Missing Links Only)

Total Page:16

File Type:pdf, Size:1020Kb

Missing Links Only) Instituut Onderwijs- en Informatiewetenschappen Informatie- en Bibliotheekwetenschap M Predicting interactions based on a multi-relational network structure with applications in informetrics O Het voorspellen van interacties op basis van een multi-relationele netwerkstructuur met toepassingen in de informetrie Proefschrift voorgelegd tot het behalen van de graad van doctor in de informatie- en bibliotheekwetenschap aan de Universiteit Antwerpen te verdedigen door Raf G Supervisors Prof. dr. Pierre Delsaerdt Prof. dr. Ronald Rousseau Antwerpen, 2012 Now imagine picking up the structure and shaking it, until you make some sense out of the tangle: perhaps you see tightly knit groups in some places, and in some places weak areas of communication spanned by only a few people. Perhaps a linked information system will allow us to see the real structure of the organisation in which we work. Weaving the Web Tim Berners-Lee Niets bestaat wat niet iets anders aanraakt. [Nothing exists that does not touch something else.] Bezonken rood Jeroen Brouwers Nederlandse samenvaing De doelstelling van dit proefschrift is methodes te ontwikkelen om nieuwe of ontbrekende interacties te voorspellen op basis van informatie in een multire- lationeel netwerk. Hoewel onze benadering algemeen toepasbaar is in velerlei omstandigheden, is het proefschrift voornamelijk gebaseerd op twee gevalstu- dies van samenwerking tussen onderzoekers: samenwerking aan een middel- groot instituut (de Universiteit Antwerpen) en samenwerking binnen een on- derzoeksgebied (de informetrie). Beide gevalstudies kunnen gezien worden als netwerken waarin elk knooppunt een auteur voorstelt en elke verbinding een coauteurschap. We geven eerst een algemeen overzicht van methodes en technieken voor de analyse van (sociale) netwerken en introduceren aansluitend Q-maten. Dit zijn indicatoren die aangeven in welke mate een actor een verbindende rol opneemt tussen verschillende groepen in het netwerk. Deze indicatoren wor- den toegepast op het netwerk van samenwerkingen tussen onderzoekers in de informetrie, met landen als groepen. Op deze manier karakteriseren we de evolutie van internationale samenwerking in het vakgebied. Wanneer men het dynamisch (door de tijd heen) bekijkt, zijn sociale en in- formetrische netwerken onderhevig aan verandering (oude verbindingen ver- dwijnen, nieuwe ontstaan…). Het probleem van linkpredictie (Eng. link predic- tion) is de vraag in welke mate en hoe zulke veranderingen in de verbinding- structuur voorspeld kunnen worden. We voeren een algemeen framework voor linkpredictie in, dat bestaat uit vijf stappen: dataverzameling, voorbe- werking, voorspelling, nabewerking en evaluatie. We bespreken theoretische eigenschappen van verschillende predictoren (methodes of maten die in stap drie gebruikt worden) en tonen aan dat linkpredictie geëvalueerd kan worden aan de hand van methodes uit de information retrieval. Ondanks het belang van theoretische overwegingen hangt onderzoek in linkpredictie grotendeels af van experimenten met empirische gegevens. Om die reden bestuderen we een grote groep predictoren empirisch, evenals de invloed van voor- en nabewerking. Hieruit blijkt dat predictoren die op we- gen (Eng. paths) gebaseerd zijn in het algemeen de beste resultaten opleveren en dat – anders dan wat men zou verwachten – het gewicht van verbindingen niet automatisch uitmondt in betere voorspellingen. Bovendien tonen we dat netwerkreconstructie (het identificeren van verbindingen die willekeurig uit een netwerk verwijderd zijn) gelijkaardige resultaten oplevert als linkpredic- tie. We kunnen met andere woorden netwerkreconstructie gebruiken om de bruikbaarheid van een methode voor linkpredictie in te schaen. Dit inzicht is nuig, omdat reconstructie een aantal praktische voordelen biedt. Informatie- en bibliotheekwetenschap kan worden getypeerd als een vak- iii Nederlandse samenvaing gebied dat de wisselwerking tussen de documentaire, sociale en epistemische dimensies bestudeert. Omdat deze wisselwerking niet goed in één klassiek netwerk gevat kan worden, verbreden we onze aanpak naar multirelationele (of ‘semantische’) netwerken, d.w.z. netwerken die bestaan uit knooppunten en verbindingen van verschillende types. Multirelationele netwerken waren ooit een grotendeels theoretische constructie, maar zijn tegenwoordig geïm- plementeerd in het Semantische Web (RDF). We bespreken hoe deze concepten verband houden met semantiek en geven een inleiding tot de meest relevante technologieën. Dit roept de vraag op of het mogelijk is een RDF-gebaseerde representatie op te stellen die geschikt is voor informetrisch onderzoek. We bespreken de belangrijkste moeilijkheden en tonen dat bestaande ontologieën de voornaamste