Washington Geology, V. 23, No. 3, September 1995

Total Page:16

File Type:pdf, Size:1020Kb

Washington Geology, V. 23, No. 3, September 1995 w V 0 WASHINGTON w VOL. 23, NO. 3 SEPTEMBER 1995 G EOLOG"I • INSIDE THIS ISSUE 1 Early Tertiary flowers, fruits. and seeds of Washington State and adjacent areas, p. 3 WASHINGTON STATE DEPARTMENTOF 1 Selected additions to the library of the Division of Geology and Earth Resources, p. 18 Natural Resources Jennifer M . Belcher - Co mmissio ner of Public Lands Kaleen Cottingham - Supervisor WASHINGTON Crown Jewel Project Reaches Milestone GEOLOGY Vol. 23, No. 3 Raymond Lasmanis, State Geologist September 1995 Washington Department of Natural Resources Division of Geology and Earth Resources Washi11g1011 Ceologr (ISSN 1058-2134) is published four times PO Box 47007, Olympia, WA 98504-7007 each year hy (he Washington State Department or Natural Resources, Division of Geology and Earth Resources. Thi~ puh­ lication is free upon request. The Division al so publishes b1il lc­ tins. information circulars. reports or investigations. geologic maps. and open -file reports. /\ li~t o r these publications will he A rter a lengthy evaluation process under the National Envi­ sent upon rcquc~l. ronment Policy Act (NEPA) and the State Environment Policy Act (SEPA), on June 30, 1995, the Draft Environmental Tm ­ DIVISION OF GEOLOGY AND EARTH RESOURCES pac t Statement. Crown Jewel Mine, Okanogan County, Wash­ ington, was issued by the lead agencies, U.S. Department of Raymo nd Lasmanis. Sr,11e Ge,,J,,,;i.<1 J. Eric Schuster. /1,1 l'i.1t1111t S rate Geolo,;isr Agriculture Forest ServiL:e allll the Washington State Deparr­ W1lli:1m S . Lingley, Jr., Ax,,i.<1111, t Stare G,•,,/o,;isr ment of Ecology. The proponent, Battle Mountain Gold Company, gave the Geologists (Olympia I Editor first hriefing to state agencies in Olympia on January 21, 1992. Joe D. Dragovich Katheri ne M. Reed A NotiL:e of Intent to Operate was filed on February 6, 1992. Wendy J. Gerstel Computer Information Because the gold deposi t is located on private land and land Robert L. (Josh ) Lo gan Consultant administered by the Forest Service and Bureau of Land M an­ David K. Norman Carl F. T. Harris Steph en P. Palmer agemen t (BLM ), both state and federal jurisdictions were as­ Patrick T. Pringle Cartographers Nancy A. Eberle serted. To faci l itate the NEPA/SEP A process, a M emorandum Katherine M. Recd Henry W. ( Hank) Schassc Keith G . Ikerd of Understanding (MOU) became effective Ju l y 22, 1992, Tinwthy J. Wulsh Production Editor/ among the Forest Service. BLM, and Washi ngton Departments Weldon W. Rau (vo /1111/ cN) Designer of Ecology and Natural Resou rces. Because of wetland~ is­ Geologist (Spokane) Jaretta M. (Jari) Roloff sues, the U .S. Army Corps of Engineers was added to the Roher! E. Derkey Data Communications MOU on April 15 , 1993. Technician Geologists (Regions! J. Renee C hristensen Following scoping, numerous multi-agency interdiscipli­ Garth Anderson I No ri/111 l'.\I) C harles W . (Chuck) Gulick Administrative Assistant nary meeti ngs have been held si nce early 1992 to identify the (Northea.51) Janis G. Allen issues and then track the detailed studies and evaluations. The Rex J. Hapala (Su 11tl11H,;t) Regulatory Programs Division of Geology and Earth Resources· contribution to the Lorraine Po well (Sn,11/,rn.<1) Assistant proL:ess was mainly in surface mine reclamation and the geo­ Stephanie Zurenko /Cent ml) Mary Ann Shawver chemica l characteristics of mine tai lings, ore, and waste rock. Senior Librarian Clerical Staff Puhlic comments were taken at briefings on August 15 in Conn ie J. M an~on Judy Henderson Library Information Heidi Tho m sen El lensburg and A ugust 17 in Oroville. Written comments to Specialist the Forest Service were due by August 29. Rehecca A. Christie Progress reports on the Crown Jewel project wil l appear in future issues of Washington Geology. • MAIN OFFICE FIELD OFFICE Department of Natural Resources Department of Natural Resources Division of Geology Divisioo, of Geology and Earth Resources and Earth Resource., PO Box 47007 904 W. Riverside, Room 209 Olympia. WA 98504-7007 Spokane. WA 99201- 10 11 OUR AREA CODE HAS CHANGED! Pho ne: (360) 902-1450 l'lwur.: (509) 456-3255 The Division's Olympia Office has a new area code: 360. J-'nr · (360) 902-1785 fn,. (509) 456-6 115 Up till now, the phone company has allowed the use of the /11tr 1·11 e 1. old area code, but the grace period is over. You must use /'11hhr.nr1o n s nvailnble f,om the cj ma 11son@u. washi11gton.cdu 360 to reach our main office. [email protected] 0/ymJ•in nddress 011/v. (Sr.e map 011 i11sidf' Imel. rn,•e r ..... Printed o n recycled paper. fo r o.f.licc locatiou.) \..,. Pri111cd i111/r e U.S. A. DO YOU WANT TO GET Cover Photo: Wes Wehr. paleobotanist with the Thomas OFF OUR MAILING LIST? Burke Memorial Washington State Museum in Seattle, and school children split