Active Tectonics of the Devils Mountain Fault and Related Structures, Northern Puget Lowland and Eastern Strait of Juan De Fuca Region, Pacific Northwest

Total Page:16

File Type:pdf, Size:1020Kb

Active Tectonics of the Devils Mountain Fault and Related Structures, Northern Puget Lowland and Eastern Strait of Juan De Fuca Region, Pacific Northwest USGS science for a changing world Active Tectonics of the Devils Mountain Fault and Related Structures, Northern Puget Lowland and Eastern Strait of Juan de Fuca Region, Pacific Northwest U.S. Geological Survey Professional Paper 1643 U.S. Department of the Interior U.S. Geological Survey Availability of Publications of the U.S. Geological Survey Order U.S. Geological Survey (USGS) publications from the Documents. Check or money order must be payable to the offices listed below. Detailed ordering instructions, along with Superintendent of Documents. Order by mail from— prices of the last offerings, are given in the current-year issues of the catalog "New Publications of the U.S. Geological Survey." Superintendent of Documents Government Printing Office Books, Maps, and Other Publications Washington, D.C. 20402 By Mail Information Periodicals Books, maps, and other publications are available by mail Many Information Periodicals products are available through from— the systems or formats listed below: USGS Information Services Printed Products Box 25286, Federal Center Denver, CO 80225 Printed copies of the Minerals Yearbook and the Mineral Commodity Summaries can be ordered from the Superinten­ Publications include Professional Papers, Bulletins, Water- dent of Documents, Government Printing Office (address Supply Papers, Techniques of Water-Resources Investigations, above). Printed copies of Metal Industry Indicators and Min­ Circulars, Fact Sheets, publications of general interest, single eral Industry Surveys can be ordered from the Center for Dis­ copies of permanent USGS catalogs, and topographic and ease Control and Prevention, National Institute for thematic maps. Occupational Safety and Health. Pittsburgh Research Center, Over the Counter P.O. Box L8070, Pittsburgh, PA 15236-0070. Books, maps, and other publications of the U.S. Geological Mines FaxBack: Return Fax Service Survey are available over the counter at the following USGS Earth Science Information Centers (ESIC's). all of which are 1. Use the touch-tone handset attached to your fax authorized agents of the Superintendent of Documents. machine's telephone jack. (ISDN [digital] telephones can­ not be used with fax machines.) • Anchorage, Alaska—Rm. 101, 4230 University Dr. 2. Dial (703) 648-4999. • Denver, Colorado—Bldg. 810, Federal Center 3. Listen to the menu options and punch in the number of • Menlo Park, California—Rm. 3128, Bldg. 3, your selection, using the touch-tone telephone. 345 Middlefield Rd. 4. After completing your selection, press the start button on • Reston, Virginia—Rm. 1C402, USGS National Center, your fax machine. 12201 Sunrise Valley Dr. • Spokane, Washington—Rm. 135, U.S. Post Office CD-ROM Bldg., 904 West Riverside Ave. • Washington, D.C.—Rm. 2650, Main Interior Bldg., A disc containing chapters of the Minerals Yearbook (1933- 18th and CSts., NW 95), the Mineral Commodity Summaries (1995-97), a statisti­ cal compendium (1970-90), and other publications is updated Maps only may be purchased over the counter at the following three times a year and sold by the Superintendent of Docu­ USGS office: ments, Government Printing Office (address above). • Rolla, Missouri—1400 Independence Rd. World Wide Web Electronically Minerals information is available electronically at http://minerals.er.usgs.gov/minerals/ Some USGS publications, including the catalog "New Publi­ Subscription to the Catalog "New Publications of the cations of the U.S. Geological Survey," are also available elec­ U.S. Geological Survey" tronically on the USGS's World Wide Web home page at http ://w ww.usgs.gov Those wishing to be placed on a free subscription list for the catalog "New Publications of the U.S. Geological Survey" Preliminary Determination of Epicenters should write to— U.S. Geological Survey Subscriptions to the periodical "Preliminary Determination of 903 National Center Epicenters" can be obtained only from the Superintendent of Reston, VA 20192 Active Tectonics of the Devils Mountain Fault and Related Structures, Northern Puget Lowland and Eastern Strait of Juan de Fuca Region, Pacific Northwest By Samuel Y. Johnson, Shawn V. Dadisman, David C. Mosher, Richard J. Blakely, and Jonathan R. Childs U.S. Geological Survey Professional Paper 1643 Prepared in cooperation with the Geological Survey of Canada U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat Director Version 1.0 First printing 2001 For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region. Pacific Northwest / by Samuel Y. Johnson ... [et al.]. p. cm. - (U.S. Geological Survey professional paper; 1643) Includes bibliographical references. 1. Faults (Geology)—Juan de Fuca, Strait of, Region (B.C. and Wash.) 2. Geology—Juan de Fuca, Strait of, Region (B.C. and Wash.). I. Johnson, Samuel Y. II. Series. QE606.5.J83 A37 2002 551.8'09797—dc21 2001033439 ISBN=0-607-97457-5 Contents Abstract................................................................................................................................................. 1 Introduction........................................................................................................................................... 1 Acknowledgments............................................................................................................................... 1 Geologic Setting................................................................................................................................... 