Desulfovibrio Idahonensis Sp. Nov., Sulfatereducing Bacteria Isolated from a Metal(Loid)-Contaminated Freshwater Sediment

Total Page:16

File Type:pdf, Size:1020Kb

Desulfovibrio Idahonensis Sp. Nov., Sulfatereducing Bacteria Isolated from a Metal(Loid)-Contaminated Freshwater Sediment University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 9-1-2009 Desulfovibrio idahonensis sp. nov., sulfatereducing bacteria isolated from a metal(loid)-contaminated freshwater sediment H. Sass Cardiff University S. Ramamoorthy Cardiff University C. Yarwood University of Montana H. Langner University of Montana P. Schumann Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH See next page for additional authors Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Sass, H.; Ramamoorthy, S.; Yarwood, C.; Langner, H.; Schumann, P.; Kroppenstedt, R. M.; Spring, S.; and Rosenzweig, R. Frank, "Desulfovibrio idahonensis sp. nov., sulfatereducing bacteria isolated from a metal(loid)-contaminated freshwater sediment" (2009). Biological Sciences Faculty Publications. 439. https://scholarworks.umt.edu/biosci_pubs/439 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Authors H. Sass, S. Ramamoorthy, C. Yarwood, H. Langner, P. Schumann, R. M. Kroppenstedt, S. Spring, and R. Frank Rosenzweig This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/biosci_pubs/439 International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2208–2214 DOI 10.1099/ijs.0.016709-0 Desulfovibrio idahonensis sp. nov., sulfate- reducing bacteria isolated from a metal(loid)- contaminated freshwater sediment H. Sass,1 S. Ramamoorthy,2 C. Yarwood,2 H. Langner,3 P. Schumann,4 R. M. Kroppenstedt,4 S. Spring4 and R. F. Rosenzweig2 Correspondence 1School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, R. F. Rosenzweig Cardiff CF10 3YE, UK [email protected] 2Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824, USA 3Department of Geology, University of Montana, Missoula, MT 59812, USA 4DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany Two novel sulfate-reducing bacteria, strains CY1T and CY2, were isolated from heavy-metal- contaminated sediments of Lake Coeur d’Alene, Idaho, USA. Strains CY1T and CY2 were found to contain c-type cytochromes and to reduce sulfate, sulfite, thiosulfate, elemental sulfur, DMSO, anthraquinone disulfonate and fumarate using lactate as an electron donor. In a comparison of 16S rRNA gene sequences, CY1T and CY2 were found to be 100 % identical, but only 97 and 92.4 % similar, respectively, to the type strains of Desulfovibrio mexicanus and Desulfovibrio aminophilus. Unlike these species, however, CY1T was neither able to disproportionate thiosulfate nor able to use yeast extract or amino acids as electron donors. These data, considered in conjunction with differences among strain CY1T and the two related type strains in chemotaxonomy, riboprint patterns, temperature and pH optima, support recognition of a distinct and novel species within the genus Desulfovibrio, Desulfovibrio idahonensis sp. nov., with the type strain CY1T (5DSM 15450T 5JCM 14124T). The genus Desulfovibrio ranks among the most speciose, (Goldstein et al., 2003). Desulfovibrios facilitate metal phenotypically diverse genera in the Proteobacteria. corrosion (Neria-Gonzalez et al., 2006) and have been Diagnostic traits include dissimilatory sulfate reduction, repeatedly isolated from oil and gas production facilities absence of sporulation, presence of polar flagella and the (Miranda-Tello et al., 2003; Magot et al., 2004). presence of desulfoviridin and cytochrome c (Postgate & Desulfovibrio ribosomal gene sequences have been Campbell, 1965). Ribosomal gene sequence analyses retrieved from submerged mine timbers (Labrenz & indicate that the group’s origin lies deep in the Banfield, 2004), gas hydrate mounds (Mills et al., 2003) Deltaproteobacteria (Devereux et al., 1990). To date, names and floating macrophyte rhizospheres (Acha et al., 2005), of some 57 Desulfovibrio species have been validly while desulfovibrio-specific dissimilatory sulfite reductase published (http://www.dsmz.de/microorganisms/bacterial_ genes (dsrAB) have been recovered from temperate sulfide- nomenclature_info.php?genus=Desulfovibrio; four of these rich streams (Elshahed et al., 2003) and frozen Antarctic species have since been reclassified), enriched from such lakes (Karr et al., 2005). diverse environments as sediments (Bale et al., 1997; Sass As a group, desulfovibrios tolerate extreme ranges of et al., 1998), wastewater sludge (Baena et al., 1998; temperature (Bale et al., 1997; Vandieken et al., 2006), pH Hernandez-Eugenio et al., 2000) and animal