0848736-Bachelorproject Peter Verleijsdonk

Total Page:16

File Type:pdf, Size:1020Kb

0848736-Bachelorproject Peter Verleijsdonk Eindhoven University of Technology BACHELOR Site percolation on the hierarchical configuration model Verleijsdonk, Peter Award date: 2017 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Site Percolation on the Hierarchical Configuration Model Bachelor Thesis P. Verleijsdonk Supervisors: prof. dr. R.W. van der Hofstad C. Stegehuis (MSc) Eindhoven, March 2017 Abstract This paper extends the research on percolation on the hierarchical configuration model. The hierarchical configuration model is a configuration model where single vertices are replaced by small community structures. We study site percolation on the hierarchical configuration model, as well as the critical percolation value, size of the giant component and distance distribution after percolation. For this we use analytical methods and a stochastic simulation. 2 Site Percolation on the Hierarchical Configuration Model CONTENTS Contents Contents 3 1 Introduction 1 1.1 Report Structure.....................................1 2 Model Description3 2.1 Configuration model...................................3 2.2 Hierarchical Configuration Model............................3 2.3 Community structure..................................4 2.4 Model Assumptions...................................4 3 Site Percolation6 3.1 Site Percolation On Special Community Structures..................6 3.1.1 Household Communities.............................6 3.1.2 Star Communities................................6 3.1.3 Line Communities................................7 3.2 Site Percolation on the Configuration Model......................7 3.3 Site Percolation on the Hierarchical Configuration Model..............8 3.4 Existence of a Giant Component after Site Percolation................8 4 Simulation 16 4.1 Simulation Motivation.................................. 16 4.2 Simulation Description.................................. 16 5 Simulation Results 17 5.1 Size of the Giant Component.............................. 17 5.2 Distances......................................... 23 6 Conclusions and discussion 29 7 Appendix 30 7.1 Table of Definitions.................................... 30 References 31 Site Percolation on the Hierarchical Configuration Model 3 1 INTRODUCTION 1 Introduction This thesis is about community structures in graphs. Often random graphs, constructed using the so−called configuration model, are studied but do not really match real-world graph structures. A configuration model is a random graph where the degree distribution is known beforehand. All vertices have outgoing half-edges which are paired using a random permutation on a suitable vector, this vector has one entry for every open half-edge. This method of pairing is called a configuration. A more formal definition of this algorithm is given later. Since configuration models are studied widely, many statements exist about these kind of graph structures. In order to use these results, we study an extension to the configuration model, called the hierarchical configuration model. These random graphs are on the large scale a configuration model but are constructed using small communities. The hierarchical configuration model replaces all vertices by small communities and then connects these communities in the same way as the configuration model. The advantage of such random graphs is that they contain more short cycles compared to configuration model random graphs. The general idea about introducing these community structures is that it increases short cycles and triangles. A triangle is a set of three vertices which are all adjacent to each other. Configuration model random graphs do not have many short cycles or community structures. Often real-life problems present themselves as a problem that depends on how people or networks are connected. [8] The configuration model does not include structures like family relations or important vertices. For example a certain vertex may play a more important or different role than other vertices inside a neighborhood. Graph structures are important in studying mathematical models. A realistic example of such a mathematical model is the spreading of a virus through a network, using the Reed-Frost model with a connectivity matrix. A connectivity matrix can be interpreted as the blueprint of a graph and hence introducing community structures might improve the accuracy of the model. We introduce community structures which are found in real-life networks such as Facebook networks or routing networks. The Facebook network is studied widely, for example by Ugander et al. [9] Facebook networks are locally highly connected and consist of many triangles and short cycles. To illustrate this, the mean number of friends between two randomly chosen users was just 4:7, as calculated in May 2011. This holds for the entire social graph, when restricted to United States, this mean distance between to randomly chosen people was only 4:3. [9] Local routing networks are traditionally introduced as star networks. A classic computer network model consists of a central hub and adjacent components. The main disadvantage of such networks is that the central hub is a single point of failure. [7] The main research question is how introducing community structures changes model specifics. We compare both models when looking at graph properties such as connected components and distances. We derive new results in percolation theory, sufficient conditions when a giant component exists after site percolation for specific community structures and we show that introducing community structures does not necessarily increase the critical percolation threshold or mean distance. Site- or bond percolation can be seen as the process of deleting vertices or edges respectively with a given probability. Furthermore we analyze the empirical distance distributions obtained after stochastic simulation and present a statistical analysis. 