2 Seismic-Reflection Surveys—Data Acquisition and Processing................................................ 6 Stratigraphy and Seismic Stratigraphy............................................................................................ 7 Pre-Tertiary Basement Rocks................................................................................................... 7 Tertiary Sedimentary Rocks...................................................................................................... 7 Uppermost Pliocene(?) to Pleistocene Strata........................................................................ 7 Onshore Stratigraphy........................................................................................................ 7 Offshore Stratigraphy........................................................................................................ 9 Identification and Age of the Base of the Uppermost Pliocene(?) to Pleistocene Section...................................................................................................... 9 Uppermost Pleistocene and Holocene Strata........................................................................ 9 Seismic-Reflection Profiles................................................................................................................ 9 U.S. Geological Survey Line 176............................................................................................... 11 U.S. Geological Survey Line 177............................................................................................... 11 U.S. Geological Survey Line 167-168....................................................................................... 11 U.S. Geological Survey Line 166............................................................................................... 12 Industry Line 1.............................................................................................................................. 13 U.S. Geological Survey Line 165............................................................................................... 13 U.S. Geological Survey Line 164............................................................................................... 13 U.S. Geological Survey Line 162............................................................................................... 13 U.S. Geological Survey Line 158............................................................................................... 14 Industry Line 2.............................................................................................................................. 14 Geological Survey of Canada Line 15...................................................................................... 14 SHIPS LineJDF4.................................................^ 14 Industry Line 3.............................................................................................................................. 14 Geological Survey of Canada Line 37...................................................................................... 15 Geological Survey of Canada Line 35...................................................................................... 15 Evidence for Faulting Onshore, Whidbey and Camano Islands................................................... 15 Devils Mountain Fault................................................................................................................. 17 Location............................................................................................................................... 17 Outcrops.............................................................................................................................
Recommended publications
  • Seismicity in Cascadia
    Lithos 332–333 (2019) 55–66 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Seismicity in Cascadia Michael G. Bostock ⁎, Nikolas I. Christensen, Simon M. Peacock Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Canada article info abstract Article history: We examine spatio-geometric patterns in the density of seismicity within the Cascadia forearc to gain insight into Received 11 July 2018 controls on seismogenesis. Tremor epicenters exhibit the most regular distribution defining a 40–80 km wide 27 December 2018 band extending along almost the entire convergent margin from the southern terminus of Gorda plate subduc- Accepted 23 February 2019 tion in northern California to the central Explorer plate below northern Vancouver Island. Based on prior charac- Available online 26 February 2019 terization of constituent low-frequency earthquakes, the up- and down-dip limits of tremor are assumed to fl Keywords: represent slab isodepth contours at nominal values of 28 and 45 km, between which uids at near-lithostatic Seismicity overpressures are trapped within the subducting slab. Epicenters of earthquakes within the North American Tremor crust are anticorrelated with those of tremor, and concentrated in Washington and northern California where Cascadia they are sandwiched between tremor and the Cascade volcanic arc. Seismicity within the subducting plate Fluids possesses the most limited epicentral distribution. Seismicity is confined to shallow depths off Vancouver Island Subduction and in northern California, and projects to greater depths beneath Washington and southern British Columbia. Forearc Comparison of seismicity patterns with long-wavelength slab geometry and thermo-petrologic constraints sug- Serpentinization gests that seismicity occurrence in Cascadia is governed by an interplay between slab strain, metamorphic dehy- Eclogitization dration within the subducting oceanic plate, and a plate boundary seal that controls where fluids enter the Volcanism overriding plate.