the Eocene fossil-bearing lakebed The Division pays for printing and postage for Washington rocks at Republic. Washington, where many fossil flowers-, Geology from an always-tight budget. Help us use our re­ fruits, and seeds have been found. The deposit is an easy sources well by letting us know if you no longer wish to walk from the center of town and is open to the public. See receive this 'journal'. We will take your name off the li st the article starting on p. 3. Photo by Mary Randlett. immediately. Z Washi11g1011 Geology, vol. 23, no. 3, September 1995 Early Tertiary Flowers, Fruits, and Seeds of Washington State and Adjacent Areas Wesley C. Wehr Thomas Burke Memorial Washington State Museum University of Washington. Seattle, WA 98195-301 O INTRODUCTION fossi I records. Fifty of the taxa and occurrences cited arc new Foss il leaves, particularly those th at are very well preserved, additions to the literature about fossi I reproductive structures. are valuable tools and clues in the study of modern and fossil rlant relationships and evolutionary trends. Because fossil GEOLOGIC SETTING leaves tend to be the most common type of pl an t fossil found Compared to the enormous diversity of northwest Tertiary flo­ at most sites in western North America, scientists may have ras, especially that of the early middle Eocene Republic, depended too heavily on the foss il leaf record to establish Washington, flora (more than 300 species of fossil plants), th ese relationships and trends. This has led to some miscon­ earlier Paleocene floras, such as those in the Fort Union For­ ceptions about flowering-plant (angiosperm) evolution. horn mation in Wyoming, Montana, and North Dakota, tend to have their studies or leaves, many earlier paleobotan ists were led to low diversity. Paleocene upland floras are not known (Wing, present a far more static picture of angiosperm evo lution since 1987). Wolfe ( 1987) has proposed that the first major diversi­ th e Cretaceous than has actually been the case. We now under­ fication of many present-day temperate climate lineages oc­ stand that, in some cases, leaves and wood evolved more curred during the Eocene in uplands like those of the volcanic slowly than plant reproductive structures. hi ghlands of the Okanogan. The environmental stresses result­ The early Tertiary flowers, fruits, and seeds found in what in g from geologic processes laking place in the Okanogan is now the Okanogan Highlands record a rapid appearance and Highlands during the Eocene were presumably major factors diversification of many plant lin eages in upland habitats of in the appearance of many of the plant families discussed in that time. A Jess well known but important Tertiary record for this article. Washinuton State is the occurrence or fos sil fruits and seeds ~ . During the Eocene, from about 57 million to about 37 mil­ in the lowland floras and, surprisin gly. in marine deposits on l ion years ago, northern interior Washington State and interior the Olympic Peninsula. Paleobotanists associate these fossil British Columbia were the st:ene of intensive volcanic activity. noras of the highlands with warm temperate to subtropical Eo­ The extent and thickness of volcanic deposits indicate that th e cene environments. In contrast, the lowland terrestrial and ma­ region known today as the Okanogan Highlands may have rine !ot:alities in western Washington commonly contain fossil been a mountainous area during much of that epoch (Wing, plants that suggest, from the distribution and physiognomy of 1987). The widespread volcanism and associated tectonic up­ th ei r modern descendants, tropical conditions. li ft had a sign ificant effect on tht: topography in that region. Paleobotan ists have assigned some F:ocene leaves to mod­ Uplift di'vided lowland areas such as the northern Puget Sound ern genera. However. many fossil flowers, fruits, and seeds and coastal British Columbia from the interior; this whole re­ found m close association with these leaves or attached to gion had formerly been a continuous, fairly gentle slope from leafy stems are clearly unlike any known modern genera. This the eastern Rocky Mountain region to the Pacific coast. Geo­ is what M. E. J. Chandler and E. M. Reid concluded when they logic forces fo rm ed a series of down-faulted graben basins studied th e fruits and seeds from the Eocene London Clay from Republic, Washington, to Smithers, British Columbia. (Collinson, 1983). More recently, Manchester (1994), in his Largely volcanic sediments accumulated in basin lakes and in­ monograph on the middle Eocene Clarno Pormation fru its and corporated plants and insects (Wolfe and Wehr, 1987). seeds, has carefully documented how many of these fossils As the landscape continued to develop through the early represent extinct genera that now can be assigned only to mod­ Tertiary, changes in the plant life were recorded in various ern families at best.