1.1 Report Structure This report follows the following schematic approach. First the mathematical objects are formally introduced and we explain which properties are to be studied and why. It is important to precisely describe how the hierarchical configuration model extends a configuration model random graph and under what conditions derived results are true. This is done in Section2. Site Percolation on the Hierarchical Configuration Model 1 1 INTRODUCTION In Section3, we study several community structures using an analytical approach. Since these properties are suitable for a stochastic simulation, the next main section, Section4, is dedicated to explaining this sort of simulation. Then these simulation results are presented, analyzed and compared to the prior knowledge in Section5. 2 Site Percolation on the Hierarchical Configuration Model 2 MODEL DESCRIPTION 2 Model Description Here the mathematical objects which will be studied are introduced. For ease of reference, a list of definitions is included in the appendix. A configuration model or a hierarchical configuration model is a random graph model. We start with the definition of an arbitrary graph. Definition 1. A graph G = (V; E) is an ordered pair where V and E ⊂ V 2 represents the set of vertices and edges respectively. If (w; v) 2 E then shorthand notation for this is w ∼ v. Thus a graph consists of a set of vertices and a set that describes which vertices are connected. Definition 2. The neighborhood NG(v) = fu 2 V (G)ju ∼ vg ⊂ V of a vertex v in a graph G is the set of all vertices which are adjacent to v. A simple graph is a special kind of graph: Definition 3. A graph G = (V; E) is called simple if and only if ∼ is a symmetric and anti- reflexive relation. Furthermore, every element in E is unique. So a simple graph is an unweighted, undirected graph where self-loops or multi-loops are not allowed. We now introduce a special kind of graph structures, the configuration model. 2.1 Configuration model The definition of a configuration model is straightforward. [4] The configuration model is an al- gorithm which produces a random graph G with N vertices where every vertex v has kv outgoing edges. These (ki) are called the degree sequence and are assumed to be known beforehand. The first step in constructing the graph is defining N. The next step is adding ki half-edges to every vertex in the network. Completing the graph is done by uniformly matching the half-edges. This can either be done using a random permutation on a suitable vector which has one entry for every half-edge or selecting random half-edges iteratively P until all half-edges are connected. It follows that ki must be even. Note that
Recommended publications
  • Optimal Subgraph Structures in Scale-Free Configuration
    Submitted to the Annals of Applied Probability OPTIMAL SUBGRAPH STRUCTURES IN SCALE-FREE CONFIGURATION MODELS , By Remco van der Hofstad∗ §, Johan S. H. van , , Leeuwaarden∗ ¶ and Clara Stegehuis∗ k Eindhoven University of Technology§, Tilburg University¶ and Twente Universityk Subgraphs reveal information about the geometry and function- alities of complex networks. For scale-free networks with unbounded degree fluctuations, we obtain the asymptotics of the number of times a small connected graph occurs as a subgraph or as an induced sub- graph. We obtain these results by analyzing the configuration model with degree exponent τ (2, 3) and introducing a novel class of op- ∈ timization problems. For any given subgraph, the unique optimizer describes the degrees of the vertices that together span the subgraph. We find that subgraphs typically occur between vertices with specific degree ranges. In this way, we can count and characterize all sub- graphs. We refrain from double counting in the case of multi-edges, essentially counting the subgraphs in the erased configuration model. 1. Introduction Scale-free networks often have degree distributions that follow power laws with exponent τ (2, 3) [1, 11, 22, 34]. Many net- ∈ works have been reported to satisfy these conditions, including metabolic networks, the internet and social networks. Scale-free networks come with the presence of hubs, i.e., vertices of extremely high degrees. Another property of real-world scale-free networks is that the clustering coefficient (the probability that two uniformly chosen neighbors of a vertex are neighbors themselves) decreases with the vertex degree [4, 10, 24, 32, 34], again following a power law.