intestines (Abildgaard et al., 2006; Fro¨hlich et al., 1999) and salinity (Sass & Cypionka, 2004; Ito et al., 2002), and productively Abbreviation: AQDS, anthraquinone disulfonate. use a multitude of electron donors, from aromatic The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene compounds (Reichenbecher & Schink, 1997) and haloge- sequences of strains CY1T and CY2 are AJ582755 and AJ582758, nated hydrocarbons (Sun et al., 2000) to amino acids respectively. (Baena et al., 1998; Hernandez-Eugenio et al., 2000). In An electron micrograph of a cell of strain CY1T and PvuII riboprints of addition to dissimilatory sulfate reduction, certain the novel strains and D. mexicanus DSM 13116T are available as Desulfovibrio species use alternative terminal electron supplementary material with the online version of this paper. acceptors such as U(VI) (Payne et al., 2002), Fe(III) 2208 016709 G 2009 IUMS Printed in Great Britain Desulfovibrio idahonensis sp. nov., from mine-impacted sediment (Vandieken et al., 2006) and Cr(VI) (Humphries & after three successive passages. Negative controls consisted Macaskie, 2005), though these electron acceptors do not of (i) live cells in medium without lactate or sulfate, (ii) generally support growth. It has long been known that autoclaved cells added to complete medium (Madigan et sulfidogenic microbes biomineralize aqueous-phase metals al., 1997) and (iii) live cells filtered through a 0.2 mm sterile and metalloids (Tuttle et al., 1969). Now, this activity is filter, with the filtrate added to complete medium. being harnessed to bioremediate soils and sediments Reduction of sulfate, sulfite, sulfur and thiosulfate to contaminated by mining and radionuclide processing sulfide was tested by adding 0.5 % Fe(NH4)2(SO4)2 to (Lovley, 2001). Because the genomes of several desulfovi- culture tubes. For accurate determination of sulfide (as brios have been fully sequenced (Heidelberg et al., 2004; hydrogen sulfide, H2S) concentrations, the spectrophoto- http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org= metric methylene blue assay of Cline (1969) was used. ntds01), autecological studies of Desulfovibrio species are Reduction of anthraquinone disulfonate (AQDS) was now possible using genome-enabled technologies (e.g. Clark measured photometrically at 450 nm, as described by et al., 2006). Lovley et al. (1996). As CY1T and CY2 were isolated from To understand metal(loid) cycling better in mining- metal(loid)-contaminated sediments, we tested for reduc- impacted freshwater sediments, our group has enriched tion of Mn(IV), As(V), Fe(III) and Se(VI) presented for and studied iron-, arsenic- and sulfate-reducing respectively as MnO2,Na2HAsO4 .7H2O, Fe4(P2O4)3 and bacteria, as the characteristic activities of such microbes Na2SeO4. MnO2 reduction was scored by the characteristic are likely to influence contaminant fate and stability colour change from black MnO2 to white MnCO3, while (Cummings et al., 2000; Niggemyer et al., 2001; formation of red elemental selenium precipitate was scored [ Ramamoorthy et al., 2009). Strains CY1T and CY2 were as indicating Se(VI) reduction. Reduced arsenic as ] isolated from the highest positive tubes of an MPN series arsenite, As(III) was quantified photometrically from the inoculated with sediment (pH 6.8–7.2) from Lake Coeur A865 using the procedure originally described by Johnson & d’Alene, Idaho, USA, a freshwater system historically Pilson (1972) and later modified by Niggemyer et al. impacted by lead, zinc and antimony mining (2001). Sulfate, thiosulfate, lactate and acetate concentra- (Ramamoorthy et al., 2009). For enrichment and isolation, tions were determined using ion chromatography we used selective dithionite-reduced medium with sodium (Ramamoorthy et al., 2006). Culture density was estimated photometrically as OD . Fluorimetry after staining with lactate (10 mM) and Na2SO4 (10 mM) (Widdel & Pfennig, 420 1977; Widdel, 1980). Bacteria were isolated by three SybrGreenI (Martens-Habbena & Sass, 2006) or direct cell passages in 1.5 % agar shake tubes. counting was used to confirm growth on selenate, manganese oxide and Fe(III). Cells were stained with Gram staining, oxidase and catalase tests, electron 10 mg49,6-diamidino-2-phenylindole (DAPI; Sigma) ml21, microscopy and assessment of spore formation were and cells were then counted by epifluorescence microscopy performed as described previously (Magee et al., 1975; using a Zeiss Axioskop. Growth yield was defined as Cappuccino & Sherman, 1998; Ramamoorthy
Recommended publications
  • Doctoral Dissertation Template