benodigde woordenschat al aanbieden. Waar nodig sugge- reren we toevoegingen aan de bestaande infrastructuur, bijvoorbeeld om het gebruik van termen te registreren. In drie stappen maken we de overstap naar linkpredictie op basis van een semantisch netwerk. Om te beginnen vertrekken we van voorspellingen op basis van het bipartite auteur–publicatie-netwerk in plaats van het (daarvan afgeleide) netwerk van coauteurschap. Op deze manier kunnen we de resul- taten van bepaalde predictoren verbeteren. Vervolgens zeen we een stap ver- der door het auteur–publicatie-netwerk te vervangen door een auteur–term- netwerk. Ten sloe zeen we de laatste stap naar voorspelling op basis van een ‘volledig’ multirelationeel netwerk. Daartoe voeren we associatienetwer- ken in. Deze vormen een algemeen model dat gebruikt kan worden om inte- ressante patronen in een semantisch netwerk te identificeren en bestuderen. Hoewel de algemene resultaten voor dit model niet aanzienlijk beter waren dan eerder bekomen resultaten, lijkt het erop dat het model vooral zijn waarde heeft voor het doen van aanbevelingen. In dat geval is men enkel geïnteres- seerd in nieuwe interacties. iv English abstract The aim of this dissertation is to develop methods to predict new or miss- ing interactions based on existing information in the form of a multi-relational network. Although our approach is generally applicable to a wide range of circumstances, the dissertation is based on two case studies of collaboration between researchers: collaboration at a mid-sized institute (the University of Antwerp) and collaboration within a research specialty (informetrics). The case studies can be interpreted as networks, such that each node represents an author and each link represents co-authorship. After providing a general overview of methods and techniques in (social) network analysis, we introduce Q-measures, indicators that characterise the extent to which a node plays a bridging role between different groups in the network. Q-measures are applied to the time-sliced collaboration network of researchers in informetrics (with countries as groups). This way, we can char- acterise the evolution of international collaboration in the field. When viewed dynamically (over time), social and informetric networks evolve (new links appear, old links disappear…). The link prediction problem is the question to what extent and how such changes in link structure can be predicted. We introduce a general framework for link prediction, consisting of five steps: data gathering, preprocessing, prediction, postprocessing, and evaluation. We discuss theoretical properties of different predictors (methods or measures used in step 3) and show that link prediction can be evaluated using methods borrowed from information retrieval. Although theoretical considerations do have a role to play, link prediction research mainly depends on experimentation with empirical data. We empir- ically examine many predictors, as well as the influence of pre- and postpro- cessing. The analysis reveals that path-based predictors offer the best overall performance and that, contrary to our expectations, taking link weights into account does not automatically yield improvements of basic predictors. Fur- thermore, we show that network reconstruction (identification of links that have been randomly deleted from a network) yields qualitatively similar re- sults to link prediction, suggesting that network reconstruction results can be used to assess a method’s applicability to link prediction. This insight is useful because the former has some practical advantages. Library and information science can be characterised as a discipline that studies the interplay between the documentary dimension, the social dimen- sion, and the epistemic dimension. Since this interplay cannot be adequately captured in one classic network, we broaden our approach to multi-relational (or ‘semantic’) networks, i.e. networks that consist of links and nodes of dif- ferent types. Once a largely theoretical construct, multi-relational networks v English abstract are nowadays implemented in – most notably – the Semantic Web (RDF). We discuss how these concepts are related to semantics and provide an introduc- tion to Semantic Web technologies. This raises the question whether an RDF- based knowledge representation can be created that is suitable for informetric research. We discuss the main difficulties and argue that existing ontologies provide the bulk of the vocabulary needed for informetrics. Where necessary, we suggest additions to the existing infrastructure, e.g. to capture term usage. We take three steps towards link prediction on the basis of a semantic net- work. First, we start our predictions from the bipartite author–paper network instead of the derived co-authorship network.