    [Show full text]
  • Detecting Statistically Significant Communities
    1 Detecting Statistically Significant Communities Zengyou He, Hao Liang, Zheng Chen, Can Zhao, Yan Liu Abstract—Community detection is a key data analysis problem across different fields. During the past decades, numerous algorithms have been proposed to address this issue. However, most work on community detection does not address the issue of statistical significance. Although some research efforts have been made towards mining statistically significant communities, deriving an analytical solution of p-value for one community under the configuration model is still a challenging mission that remains unsolved. The configuration model is a widely used random graph model in community detection, in which the degree of each node is preserved in the generated random networks. To partially fulfill this void, we present a tight upper bound on the p-value of a single community under the configuration model, which can be used for quantifying the statistical significance of each community analytically. Meanwhile, we present a local search method to detect statistically significant communities in an iterative manner. Experimental results demonstrate that our method is comparable with the competing methods on detecting statistically significant communities. Index Terms—Community Detection, Random Graphs, Configuration Model, Statistical Significance. F 1 INTRODUCTION ETWORKS are widely used for modeling the structure function that is able to always achieve the best performance N of complex systems in many fields, such as biology, in all possible scenarios. engineering, and social science. Within the networks, some However, most of these objective functions (metrics) do vertices with similar properties will form communities that not address the issue of statistical significance of commu- have more internal connections and less external links.
    [Show full text]
  • Processes on Complex Networks. Percolation
    Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation.
    [Show full text]
  • Correlation in Complex Networks
    Correlation in Complex Networks by George Tsering Cantwell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2020 Doctoral Committee: Professor Mark Newman, Chair Professor Charles Doering Assistant Professor Jordan Horowitz Assistant Professor Abigail Jacobs Associate Professor Xiaoming Mao George Tsering Cantwell [email protected] ORCID iD: 0000-0002-4205-3691 © George Tsering Cantwell 2020 ACKNOWLEDGMENTS First, I must thank Mark Newman for his support and mentor- ship throughout my time at the University of Michigan. Further thanks are due to all of the people who have worked with me on projects related to this thesis. In alphabetical order they are Eliz- abeth Bruch, Alec Kirkley, Yanchen Liu, Benjamin Maier, Gesine Reinert, Maria Riolo, Alice Schwarze, Carlos Serván, Jordan Sny- der, Guillaume St-Onge, and Jean-Gabriel Young. ii TABLE OF CONTENTS Acknowledgments .................................. ii List of Figures ..................................... v List of Tables ..................................... vi List of Appendices .................................. vii Abstract ........................................ viii Chapter 1 Introduction .................................... 1 1.1 Why study networks?...........................2 1.1.1 Example: Modeling the spread of disease...........3 1.2 Measures and metrics...........................8 1.3 Models of networks............................ 11 1.4 Inference.................................