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By QICHAO TU Norman, Oklahoma 2014 METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Jizhong Zhou, Chair ______________________________ Dr. Meijun Zhu ______________________________ Dr. Fengxia (Felicia) Qi ______________________________ Dr. Michael McInerney ______________________________ Dr. Bradley Stevenson © Copyright by QICHAO TU 2014 All Rights Reserved. Acknowledgements At this special moment approaching the last stage for this degree, I would like to express my gratitude to all the people who encouraged me and helped me out through the past years. Dr. Jizhong Zhou, my advisor, is no doubt the most influential and helpful person in pursuing my academic goals. In addition to continuous financial support for the past six years, he is the person who led me into the field of environmental microbiology, from a background of bioinformatics and plant molecular biology. I really appreciated the vast training I received from the many interesting projects I got involved in, without which I would hardly develop my broad experienced background from pure culture microbial genomics to complex metagenomics. Dr. Zhili He, who played a role as my second advisor, is also the person I would like to thank most. Without his help, I could be still struggling working on those manuscripts lying in my hard drive. I definitely learned a lot from him in organizing massed results into logical scientific work—skills that will benefit me for life.
    [Show full text]
  • Diversity and Activity of Sulfate-Reducing Bacteria In
    Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors If we knew what we are doing, it would not be called research would it? Albert Einstien ii Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 19 oktober 2007 om 10.00 uur door Shabir Ahmad DAR Master in Science of Bioprocess Technology, Asian Institute of Technology (AIT), Thailand geboren te Srinagar, J&K, India iii Dit proefschrift is goedgekeurd door de promotor: Prof. dr. J. G. Kuenen Toegevoegd promotor Dr. G. Muyzer Samenstelling promotie commissie: Rector Magnificus Voorzitter Prof. dr. J.G. Kuenen Delft University of Technology, Promotor Dr. G. Muyzer Delft University of Technology, Toegevoegd promotor Prof. dr. F. Widdel Max-Planck-Institute for Marine Microbiology, Bremen, Germany Prof. dr. ir. M.C.M. van Loosdrecht Delft University of Technology Prof. dr. H.J. Laanbroek Utrecht University Prof. dr. ir.A.J.M. Stams Wageningen University Prof. dr. ir. P.N.L. Lens Wageningen University This study was carried out in the Environmental Biotechnology group of the Department of Biotechnology at Delft University of Technology, Delft, the Netherlands. This research was financially supported by The Netherlands Organization for Scientific Research – (NWO Earth
    [Show full text]
  • Beating the Bugs: Roles of Microbial Biofilms in Corrosion
    Beating the bugs: roles of microbial biofilms in corrosion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Li, Kwan, Matthew Whitfield, and Krystyn J. Van Vliet. "Beating the bugs: roles of microbial biofilms in corrosion." Corrosion Reviews 321, 3-6 (2013); © 2013, by Walter de Gruyter Berlin Boston. All rights reserved. As Published https://dx.doi.org/10.1515/CORRREV-2013-0019 Publisher Walter de Gruyter GmbH Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125679 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Beating the bugs: Roles of microbial biofilms in corrosion Kwan Li∗,‡, Matthew Whitfield∗,‡, and Krystyn J. Van Vliet∗,† ∗Department of Materials Science and Engineering and †Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ‡These author contributed equally to this work Abstract Microbiologically influenced corrosion is a complex type of environmentally assisted corrosion. Though poorly understood and challenging to ameliorate, it is increasingly appreciated that MIC accelerates failure of metal alloys, including steel pipeline. His- torically, this type of material degradation process has been treated from either an electrochemical materials perspective or a microbiological perspective. Here, we re- view the current understanding of MIC mechanisms for steel – particularly those in sour environments relevant to fossil fuel recovery and processing – and outline the role of the bacterial biofilm in both corrosion processes and mitigation responses. Keywords: biofilm; sulfate-reducing bacteria (SRB); microbiologically influenced cor- rosion (MIC) 1 Introduction Microbiologically influenced corrosion (MIC) can accelerate mechanical failure of metals in a wide range of environments ranging from oil and water pipelines and machinery to biomedical devices.