Recommended publications
  • Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia
    Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Brett Hohs Tallentire Gilley B.Sc., Simon Fraser University, 1999 A THESIS SUBMInED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the DEPARTMENT OF EARTH SCIENCES O Brett Hollis Tallentire Gilley, 2003 SIMON FRASER UNIVERSITY December, 2003 All rights reserved. This work may not be reproduced in whole or part, by photocopy or other means, without the permission of the author. APPROVAL Name: Brett Hollis Tallentire Gilley Degree: Master of Science Title of Thesis: Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Examining Committee: Chair: Dr. Glyn Williams-Jones Assistant Professor Dr. Peter Mustard Senior Supervisor Associate Professor Dr. ames MacEachern SupJ rvisory Associate Profess - Fvpf.Michael ~ilhn Ex rnal Examiner Doua4 as Colleae. De~t.of Geolosv & Anthropology Date Approved: ne 4 , 2 csz aw PARTIAL COPYRIGHT LICENCE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Geology of the Charleston Phosphate Area, South Carolina
    Geology of the Charleston Phosphate Area, South Carolina GEOLOGICAL SURVEY BULLETIN 1079 Geology of the Charleston Phosphate Area, South Carolina By HAROLD E. MALDE GEOLOGICAL SURVEY BULLETIN 1079 A detailed study of the area from which phosphate rock was first produced in this country UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geographical Survey Library has cataloged! this publication as follows: Malde, Harold Edwin, 1923- Geology of the Charleston phosphate area, South Carolina; a detailed study of the area from which phosphate rock was first produced in this country. Washington, U.S. Govt. Print. Off., 1959. v, 105 p. illus., maps, diagrs., profile, tables. 25 cm. (U. S. Geological Survey. Bulletin 1079) Part of illustrative matter folded in pocket. Bibliography: p. 96-101. 1. Geology South Carolina Charleston area. 2. Phosphates South Carolina. i. Title: Charleston phosphate area, South Caro­ lina. (Series) [QET5.B9 no. 1079] G S 59-214 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price $1.75 (paper cover) CONTENTS Page Abstract.___-_-----_--_----___-__-___---_-__-_--____----_-_----__ 1 Introduction______________________________________________________ 2 Stratigraphy. ____-_---_--_-_-___-_-_____-_-__----_-_-__-__-____-_- 5 General features_-_____--__________-_-_-__-__-_-___-____-___- 5 Oligocene series_______-_-__--_____-_-_-__--__-_----__________- 7 Cooper marl_______________________________________________ 7 Name_ ______________________________________________ 7 Distribution._________________________________________ 7 Structural attitude________.___-__----_-__-_--_-______- 8 Thickness.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • HYDRANGEA CARE Hydrangeas Can Be Confusing When It Comes to Requirements and Especially Pruning
    HYDRANGEA CARE Hydrangeas can be confusing when it comes to requirements and especially pruning. We’ve broken down the hydrangeas we carry into three basic groups to easily explain the differences. HYDRANGEA ARBORESCENS (SMOOTH HYDRANGEA) Smooth hydrangeas are some of the easiest to grow and lowest maintenance hydrangeas. They are known for their large flower heads, sturdy stems, and great cut flowers. They almost always bloom on new wood which means they should be pruned in late fall. Smooth hydrangeas can be cut back 6-8” from the ground in late fall if desired. Includes: Annabelle & Invincible Spirit II (and others) HYDRANGEA MACROPHYLLA (BIGLEAF HYDRANGEA) Bigleaf or “ever-blooming” hydrangeas are desired for their deep green leaves, numerous blooms, and easy care. Bigleaf hydrangeas bloom on both new and old wood, but most of their summer blooms occur on wood formed the previous summer. To encourage new blooms throughout the summer, remove spent blooms as soon as they’re done flowering. The sooner this is done, the longer the plant will be allowed to recover and set new buds for the next season. This will encourage larger and more numerous blooms. Bigleaf hydrangeas prefer a location where they receive morning sun (about 4 hours) but are shaded from the afternoon sun. If they are planted in an area with total shade, it is not likely that they will bloom. Includes: Endless Summer, Blushing Bride, Seaside Cape Cod, Grateful Red, & Bloomstruck (and others) HYDRANGEA PANICULATA (GRANDIFLORA HYDRANGEA) Grandiflora hydrangeas are some of the most commonly planted hydrangeas in this area. They are tolerant of numerous conditions and are easy to grow.