    [Show full text]
  • Percolation Thresholds for Robust Network Connectivity
    Percolation Thresholds for Robust Network Connectivity Arman Mohseni-Kabir1, Mihir Pant2, Don Towsley3, Saikat Guha4, Ananthram Swami5 1. Physics Department, University of Massachusetts Amherst, [email protected] 2. Massachusetts Institute of Technology 3. College of Information and Computer Sciences, University of Massachusetts Amherst 4. College of Optical Sciences, University of Arizona 5. Army Research Laboratory Abstract Communication networks, power grids, and transportation networks are all examples of networks whose performance depends on reliable connectivity of their underlying network components even in the presence of usual network dynamics due to mobility, node or edge failures, and varying traffic loads. Percolation theory quantifies the threshold value of a local control parameter such as a node occupation (resp., deletion) probability or an edge activation (resp., removal) probability above (resp., below) which there exists a giant connected component (GCC), a connected component comprising of a number of occupied nodes and active edges whose size is proportional to the size of the network itself. Any pair of occupied nodes in the GCC is connected via at least one path comprised of active edges and occupied nodes. The mere existence of the GCC itself does not guarantee that the long-range connectivity would be robust, e.g., to random link or node failures due to network dynamics. In this paper, we explore new percolation thresholds that guarantee not only spanning network connectivity, but also robustness. We define and analyze four measures of robust network connectivity, explore their interrelationships, and numerically evaluate the respective robust percolation thresholds arXiv:2006.14496v1 [physics.soc-ph] 25 Jun 2020 for the 2D square lattice.
    [Show full text]
  • Network Science
    NETWORK SCIENCE Random Networks Prof. Marcello Pelillo Ca’ Foscari University of Venice a.y. 2016/17 Section 3.2 The random network model RANDOM NETWORK MODEL Pál Erdös Alfréd Rényi (1913-1996) (1921-1970) Erdös-Rényi model (1960) Connect with probability p p=1/6 N=10 <k> ~ 1.5 SECTION 3.2 THE RANDOM NETWORK MODEL BOX 3.1 DEFINING RANDOM NETWORKS RANDOM NETWORK MODEL Network science aims to build models that reproduce the properties of There are two equivalent defini- real networks. Most networks we encounter do not have the comforting tions of a random network: Definition: regularity of a crystal lattice or the predictable radial architecture of a spi- der web. Rather, at first inspection they look as if they were spun randomly G(N, L) Model A random graph is a graph of N nodes where each pair (Figure 2.4). Random network theoryof nodes embraces is connected this byapparent probability randomness p. N labeled nodes are connect- by constructing networks that are truly random. ed with L randomly placed links. Erds and Rényi used From a modeling perspectiveTo a constructnetwork is a arandom relatively network simple G(N, object, p): this definition in their string consisting of only nodes and links. The real challenge, however, is to decide of papers on random net- where to place the links between1) the Start nodes with so thatN isolated we reproduce nodes the com- works [2-9]. plexity of a real system. In this 2)respect Select the a philosophynode pair, behindand generate a random a network is simple: We assume thatrandom this goal number is best betweenachieved by0 and placing 1.
    [Show full text]
  • Fractal Network in the Protein Interaction Network Model
    Journal of the Korean Physical Society, Vol. 56, No. 3, March 2010, pp. 1020∼1024 Fractal Network in the Protein Interaction Network Model Pureun Kim and Byungnam Kahng∗ Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Received 22 September 2009) Fractal complex networks (FCNs) have been observed in a diverse range of networks from the World Wide Web to biological networks. However, few stochastic models to generate FCNs have been introduced so far. Here, we simulate a protein-protein interaction network model, finding that FCNs can be generated near the percolation threshold. The number of boxes needed to cover the network exhibits a heavy-tailed distribution. Its skeleton, a spanning tree based on the edge betweenness centrality, is a scaffold of the original network and turns out to be a critical branching tree. Thus, the model network is a fractal at the percolation threshold. PACS numbers: 68.37.Ef, 82.20.-w, 68.43.-h Keywords: Fractal complex network, Percolation, Protein interaction network DOI: 10.3938/jkps.56.1020 I. INTRODUCTION consistent with that of the hub-repulsion model [2]. The fractal scaling of a FCN originates from the fractality of its skeleton underneath it [8]. The skeleton is regarded Fractal complex networks (FCNs) have been discov- as a critical branching tree: It exhibits a plateau in the ered in diverse real-world systems [1, 2]. Examples in- mean branching number functionn ¯(d), defined as the clude the co-authorship network [3], metabolic networks average number of offsprings created by nodes at a dis- [4], the protein interaction networks [5], the World-Wide tance d from the root.
