Satellites for Earth Science Agenda
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature -
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance -
Flight and Orbital Mechanics
Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE2-104, lecture hours 21-24: Interplanetary flight Ron Noomen October 25, 2012 AE2104 Flight and Orbital Mechanics 1 | Example: Galileo VEEGA trajectory Questions: • what is the purpose of this mission? • what propulsion technique(s) are used? • why this Venus- Earth-Earth sequence? • …. [NASA, 2010] AE2104 Flight and Orbital Mechanics 2 | Overview • Solar System • Hohmann transfer orbits • Synodic period • Launch, arrival dates • Fast transfer orbits • Round trip travel times • Gravity Assists AE2104 Flight and Orbital Mechanics 3 | Learning goals The student should be able to: • describe and explain the concept of an interplanetary transfer, including that of patched conics; • compute the main parameters of a Hohmann transfer between arbitrary planets (including the required ΔV); • compute the main parameters of a fast transfer between arbitrary planets (including the required ΔV); • derive the equation for the synodic period of an arbitrary pair of planets, and compute its numerical value; • derive the equations for launch and arrival epochs, for a Hohmann transfer between arbitrary planets; • derive the equations for the length of the main mission phases of a round trip mission, using Hohmann transfers; and • describe the mechanics of a Gravity Assist, and compute the changes in velocity and energy. Lecture material: • these slides (incl. footnotes) AE2104 Flight and Orbital Mechanics 4 | Introduction The Solar System (not to scale): [Aerospace -
Arxiv:1505.07033V2 [Astro-Ph.IM] 4 Sep 2015
September 7, 2015 0:46 manuscript Journal of Astronomical Instrumentation c World Scientific Publishing Company A CUBESAT FOR CALIBRATING GROUND-BASED AND SUB-ORBITAL MILLIMETER-WAVE POLARIMETERS (CALSAT) Bradley R. Johnson1, Clement J. Vourch2, Timothy D. Drysdale2, Andrew Kalman3, Steve Fujikawa4, Brian Keating5 and Jon Kaufman5 1Department of Physics, Columbia University, New York, NY 10027, USA 2School of Engineering, University of Glasgow, Glasgow, Scotland G12 8QQ, UK 3Pumpkin, Inc., San Francisco, CA 94112, USA 4Maryland Aerospace Inc., Crofton, MD 21114, USA 5Department of Physics, University of California, San Diego, CA 92093-0424, USA Received (to be inserted by publisher); Revised (to be inserted by publisher); Accepted (to be inserted by publisher); We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground- based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five \tones" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community, and (iii) The Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. -
Download Paper
Ever Wonder What’s in Molniya? We Do. John T. McGraw J. T. McGraw and Associates, LLC and University of New Mexico Peter C. Zimmer J. T. McGraw and Associates, LLC Mark R. Ackermann J. T. McGraw and Associates, LLC ABSTRACT Molniya orbits are high inclination, high eccentricity orbits which provide the utility of long apogee dwell time over northern continents, with the additional benefit of obviating the largest orbital perturbation introduced by the Earth’s nonspherical (oblate) gravitational potential. We review the few earlier surveys of the Molniya domain and evaluate results from a new, large area unbiased survey of the northern Molniya domain. We detect 120 Molniya objects in a three hour survey of ~ 1300 square degrees of the sky to a limiting magnitude of about 16.5. Future Molniya surveys will discover a significant number of objects, including debris, and monitoring these objects might provide useful data with respect to orbital perturbations including solar radiation and Earth atmosphere drag effects. 1. SPECIALIZED ORBITS Earth Orbital Space (EOS) supports many versions of specialized satellite orbits defined by a combination of satellite mission and orbital dynamics. Surely the most well-known family of specialized orbits is the geostationary orbits proposed by science fiction author Arthur C. Clarke in 1945 [1] that lie sensibly in the plane of Earth’s equator, with orbital period that matches the Earth’s rotation period. Satellites in these orbits, and the closely related geosynchronous orbits, appear from Earth to remain constantly overhead, allowing continuous communication with the majority of the hemisphere below. Constellations of three geostationary satellites equally spaced in orbit (~ 120° separation) can maintain near-global communication and terrestrial surveillance. -
NTI Day 9 Astronomy Michael Feeback Go To: Teachastronomy