    [Show full text]
  • Hal 89-106 Alimuddin Enzim
    Microbial community of black band disease on infection ... (Ofri Johan) MICROBIAL COMMUNITY OF BLACK BAND DISEASE ON INFECTION, HEALTHY, AND DEAD PART OF SCLERACTINIAN Montipora sp. COLONY AT SERIBU ISLANDS, INDONESIA Ofri Johan*)#, Dietriech G. Bengen**), Neviaty P. Zamani**), Suharsono***), David Smith****), Angela Mariana Lusiastuti*****), and Michael J. Sweet******) *) Research and Development Institute for Ornamental Fish Culture, Jakarta **) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University ***) Research Center for Oceanography, The Indonesian Institute of Science ****) School of Biology, Newcastle University, NE1 7RU, United Kingdom *****) Center for Aquaculture Research and Development ******) Biological Sciences Research Group, University of Derby, Kedleston Road, Derby, DE22 1GB, United Kingdom (Received 19 March 2014; Final revised 12 September 2014; Accepted 10 November 2014) ABSTRACT It is crucial to understand the microbial community associated with the host when attempting to discern the pathogen responsible for disease outbreaks in scleractinian corals. This study determines changes in the bacterial community associated with Montipora sp. in response to black band disease in Indonesian waters. Healthy, diseased, and dead Montipora sp. (n = 3 for each sample type per location) were collected from three different locations (Pari Island, Pramuka Island, and Peteloran Island). DGGE (Denaturing Gradient Gel Electrophoresis) was carried out to identify the bacterial community associated with each sample type and histological analysis was conducted to identify pathogens associated with specific tissues. Various Desulfovibrio species were found as novelty to be associated with infection samples, including Desulfovibrio desulfuricans, Desulfovibrio magneticus, and Desulfovibrio gigas, Bacillus benzoevorans, Bacillus farraginis in genus which previously associated with pathogenicity in corals.
    [Show full text]
  • Desulfovibrio Vulgaris Defenses Against Oxidative and Nitrosative Stresses
    Desulfovibrio vulgaris defenses against oxidative and nitrosative stresses Mafalda Cristina de Oliveira Figueiredo Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Supervisor: Dr. Lígia M. Saraiva Co-supervisor: Prof. Miguel Teixeira Oeiras, September 2013 From left to right: Carlos Romão (president of the jury), Fernando Antunes (3rd opponent), Ana Melo (4th opponent), Lígia Saraiva (supervisor), Carlos Salgueiro (2nd opponent), Mafalda Figueiredo, Alain Dolla (1st opponent) and Miguel Teixeira (co-supervisor). 17th September 2013 Second edition, October 2013 Molecular Genetics of Microbial Resistance Laboratory Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa 2780-157 Portugal “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” Marie Curie Acknowledgments The present work would not have been possible without the help, the support and the friendship of several people whom I would like to formally express my sincere gratitude: Dr. Lígia M. Saraiva Firstly I would like to express my gratitude to my supervisor Dr. Lígia M. Saraiva, without her ideas and persistence I would not have come this far. I thank her for the constant support and encouragement when things did not go so well, for the trust she placed in me and in my work and for always being there when I needed over these five years. I have to thank Dr. Lígia for the good advices and for the careful revision of this thesis. Thanks for everything!!! Prof. Miguel Teixeira To my co-supervisor Prof.