    [Show full text]
  • Neutral Evolution of Proteins: the Superfunnel in Sequence Space and Its Relation to Mutational Robustness
    Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness. Josselin Noirel, Thomas Simonson To cite this version: Josselin Noirel, Thomas Simonson. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness.. Journal of Chemical Physics, American Institute of Physics, 2008, 129 (18), pp.185104. 10.1063/1.2992853. hal-00488189 HAL Id: hal-00488189 https://hal-polytechnique.archives-ouvertes.fr/hal-00488189 Submitted on 22 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE JOURNAL OF CHEMICAL PHYSICS 129, 185104 ͑2008͒ Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness Josselin Noirela͒ and Thomas Simonsonb͒ Laboratoire de Biochimie, École Polytechnique, Route de Saclay, Palaiseau 91128 Cedex, France ͑Received 31 July 2008; accepted 11 September 2008; published online 11 November 2008͒ Following Kimura’s neutral theory of molecular evolution ͓M. Kimura, The Neutral Theory of Molecular Evolution ͑Cambridge University Press, Cambridge, 1983͒͑reprinted in 1986͔͒,ithas become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution.
    [Show full text]
  • Fractal Boundaries of Complex Networks
    OFFPRINT Fractal boundaries of complex networks Jia Shao, Sergey V. Buldyrev, Reuven Cohen, Maksim Kitsak, Shlomo Havlin and H. Eugene Stanley EPL, 84 (2008) 48004 Please visit the new website www.epljournal.org TAKE A LOOK AT THE NEW EPL Europhysics Letters (EPL) has a new online home at www.epljournal.org Take a look for the latest journal news and information on: • reading the latest articles, free! • receiving free e-mail alerts • submitting your work to EPL www.epljournal.org November 2008 EPL, 84 (2008) 48004 www.epljournal.org doi: 10.1209/0295-5075/84/48004 Fractal boundaries of complex networks Jia Shao1(a),SergeyV.Buldyrev1,2, Reuven Cohen3, Maksim Kitsak1, Shlomo Havlin4 and H. Eugene Stanley1 1 Center for Polymer Studies and Department of Physics, Boston University - Boston, MA 02215, USA 2 Department of Physics, Yeshiva University - 500 West 185th Street, New York, NY 10033, USA 3 Department of Mathematics, Bar-Ilan University - 52900 Ramat-Gan, Israel 4 Minerva Center and Department of Physics, Bar-Ilan University - 52900 Ramat-Gan, Israel received 12 May 2008; accepted in final form 16 October 2008 published online 21 November 2008 PACS 89.75.Hc – Networks and genealogical trees PACS 89.75.-k – Complex systems PACS 64.60.aq –Networks Abstract – We introduce the concept of the boundary of a complex network as the set of nodes at distance larger than the mean distance from a given node in the network. We study the statistical properties of the boundary nodes seen from a given node of complex networks. We find that for both Erd˝os-R´enyi and scale-free model networks, as well as for several real networks, the boundaries have fractal properties.