    [Show full text]
  • Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia
    Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Brett Hohs Tallentire Gilley B.Sc., Simon Fraser University, 1999 A THESIS SUBMInED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the DEPARTMENT OF EARTH SCIENCES O Brett Hollis Tallentire Gilley, 2003 SIMON FRASER UNIVERSITY December, 2003 All rights reserved. This work may not be reproduced in whole or part, by photocopy or other means, without the permission of the author. APPROVAL Name: Brett Hollis Tallentire Gilley Degree: Master of Science Title of Thesis: Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Examining Committee: Chair: Dr. Glyn Williams-Jones Assistant Professor Dr. Peter Mustard Senior Supervisor Associate Professor Dr. ames MacEachern SupJ rvisory Associate Profess - Fvpf.Michael ~ilhn Ex rnal Examiner Doua4 as Colleae. De~t.of Geolosv & Anthropology Date Approved: ne 4 , 2 csz aw PARTIAL COPYRIGHT LICENCE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.
    [Show full text]
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • A Review of Vertebrate Track-Bearing Formations
    5 Lockley, M.G. & Lucas, S.G., eds., 2014, Fossil footprints of western North America: NMMNHS Bulletin 62 A REVIEW OF VERTEBRATE TRACK-BEARING FORMATIONS FROM THE MESOZOIC AND EARLIEST CENOZOIC OF WESTERN CANADA WITH A DESCRIPTION OF A NEW THEROPOD ICHNOSPECIES AND REASSIGNMENT OF AN AVIAN ICHNOGENUS RICHARD T. MCCREA1, LISA G. BUCKLEY1, A. GUY PLINT2, PHILIP J. CURRIE3, JAMES W. HAGGART4, CHARLES W. HELM1 AND S. GEORGE PEMBERTON5 1Peace Region Palaeontology Research Centre; Box 1540; Tumbler Ridge, British Columbia; V0C 2W0; CANADA; 2Department of Earth Sciences; University of Western Ontario; London, Ontario; N6A 5B7; CANADA; 3Department of Biological Sciences; University of Alberta, Edmonton, Alberta; T6G 2E9; CANADA; 4Geological Survey of Canada; 1500-605 Robson Street; Vancouver, British Columbia; V6B 5J3; CANADA; 5Department of Earth and Atmospheric Sciences; University of Alberta; Edmonton, Alberta; T6G 2E3; CANADA Abstract—The past quarter century has seen a marked increase in the recognition of fossil vertebrate tracksites in western Canada. Most of these finds were made in Alberta and British Columbia, but the Yukon Territory can lay claim to at least one tracksite and probably has the potential to yield more sites. The record of dinosaur tracks with skin impressions has increased dramatically, and is now represented by specimens of ankylosaurs, large ornithopods, small theropods and tyrannosauroids. Notable new finds include the first record of sauropods in Canada, evidence of herding behavior in ankylosaurs and the first pterosaur tracks in Canada. First discoveries of track specimens from several formations in western Canada include the Mountain Park Member of the Gates Formation in Alberta, and the Boulder Creek, Goodrich, Kaskapau, Cardium and Marshybank formations in northeastern British Columbia.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs
    Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge.
    [Show full text]
  • A GPS and Modelling Study of Deformation in Northern Central America
    Geophys. J. Int. (2009) 178, 1733–1754 doi: 10.1111/j.1365-246X.2009.04251.x A GPS and modelling study of deformation in northern Central America M. Rodriguez,1 C. DeMets,1 R. Rogers,2 C. Tenorio3 and D. Hernandez4 1Geology and Geophysics, University of Wisconsin-Madison, Madison, WI 53706 USA. E-mail: [email protected] 2Department of Geology, California State University Stanislaus, Turlock, CA 95382,USA 3School of Physics, Faculty of Sciences, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras 4Servicio Nacional de Estudios Territoriales, Ministerio de Medio Ambiente y Recursos Naturales, Km. 5 1/2 carretera a Santa Tecla, Colonia y Calle Las Mercedes, Plantel ISTA, San Salvador, El Salvador Accepted 2009 May 9. Received 2009 May 8; in original form 2008 August 15 SUMMARY We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west–northwest at rates that increase gradually from 3.3 ± 0.6 mm yr−1 in central Honduras to 4.1 ± 0.6 mm yr−1 in western Honduras to as high as 11–12 mm yr−1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region.