    [Show full text]
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Pseudodesulfovibrio Indicus Gen. Nov., Sp Nov., a Piezophilic Sulfate
    1 International Journal Of Systematic And Evolutionary Microbiology Achimer October 2016, Volume 66 Pages 3904-3911 http://dx.doi.org/10.1099/ijsem.0.001286 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00359/47018/ © 2016 IUMS Printed in Great Britain Pseudodesulfovibrio indicus gen. nov., sp nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio Cao Junwei 1, 2, 3, 4, 5, 6, 7, 8, *, Gayet Nicolas 9, Zeng Xiang 5, 6, 7, 8, Shao Zongze 5, 6, 7, 8, *, Jebbar Mohamed 1, 2, 3, Alain Karine 1, 2, 3, * 1 UBO, UEB, IUEM, UMR 6197,LMEE, Pl Nicolas Copernic, F-29280 Plouzane, France. 2 CNRS, IUEM, UMR 6197, LMEE, Pl Nicolas Copernic, F-29280 Plouzane, France. 3 IFREMER, UMR 6197, LMEE, Technopole Pointe Diable, F-29280 Plouzane, France. 4 Harbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China. 5 State Key Lab Breeding Base Marine Genet Resource, Xiamen, Peoples R China. 6 Third Inst State Ocean Adm, Key Lab Marine Genet Resources, Xiamen, Peoples R China. 7 Collaborat Innovat Ctr Marine Biol Resources, Xiamen, Peoples R China. 8 Key Lab Marine Genet Resources Fujian Prov, Xiamen, Peoples R China. 9 IFREMER, Ctr Brest, REM, EEP,LEP,Inst Carnot,EDROME, F-29280 Plouzane, France. *Corresponding authors : email addresses : [email protected] ; [email protected] ; [email protected] Abstract : A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae , but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T.
    [Show full text]
  • Ketogenic Diet Enhances Neurovascular Function with Altered
    www.nature.com/scientificreports OPEN Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy Received: 14 September 2017 Accepted: 17 April 2018 mice Published: xx xx xxxx David Ma1, Amy C. Wang1, Ishita Parikh1, Stefan J. Green 2, Jared D. Hofman1,3, George Chlipala2, M. Paul Murphy1,4, Brent S. Sokola5, Björn Bauer5, Anika M. S. Hartz1,3 & Ai-Ling Lin1,3,6 Neurovascular integrity, including cerebral blood fow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had signifcant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively benefcial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-infammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our fndings suggest that KD intervention started in the early stage may enhance brain vascular function, increase benefcial gut microbiota, improve metabolic profle, and reduce risk for AD.