NTI Day 9 Astronomy Michael Feeback Go to: teachastronomy.com textbook (chapter layout) Chapter 3 The Copernican Revolution Orbits Read the article and answer the following questions. Orbits You can use Newton's laws to calculate the speed that an object must reach to go into a circular orbit around a planet. The answer depends only on the mass of the planet and the distance from the planet to the desired orbit. The more massive the planet, the faster the speed. The higher above the surface, the lower the speed. For Earth, at a height just above the atmosphere, the answer is 7.8 kilometers per second, or 17,500 mph, which is why it takes a big rocket to launch a satellite! This speed is the minimum needed to keep an object in space near Earth, and is called the circular velocity. An object with a lower velocity will fall back to the surface under Earth's gravity. The same idea applies to any object in orbit around a larger object. The circular velocity of the Moon around the Earth is 1 kilometer per second. The Earth orbits the Sun at an average circular velocity of 30 kilometers per second (the Earth's orbit is an ellipse, not a circle, but it's close enough to circular that this is a good approximation). At further distances from the Sun, planets have lower orbital velocities. Pluto only has an average circular velocity of about 5 kilometers per second. To launch a satellite, all you have to do is raise it above the Earth's atmosphere with a rocket and then accelerate it until it reaches a speed of 7.8 kilometers per second. -
Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery
remote sensing Article Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery Rui Chen 1,2, Xiaodong Li 1,* , Yihang Zhang 1, Pu Zhou 1,2, Yalan Wang 1,2, Lingfei Shi 3 , Lai Jiang 4, Feng Ling 1 and Yun Du 1 1 Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; [email protected] (R.C.); [email protected] (Y.Z.); [email protected] (P.Z.); [email protected] (Y.W.); [email protected] (F.L.); [email protected] (Y.D.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Henan Agricultural University School of Resources and Environment, Zhengzhou 450002, China; [email protected] 4 Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, China; [email protected] * Correspondence: [email protected]; Tel./Fax: +86-27-6888-1075 Abstract: The monitoring of impervious surfaces in urban areas using remote sensing with fine spatial and temporal resolutions is crucial for monitoring urban development and environmental changes in urban areas. Spatiotemporal super-resolution mapping (STSRM) fuses fine-spatial-coarse- temporal remote sensing data with coarse-spatial-fine-temporal data, allowing for urban impervious surface mapping at both fine-spatial and fine-temporal resolutions. The STSRM involves two main steps: unmixing the coarse-spatial-fine-temporal remote sensing data to class fraction images, and Citation: Chen, R.; Li, X.; Zhang, Y.; downscaling the fraction images to sub-pixel land cover maps. -
Up, Up, and Away by James J
www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe. -
Multisatellite Determination of the Relativistic Electron Phase Space Density at Geosynchronous Orbit: Methodology and Results During Geomagnetically Quiet Times Y
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, A10210, doi:10.1029/2004JA010895, 2005 Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times Y. Chen, R. H. W. Friedel, and G. D. Reeves Los Alamos National Laboratory, Los Alamos, New Mexico, USA T. G. Onsager NOAA, Boulder, Colorado, USA M. F. Thomsen Los Alamos National Laboratory, Los Alamos, New Mexico, USA Received 10 November 2004; revised 20 May 2005; accepted 8 July 2005; published 20 October 2005. [1] We develop and test a methodology to determine the relativistic electron phase space density distribution in the vicinity of geostationary orbit by making use of the pitch-angle resolved energetic electron data from three Los Alamos National Laboratory geosynchronous Synchronous Orbit Particle Analyzer instruments and magnetic field measurements from two GOES satellites. Owing to the Earth’s dipole tilt and drift shell splitting for different pitch angles, each satellite samples a different range of Roederer L* throughout its orbit. We use existing empirical magnetic field models and the measured pitch-angle resolved electron spectra to determine the phase space density as a function of the three adiabatic invariants at each spacecraft. Comparing all satellite measurements provides a determination of the global phase space density gradient over the range L* 6–7. We investigate the sensitivity of this method to the choice of the magnetic field model and the fidelity of the instrument intercalibration in order to both understand and mitigate possible error sources. Results for magnetically quiet periods show that the radial slopes of the density distribution at low energy are positive, while at high energy the slopes are negative, which confirms the results from some earlier studies of this type. -
Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity
Remote Sens. 2014, 6, 2282-2295; doi:10.3390/rs6032282 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity Matthew Blackett Centre for Disaster Management and Hazards Research, Coventry University, Priory Street, Coventry, CV1 5FB, UK; E-Mail: [email protected]; Tel.: +44-2476-887-692 Received: 18 October 2013; in revised form: 21 February 2014 / Accepted: 10 March 2014 / Published: 12 March 2014 Abstract: The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer thermal observations. -
Positioning: Drift Orbit and Station Acquisition
Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.