Recommended publications
  • From the Semantic Web to Social Machines
    ARTICLE IN PRESS ARTINT:2455 JID:ARTINT AID:2455 /REV [m3G; v 1.23; Prn:25/11/2009; 12:36] P.1 (1-6) Artificial Intelligence ••• (••••) •••–••• Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint From the Semantic Web to social machines: A research challenge for AI on the World Wide Web ∗ Jim Hendler a, , Tim Berners-Lee b a Tetherless World Constellation, RPI, United States b Computer Science and AI Laboratory, MIT, United States article info abstract Article history: The advent of social computing on the Web has led to a new generation of Web Received 24 September 2009 applications that are powerful and world-changing. However, we argue that we are just Received in revised form 1 October 2009 at the beginning of this age of “social machines” and that their continued evolution and Accepted 1 October 2009 growth requires the cooperation of Web and AI researchers. In this paper, we show how Available online xxxx the growing Semantic Web provides necessary support for these technologies, outline the challenges we see in bringing the technology to the next level, and propose some starting places for the research. © 2009 Elsevier B.V. All rights reserved. Much has been written about the profound impact that the World Wide Web has had on society. Yet it is primarily in the past few years, as more interactive “read/write” technologies (e.g. Wikis, blogs and photo/video sharing) and social network- ing sites have proliferated, that the truly profound nature of this change is being felt. From the very beginning, however, the Web was designed to create a network of humans changing society empowered using this shared infrastructure.
    [Show full text]
  • Linked Data Overview and Usage in Social Networks
    Linked Data Overview and Usage in Social Networks Gustavo G. Valdez Technische Universitat Berlin Email: project [email protected] Abstract—This paper intends to introduce the principles of Webpages, also possibly reference any Object or Concept (or Linked Data, show some possible uses in Social Networks, even relationships of concepts/objects). advantages and disadvantages of using it, aswell as presenting The second one combines the unique identification of the an example application of Linked Data to the field of social networks. first with a well known retrieval mechanism (HTTP), enabling this URIs to be looked up via the HTTP protocol. I. INTRODUCTION The third principle tackles the problem of using the same The web is a very good source of human-readable informa- document standards, in order to have scalability and interop- tion that has improved our daily life in several areas. By using erability. This is done by having a standard, the Resource De- rich text and hyperlinks, it made our access to information scription Framewok (RDF), which will be explained in section something more active rather than passive. But the web was III-A. This standards are very useful to provide resources that made for humans and not for machines, even though today are machine-readable and are identified by a URI. a lot of the acesses to the web are made by machines. This The fourth principle basically advocates that hyperlinks has lead to the search for adding structure, so that data is should be used not only to link webpages, but also to link more machine-readable.
    [Show full text]
  • Processes on Complex Networks. Percolation
    Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation.
    [Show full text]
  • Correlation in Complex Networks
    Correlation in Complex Networks by George Tsering Cantwell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2020 Doctoral Committee: Professor Mark Newman, Chair Professor Charles Doering Assistant Professor Jordan Horowitz Assistant Professor Abigail Jacobs Associate Professor Xiaoming Mao George Tsering Cantwell [email protected] ORCID iD: 0000-0002-4205-3691 © George Tsering Cantwell 2020 ACKNOWLEDGMENTS First, I must thank Mark Newman for his support and mentor- ship throughout my time at the University of Michigan. Further thanks are due to all of the people who have worked with me on projects related to this thesis. In alphabetical order they are Eliz- abeth Bruch, Alec Kirkley, Yanchen Liu, Benjamin Maier, Gesine Reinert, Maria Riolo, Alice Schwarze, Carlos Serván, Jordan Sny- der, Guillaume St-Onge, and Jean-Gabriel Young. ii TABLE OF CONTENTS Acknowledgments .................................. ii List of Figures ..................................... v List of Tables ..................................... vi List of Appendices .................................. vii Abstract ........................................ viii Chapter 1 Introduction .................................... 1 1.1 Why study networks?...........................2 1.1.1 Example: Modeling the spread of disease...........3 1.2 Measures and metrics...........................8 1.3 Models of networks............................ 11 1.4 Inference.................................