    [Show full text]
  • Lipid Biomarkers of Microbial Communities Involved in Carbon Dioxide and Methane Cycling at Volcanic CO2 Vents
    Lipid biomarkers of microbial communities involved in carbon dioxide and methane cycling at volcanic CO2 vents Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften im Department Geowissenschaften der Universität Hamburg vorgelegt von Birte I. Oppermann aus Hamburg Hamburg November 2010 Als Dissertation angenommen vom Department Geowissenschaften der Universität Hamburg Auf Grund der Gutachten von Prof. Dr. Walter Michaelis Prof. Dr. Kay-Christian Emeis Tag der Disputation 28.01.2011 Prof. Dr. Jürgen Oßenbrügge Leiter des Department Geowissenschaften Vorwort und Zielsetzung Die Abtrennung und geologische Speicherung von CO2 stellt eine Möglichkeit zur Reduktion der anthropogenen CO2 Emission dar. Eine Speicherung in salinen Aquiferen und ausgebeuteten Gas- und Ölreservoirs ist bereits technisch machbar. Aber vor der Anwendung dieser Technologie ist es notwendig, die Folgen von CO2- Leckagen aus dem Speicher in die oberflächennahe Umwelt zu bewerten. Natürliche Analoge helfen dabei, die Folgen solcher Leckagen einzuschätzen. So wurden für diese Studie zwei vulkanische CO2 Austritte als natürliche Labore zur Untersuchung der Auswirkungen von CO2 induzierten Umweltveränderungen auf das mikrobielle Leben genutzt. CO2 ist das wichtigste Treibhausgas des anthropogen bedingten Klimawandels und hat schon bei vorangegangenen Klimaveränderungen eine essentielle Rolle gespielt. Zusätzlich zu den anthropogenen Emissionen haben sowohl die mikrobielle Produktion, als auch der mikrobielle Abbau von CO2 einen signifikanten Einfluss auf die Konzentration von Treibhausgasen in der Atmosphäre. In früheren geologischen Zeitabschnitten sind mikrobielle Prozesse von wesentlich größerer Bedeutung für die Konzentration von Treibhausgasen in der Atmosphäre gewesen; während des Präkambriums waren sie sogar die dominierenden biologischen Prozesse. Doch es bestehen weiterhin große Wissenslücken bezüglich der Art und Eigenschaften CO2 verbrauchender und hierbei insbesondere der anaeroben Mikroorganismen.
    [Show full text]
  • Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 Ning Zhang
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Duquesne University: Digital Commons Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2012 Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 Ning Zhang Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Zhang, N. (2012). Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1409 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 A Thesis Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science in Environmental Science & Management By Ning Zhang May 2012 Copyright by Ning Zhang 2012 CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 By Ning Zhang Approved on January 4, 2012 ________________________________ ________________________________ Dr. John F. Stolz Dr. H.M. Skip Kingston Professor of Biology Professor of Analytical Chemistry (Committee Chair) (Committee Member) ________________________________ Dr. Michael J. Tobin Adjunct Professor of Chemistry (Committee Member) ________________________________ ________________________________ Dr. David W. Seybert Dr. John F. Stolz Dean, Bayer School of Natural and Director, Center for Environmental Environmental Sciences Research and Education iii ABSTRACT CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 By Ning Zhang May 2012 Dissertation supervised by Dr. John F.
    [Show full text]
  • Comparative Analysis of Bacterial Communities Associated with Healthy and Diseased Corals in the Indonesian Sea
    Comparative analysis of bacterial communities associated with healthy and diseased corals in the Indonesian sea Wuttichai Mhuantong1,*, Handung Nuryadi2,*, Agus Trianto2, Agus Sabdono2, Sithichoke Tangphatsornruang3, Lily Eurwilaichitr1, Pattanop Kanokratana1 and Verawat Champreda1 1 Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand 2 Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia 3 National Omics Center, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand * These authors contributed equally to this work. ABSTRACT Coral reef ecosystems are impacted by climate change and human activities, such as increasing coastal development, overfishing, sewage and other pollutant discharge, and consequent eutrophication, which triggers increasing incidents of diseases and deterioration of corals worldwide. In this study, bacterial communities associated with four species of corals: Acropora aspera, Acropora formosa, Cyphastrea sp., and Isopora sp. in the healthy and disease stages with different diseases were compared using tagged 16S rRNA sequencing. In total, 59 bacterial phyla, 190 orders, and 307 genera were assigned in coral metagenomes where Proteobacteria and Firmicutes were pre- dominated followed by Bacteroidetes together with Actinobacteria, Fusobacteria, and Lentisphaerae as minor taxa. Principal Coordinates Analysis (PCoA) showed separated clustering of bacterial diversity in healthy and infected groups for individual coral species. Fusibacter was found as the major bacterial genus across all corals. The lower number of Fusibacter was found in A. aspera infected with white band disease and Submitted 15 March 2019 Isopora sp. with white plaque disease, but marked increases of Vibrio and Acrobacter, Accepted 1 November 2019 respectively, were observed. This was in contrast to A.
    [Show full text]