    [Show full text]
  • Giant Component in Random Multipartite Graphs with Given
    Giant Component in Random Multipartite Graphs with Given Degree Sequences David Gamarnik ∗ Sidhant Misra † January 23, 2014 Abstract We study the problem of the existence of a giant component in a random multipartite graph. We consider a random multipartite graph with p parts generated according to a d given degree sequence ni (n) which denotes the number of vertices in part i of the multi- partite graph with degree given by the vector d. We assume that the empirical distribution of the degree sequence converges to a limiting probability distribution. Under certain mild regularity assumptions, we characterize the conditions under which, with high probability, there exists a component of linear size. The characterization involves checking whether the Perron-Frobenius norm of the matrix of means of a certain associated edge-biased distribu- tion is greater than unity. We also specify the size of the giant component when it exists. We use the exploration process of Molloy and Reed to analyze the size of components in the random graph. The main challenges arise due to the multidimensionality of the ran- dom processes involved which prevents us from directly applying the techniques from the standard unipartite case. In this paper we use techniques from the theory of multidimen- sional Galton-Watson processes along with Lyapunov function technique to overcome the challenges. 1 Introduction The problem of the existence of a giant component in random graphs was first studied by arXiv:1306.0597v3 [math.PR] 22 Jan 2014 Erd¨os and R´enyi. In their classical paper [ER60], they considered a random graph model on n and m edges where each such possible graph is equally likely.
    [Show full text]
  • 15 Netsci Configuration Model.Key
    Configuring random graph models with fixed degree sequences Daniel B. Larremore Santa Fe Institute June 21, 2017 NetSci [email protected] @danlarremore Brief note on references: This talk does not include references to literature, which are numerous and important. Most (but not all) references are included in the arXiv paper: arxiv.org/abs/1608.00607 Stochastic models, sets, and distributions • a generative model is just a recipe: choose parameters→make the network • a stochastic generative model is also just a recipe: choose parameters→draw a network • since a single stochastic generative model can generate many networks, the model itself corresponds to a set of networks. • and since the generative model itself is some combination or composition of random variables, a random graph model is a set of possible networks, each with an associated probability, i.e., a distribution. this talk: configuration models: uniform distributions over networks w/ fixed deg. seq. Why care about random graphs w/ fixed degree sequence? Since many networks have broad or peculiar degree sequences, these random graph distributions are commonly used for: Hypothesis testing: Can a particular network’s properties be explained by the degree sequence alone? Modeling: How does the degree distribution affect the epidemic threshold for disease transmission? Null model for Modularity, Stochastic Block Model: Compare an empirical graph with (possibly) community structure to the ensemble of random graphs with the same vertex degrees. e a loopy multigraphs c d simple simple loopy graphs multigraphs graphs Stub Matching tono multiedgesdraw from theno config. self-loops model ~k = 1, 2, 2, 1 b { } 3 3 4 3 4 3 4 4 multigraphs 2 5 2 5 2 5 2 5 1 1 6 6 1 6 1 6 3 3 the 4standard algorithm:4 3 4 4 loopy and/or 5 5 draw2 from5 the distribution2 5 by sequential2 “Stub Matching”2 1 1 6 6 1 6 1 6 1.
    [Show full text]
  • A Multigraph Approach to Social Network Analysis
    1 Introduction Network data involving relational structure representing interactions between actors are commonly represented by graphs where the actors are referred to as vertices or nodes, and the relations are referred to as edges or ties connecting pairs of actors. Research on social networks is a well established branch of study and many issues concerning social network analysis can be found in Wasserman and Faust (1994), Carrington et al. (2005), Butts (2008), Frank (2009), Kolaczyk (2009), Scott and Carrington (2011), Snijders (2011), and Robins (2013). A common approach to social network analysis is to only consider binary relations, i.e. edges between pairs of vertices are either present or not. These simple graphs only consider one type of relation and exclude the possibility for self relations where a vertex is both the sender and receiver of an edge (also called edge loops or just shortly loops). In contrast, a complex graph is defined according to Wasserman and Faust (1994): If a graph contains loops and/or any pairs of nodes is adjacent via more than one line the graph is complex. [p. 146] In practice, simple graphs can be derived from complex graphs by collapsing the multiple edges into single ones and removing the loops. However, this approach discards information inherent in the original network. In order to use all available network information, we must allow for multiple relations and the possibility for loops. This leads us to the study of multigraphs which has not been treated as extensively as simple graphs in the literature. As an example, consider a network with vertices representing different branches of an organ- isation.
    [Show full text]