    [Show full text]
  • Network Science
    NETWORK SCIENCE Random Networks Prof. Marcello Pelillo Ca’ Foscari University of Venice a.y. 2016/17 Section 3.2 The random network model RANDOM NETWORK MODEL Pál Erdös Alfréd Rényi (1913-1996) (1921-1970) Erdös-Rényi model (1960) Connect with probability p p=1/6 N=10 <k> ~ 1.5 SECTION 3.2 THE RANDOM NETWORK MODEL BOX 3.1 DEFINING RANDOM NETWORKS RANDOM NETWORK MODEL Network science aims to build models that reproduce the properties of There are two equivalent defini- real networks. Most networks we encounter do not have the comforting tions of a random network: Definition: regularity of a crystal lattice or the predictable radial architecture of a spi- der web. Rather, at first inspection they look as if they were spun randomly G(N, L) Model A random graph is a graph of N nodes where each pair (Figure 2.4). Random network theoryof nodes embraces is connected this byapparent probability randomness p. N labeled nodes are connect- by constructing networks that are truly random. ed with L randomly placed links. Erds and Rényi used From a modeling perspectiveTo a constructnetwork is a arandom relatively network simple G(N, object, p): this definition in their string consisting of only nodes and links. The real challenge, however, is to decide of papers on random net- where to place the links between1) the Start nodes with so thatN isolated we reproduce nodes the com- works [2-9]. plexity of a real system. In this 2)respect Select the a philosophynode pair, behindand generate a random a network is simple: We assume thatrandom this goal number is best betweenachieved by0 and placing 1.
    [Show full text]
  • Fractal Network in the Protein Interaction Network Model
    Journal of the Korean Physical Society, Vol. 56, No. 3, March 2010, pp. 1020∼1024 Fractal Network in the Protein Interaction Network Model Pureun Kim and Byungnam Kahng∗ Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Received 22 September 2009) Fractal complex networks (FCNs) have been observed in a diverse range of networks from the World Wide Web to biological networks. However, few stochastic models to generate FCNs have been introduced so far. Here, we simulate a protein-protein interaction network model, finding that FCNs can be generated near the percolation threshold. The number of boxes needed to cover the network exhibits a heavy-tailed distribution. Its skeleton, a spanning tree based on the edge betweenness centrality, is a scaffold of the original network and turns out to be a critical branching tree. Thus, the model network is a fractal at the percolation threshold. PACS numbers: 68.37.Ef, 82.20.-w, 68.43.-h Keywords: Fractal complex network, Percolation, Protein interaction network DOI: 10.3938/jkps.56.1020 I. INTRODUCTION consistent with that of the hub-repulsion model [2]. The fractal scaling of a FCN originates from the fractality of its skeleton underneath it [8]. The skeleton is regarded Fractal complex networks (FCNs) have been discov- as a critical branching tree: It exhibits a plateau in the ered in diverse real-world systems [1, 2]. Examples in- mean branching number functionn ¯(d), defined as the clude the co-authorship network [3], metabolic networks average number of offsprings created by nodes at a dis- [4], the protein interaction networks [5], the World-Wide tance d from the root.