    [Show full text]
  • OREGON GEOLOGY Published by the Oregon Department of Geology and Mineral Industries
    OREGON GEOLOGY published by the Oregon Department of Geology and Mineral Industries VOLUME 47. NUMBER 10 OCTOBER 1985 •-_Q OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) VOLUME 47, NUMBER 10 OCTOBER 1985 Columbia County Exxon Corporation spudded its GPE Federal Com. I on Published monthly by the Oregon Department of Geology and Min­ September I. The well name is a change from GPE Federal 2, eraI Industries (Volumes 1 through 40 were entitled The Ore Bin). permitted for section 3. T. 4 N .. R. 3 W. Proposed total depth is 12.000 ft. The contractor is Peter Bawden. Governing Board Donald A. Haagensen, Chairman ............. Portland Coos County Allen P. Stinchfield .................... North Bend Amoco Production Company is drilling ahead on Weyer­ Sidney R. Johnson. .. Baker haeuser "F" I in section 10, T. 25 S .. R. 10 W. The well has a projected total depth of 5,900 ft and is being drilled by Taylor State Geologist ..................... Donald A. Hull Drilling. Deputy State Geologist. .. John D. Beaulieu Publications Manager/Editor ............. Beverly F. Vogt Lane County Leavitt's Exploration and Drilling Co. has drilled Merle I to Associate Editor . Klaus K.E. Neuendorf a total depth of 2,870 ft and plugged the well as a dry hole. The well. in section 25. T. 16 S .. R. 5 W .. was drilled 2 mi southeast of Main Office: 910 State Office Building, 1400 SW Fifth Ave­ nue. Portland 9720 I, phone (503) 229-5580. Ty Settles' Cindy I. drilled earlier this year to 1.600 ft. A.M. Jannsen Well Drilling Co.
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Virgil A. Frizzell, Jr, U.S. Geological Survey Msnlo Park, California
    UNITED STATES DEPARTMENT OF H7EERIOR GEOLOGICAL SURVEY PETROLOGY AND STRATIGRAPHY OF PALBOGENE NONMARINE SANDSTONES, CASCADE RANGE, WASHINGTON by Virgil A. Frizzell, Jr, U.S. Geological Survey Msnlo Park, California OiPEN-FIIE REPORT 79-1149 report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature ACKNOWLEDGEMENTS I am indebted to the following workers for sharing both samples and edifying thoughts: Rowland W. Tabor (RWT, prefix for sample numbers); John T. Whetten (W); Charles W. Walker (most Roslyn samples); James D. Vine (V); Randall L. Gresens (all Wenatchee samples); James C. Yount (Y); Betsey L. Mathieson (BL); and David R. Pevear (DP). Without patient teaching from both Charles E. Meyer and Charles W. Naeser I would not have been able to learn the fission track dating technique. Likewise, I am indebted to William R. Dickinson, Jonathan C, Matti, Robert R. Compton, Robert J. McLaughlin, Kenneth Helmold, Henry N. Ohlin, and Bret F. Cox for aiding my petrographic abilities. Preliminary drafts of this dissertation benefited from scrutiny by various colleagues but Roland W. Tabor, in particular, fearlessly improved both form and content. I am grateful for the contributions of both time and thought by these and other workers because they aided substantially in the completion of this dissertation. iii TABLE OF CONTENTS Page LIST OF FIGURES. ........................ vi LIST OF PLATES ......................... vii LIST OF TABLES ......................... vii ABSTRACT ............................ viii INTRODUCTION .......................... 1 REGIONAL GEOLOGY AND TECTONIC SETTING. ............. 3 Regional Geology ...................... 3 Pre-Tertiary Stratigraphy of Selected Geologic Units .... 3 Plate Tectonic Setting ................... 10 STRATIGRAPHIC UNITS. ...................... 18 Introduction to Stratigraphic Units.
    [Show full text]