenge: (DDoS) attacks, and the media provides many examples of “hacker” groups claiming Gaming providers need to ensure service responsibility for taking down many online games. The motives for deploying such uptime under all circumstances, as attacks vary from extortion and competitive, to retaliation and boasting. degraded availability leads to revenue and reputation loss. The gaming Online services known as “booters” or “stress testers” or even DDoS-as-a-Service industry accounts for more than a (DDoSaaS) are readily available. Anyone can go online, anonymously pay through bitcoin third of all DDoS attacks, while the and have their victim of choice booted off the Net. attacks themselves continue to increase Online video games are now mostly hosted by the software companies that create in frequency, persistence, size and the gaming software, or the gaming platform. This centralized position unfortunately sophistication. creates a focal point for DDoS attacks, whereas gamer-to-gamer attacks are a problem Solution: on the Internet Service Provider (ISP) level. Together with government and ISPs, gaming Thunder TPS provides a high- providers (both video games and gambling) stand out as the most likely DDoS targets, performance, versatile and highly accounting for more than a third of all DDoS attacks. And combating them is critically configurable DDoS solution that important to these businesses, as the availability of online gaming services directly delivers automated threat detection and relates to an organization’s revenue, as well as its reputation. -
Input Latency Detection in Expert-Level Gamers an Experiment in Visuomotor Perception
Input Latency Detection in Expert-Level Gamers An experiment in visuomotor perception Eryk Banatt Stefan Uddenberg and Brian Scholl Yale University Department of Cognitive Science Running Head : Input Latency Detection Email : [email protected] Phone : 973-945-5263 Word Count : 5205 words Version : 4/21/17 (submitted draft) Abstract (278 words) As video games have evolved more and more sophisticated, a market has emerged for people to use video games as a medium for competition, called “electronic sports” or “esports.” With such a market, manufacturers have started creating peripherals aimed at the highest level, much like a sports equipment manufacturer would create tennis rackets or shoes. Among these are monitors Input Latency Detection 2 that have very short delays between an input and the screen updating with that input. The most advanced monitors have delays in the milliseconds, but some sub-communities prefer older screens over newer ones based upon the claim that the greater delay of newer monitors is noticeably distracting – there have been complaints from top-level competitors on delays of as small as 2ms, whereas most people, even in these communities, seem to not even notice delays of significantly longer than that. This project ran an experiment to assess the validity of input latency detection differences among populations, to see if there was a noticeable correlation between level of expertise and ability to detect finer and finer levels of delay. To be precise, this experiment attempted to determine if population differences in latency detection existed at all, and if they are domain-specific (i.e. gaming experts can detect it, but only in their own game) or generalizable (i.e. -
Real-Time Latency: Rethinking Remote Networks
Real-Time Latency: Rethinking Remote Networks You can buy your way out of “bandwidth problems. But latency is divine ” || Proprietary & Confidential 2 Executive summary ▲ Latency is the time delay over a communications link, and is primarily determined by the distance data must travel between a user and the server ▲ Low earth orbits (LEO) are 35 times closer to Earth than traditional geostationary orbit (GEO) used for satellite communications. Due to the closeness and shorter data paths, LEO-based networks have latency similar to terrestrial networks1 ▲ LEO’s low latency enables fiber quality connectivity, benefiting users and service providers by - Loading webpages as fast as Fiber and ~8 times faster than a traditional satellite system - Simplifying networks by removing need for performance accelerators - Improving management of secure and encrypted traffic - Allowing real-time applications from remote areas (e.g., VoIP, telemedicine, remote-control machines) ▲ Telesat Lightspeed not only offers low latency but also provides - High throughput and flexible capacity - Transformational economics - Highly resilient and secure global network - Plug and play, standard-based Ethernet service 30 – 50 milliseconds Round Trip Time (RTT) | Proprietary & Confidential 3 Questions answered ▲ What is Latency? ▲ How does it vary for different technologies? How does lower latency improve user experience? What business outcomes can lower latency enable? Telesat Lightspeed - what is the overall value proposition? | Proprietary & Confidential 4 What is -
Performance Impact of Packet Multiplexing on Massive Multiplayer Online Games Dammak Marwa, Yassine Boujelben, Noura Sellami, Iryna Andriyanova
Performance impact of packet multiplexing on massive multiplayer online games Dammak Marwa, Yassine Boujelben, Noura Sellami, Iryna Andriyanova To cite this version: Dammak Marwa, Yassine Boujelben, Noura Sellami, Iryna Andriyanova. Performance impact of packet multiplexing on massive multiplayer online games. Proceedings of the ACM Summer Computer Simulation Conference, Jul 2016, Montreal, Canada. hal-01709721 HAL Id: hal-01709721 https://hal.archives-ouvertes.fr/hal-01709721 Submitted on 15 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Performance impact of packet multiplexing on massive multiplayer online games Marwa Dammak Yassine Boujelben Noura Sellami LETI, ENIS LETI, ENET’COM LETI, ENIS University of Sfax, Tunisia University of Sfax, Tunisia University of Sfax, Tunisia [email protected] [email protected] [email protected] Iryna Andriyanova ETIS, ENSEA University Cergy Pontoise, CNRS, France [email protected] ABSTRACT This share is increasing year after year and will grow at a Online games are more and more popular, resulting in an compound annual growth rate of 40% between 2014 and 2019 increasing share in the Internet traffic. These games gen- [8]. With the recent advent of cloud gaming and the gaming erate a huge number of packets with typically small pay- as a service (GaaS) solutions, the gaming traffic should be- loads, which overloads the network and deteriorates its effi- come one of the largest Internet traffic categories [2].