    [Show full text]
  • Neutral Evolution of Proteins: the Superfunnel in Sequence Space and Its Relation to Mutational Robustness
    Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness. Josselin Noirel, Thomas Simonson To cite this version: Josselin Noirel, Thomas Simonson. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness.. Journal of Chemical Physics, American Institute of Physics, 2008, 129 (18), pp.185104. 10.1063/1.2992853. hal-00488189 HAL Id: hal-00488189 https://hal-polytechnique.archives-ouvertes.fr/hal-00488189 Submitted on 22 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE JOURNAL OF CHEMICAL PHYSICS 129, 185104 ͑2008͒ Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness Josselin Noirela͒ and Thomas Simonsonb͒ Laboratoire de Biochimie, École Polytechnique, Route de Saclay, Palaiseau 91128 Cedex, France ͑Received 31 July 2008; accepted 11 September 2008; published online 11 November 2008͒ Following Kimura’s neutral theory of molecular evolution ͓M. Kimura, The Neutral Theory of Molecular Evolution ͑Cambridge University Press, Cambridge, 1983͒͑reprinted in 1986͔͒,ithas become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution.
    [Show full text]
  • Fractal Boundaries of Complex Networks
    OFFPRINT Fractal boundaries of complex networks Jia Shao, Sergey V. Buldyrev, Reuven Cohen, Maksim Kitsak, Shlomo Havlin and H. Eugene Stanley EPL, 84 (2008) 48004 Please visit the new website www.epljournal.org TAKE A LOOK AT THE NEW EPL Europhysics Letters (EPL) has a new online home at www.epljournal.org Take a look for the latest journal news and information on: • reading the latest articles, free! • receiving free e-mail alerts • submitting your work to EPL www.epljournal.org November 2008 EPL, 84 (2008) 48004 www.epljournal.org doi: 10.1209/0295-5075/84/48004 Fractal boundaries of complex networks Jia Shao1(a),SergeyV.Buldyrev1,2, Reuven Cohen3, Maksim Kitsak1, Shlomo Havlin4 and H. Eugene Stanley1 1 Center for Polymer Studies and Department of Physics, Boston University - Boston, MA 02215, USA 2 Department of Physics, Yeshiva University - 500 West 185th Street, New York, NY 10033, USA 3 Department of Mathematics, Bar-Ilan University - 52900 Ramat-Gan, Israel 4 Minerva Center and Department of Physics, Bar-Ilan University - 52900 Ramat-Gan, Israel received 12 May 2008; accepted in final form 16 October 2008 published online 21 November 2008 PACS 89.75.Hc – Networks and genealogical trees PACS 89.75.-k – Complex systems PACS 64.60.aq –Networks Abstract – We introduce the concept of the boundary of a complex network as the set of nodes at distance larger than the mean distance from a given node in the network. We study the statistical properties of the boundary nodes seen from a given node of complex networks. We find that for both Erd˝os-R´enyi and scale-free model networks, as well as for several real networks, the boundaries have fractal properties.
    [Show full text]
  • Giant Component in Random Multipartite Graphs with Given
    Giant Component in Random Multipartite Graphs with Given Degree Sequences David Gamarnik ∗ Sidhant Misra † January 23, 2014 Abstract We study the problem of the existence of a giant component in a random multipartite graph. We consider a random multipartite graph with p parts generated according to a d given degree sequence ni (n) which denotes the number of vertices in part i of the multi- partite graph with degree given by the vector d. We assume that the empirical distribution of the degree sequence converges to a limiting probability distribution. Under certain mild regularity assumptions, we characterize the conditions under which, with high probability, there exists a component of linear size. The characterization involves checking whether the Perron-Frobenius norm of the matrix of means of a certain associated edge-biased distribu- tion is greater than unity. We also specify the size of the giant component when it exists. We use the exploration process of Molloy and Reed to analyze the size of components in the random graph. The main challenges arise due to the multidimensionality of the ran- dom processes involved which prevents us from directly applying the techniques from the standard unipartite case. In this paper we use techniques from the theory of multidimen- sional Galton-Watson processes along with Lyapunov function technique to overcome the challenges. 1 Introduction The problem of the existence of a giant component in random graphs was first studied by arXiv:1306.0597v3 [math.PR] 22 Jan 2014 Erd¨os and R´enyi. In their classical paper [ER60], they considered a random graph model on n and m edges where each such possible graph is equally likely.
    [Show full text]
  • 0848736-Bachelorproject Peter Verleijsdonk
    Eindhoven University of Technology BACHELOR Site percolation on the hierarchical configuration model Verleijsdonk, Peter Award date: 2017 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Site Percolation on the Hierarchical Configuration Model Bachelor Thesis P. Verleijsdonk Supervisors: prof. dr. R.W. van der Hofstad C. Stegehuis (MSc) Eindhoven, March 2017 Abstract This paper extends the research on percolation on the hierarchical configuration model. The hierarchical configuration model is a configuration model where single vertices are replaced by small community structures. We study site percolation on the hierarchical configuration model, as well as the critical percolation value, size of the giant component and distance distribution after percolation.
    [Show full text]
  • Selected Papers from the Conference and School on Records, Archives and Memory
    -------------------------------- Records, Archives and Memory Selected Papers from the Conference and School on Records, Archives and Memory Studies, University of Zadar, Croatia, May 2013 -------------------------------- Sveučilište u Zadru University of Zadar www.unizd.hr www.unizd.hr Za nakladnika For the Editor prof. dr. sc. Ante Uglešić Ante Uglešić, Ph.D., Professor Predsjednik Povjerenstva za izdavačku President of the Publishing djelatnost Sveučilišta u Zadru Committee of the University of Zadar prof. dr. sc. Josip Faričić Josip Faričić, Ph.D., Professor Odjel za informacijske znanosti Department of Information Sciences Studije iz knjižnične Studies in Library and i informacijske znanosti Information Sciences Knjiga 3 Volume 3 Urednice Editors prof. dr. sc. Mirna Willer Mirna Willer, Ph.D., Professor prof. dr. sc. Anne J. Gilliland Anne J. Gilliland, Ph.D., Professor doc. dr. sc. Marijana Tomić Marijana Tomić, Ph.D., Assistant Professor Urednički odbor Editorial Board prof. dr. sc. Tatjana Aparac-Jelušić Tatjana Aparac-Jelušić, Ph.D., Professor prof. dr. sc. Srećko Jelušić Srećko Jelušić, Ph.D., Professor doc. dr. sc. Franjo Pehar Franjo Pehar, Ph.D., Assistant Professor izv. prof. dr. sc. Ivanka Stričević Ivanka Stričević, Ph.D., Associate Professor doc. dr. sc. Nives Tomašević Nives Tomašević, Ph.D., Assistant Professor doc. dr. sc. Marijana Tomić Marijana Tomić, Ph.D., Assistant Professor prof. dr. sc. Mirna Willer Mirna Willer, Ph.D., Professor Glavni urednik Editor-in-Chief prof. dr. sc. Tatjana Aparac-Jelušić Tatjana Aparac-Jelušić, Ph.D., Professor Poslijediplomski studij “Društvo znanja Postgraduate Programme “Knowledge Society i prijenos informacija” and Information Transfer” Voditeljica doktorskog studija Director of the Postgraduate Programme prof. dr. sc.
    [Show full text]
  • Cavity and Replica Methods for the Spectral Density of Sparse Symmetric Random Matrices
    SciPost Phys. Lect. Notes 33 (2021) Cavity and replica methods for the spectral density of sparse symmetric random matrices Vito A R Susca, Pierpaolo Vivo? and Reimer Kühn King’s College London, Department of Mathematics, Strand, London WC2R 2LS, United Kingdom ? [email protected] Abstract We review the problem of how to compute the spectral density of sparse symmetric ran- dom matrices, i.e. weighted adjacency matrices of undirected graphs. Starting from the Edwards-Jones formula, we illustrate the milestones of this line of research, including the pioneering work of Bray and Rodgers using replicas. We focus first on the cavity method, showing that it quickly provides the correct recursion equations both for single instances and at the ensemble level. We also describe an alternative replica solution that proves to be equivalent to the cavity method. Both the cavity and the replica derivations allow us to obtain the spectral density via the solution of an integral equation for an auxiliary probability density function. We show that this equation can be solved using a stochastic population dynamics algorithm, and we provide its implementation. In this formalism, the spectral density is naturally written in terms of a superposition of local contributions from nodes of given degree, whose role is thoroughly elucidated. This paper does not contain original material, but rather gives a pedagogical overview of the topic. It is indeed addressed to students and researchers who consider entering the field. Both the theoretical tools and the numerical algorithms are discussed in detail, highlighting conceptual subtleties and practical aspects. Copyright V.A.
    [Show full text]