    [Show full text]
  • Geology and Tectonic Setting of the Kamloops Group, South
    GEOLOGY AND TECTONIC SETTING OF THE KAMLOOPS GROUP, SOUTH- CENTRAL BRITISH COLUMBIA by THOMAS EDWARD EWING B.A., The Colorado College, 1975 M.S., New Mexico Institute of Mining and Technology, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1981 © Thomas Edward Ewing, 1981 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of r.pnlnpiVal Sri PTirp.S The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date February 17, 1981 ABSTRACT The Kamloops Group is a widespread assemblage of Eocene volcanic and sedimentary rocks in south-central British Columbia. Detailed mapping of the type area near Kamloops has resulted in its subdivision into two formations and thirteen formal and informal members. The Tranquille Formation, 0-450 metres thick, consists of lacustrine sediments which grade upward into pillowed flows, hyaloclastite breccia and aquagene tuff. The overlying Dewdrop Flats Formation, with nine members, consists of up to 1000 metres of basalt to andesite phreatic breccia, flow breccia and flat-lying flows.
    [Show full text]
  • A Review of Vertebrate Track-Bearing Formations
    5 Lockley, M.G. & Lucas, S.G., eds., 2014, Fossil footprints of western North America: NMMNHS Bulletin 62 A REVIEW OF VERTEBRATE TRACK-BEARING FORMATIONS FROM THE MESOZOIC AND EARLIEST CENOZOIC OF WESTERN CANADA WITH A DESCRIPTION OF A NEW THEROPOD ICHNOSPECIES AND REASSIGNMENT OF AN AVIAN ICHNOGENUS RICHARD T. MCCREA1, LISA G. BUCKLEY1, A. GUY PLINT2, PHILIP J. CURRIE3, JAMES W. HAGGART4, CHARLES W. HELM1 AND S. GEORGE PEMBERTON5 1Peace Region Palaeontology Research Centre; Box 1540; Tumbler Ridge, British Columbia; V0C 2W0; CANADA; 2Department of Earth Sciences; University of Western Ontario; London, Ontario; N6A 5B7; CANADA; 3Department of Biological Sciences; University of Alberta, Edmonton, Alberta; T6G 2E9; CANADA; 4Geological Survey of Canada; 1500-605 Robson Street; Vancouver, British Columbia; V6B 5J3; CANADA; 5Department of Earth and Atmospheric Sciences; University of Alberta; Edmonton, Alberta; T6G 2E3; CANADA Abstract—The past quarter century has seen a marked increase in the recognition of fossil vertebrate tracksites in western Canada. Most of these finds were made in Alberta and British Columbia, but the Yukon Territory can lay claim to at least one tracksite and probably has the potential to yield more sites. The record of dinosaur tracks with skin impressions has increased dramatically, and is now represented by specimens of ankylosaurs, large ornithopods, small theropods and tyrannosauroids. Notable new finds include the first record of sauropods in Canada, evidence of herding behavior in ankylosaurs and the first pterosaur tracks in Canada. First discoveries of track specimens from several formations in western Canada include the Mountain Park Member of the Gates Formation in Alberta, and the Boulder Creek, Goodrich, Kaskapau, Cardium and Marshybank formations in northeastern British Columbia.
    [Show full text]
  • Open Thesis Currano Final.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences VARIATIONS IN INSECT HERBIVORY ON ANGIOSPERM LEAVES THROUGH THE LATE PALEOCENE AND EARLY EOCENE IN THE BIGHORN BASIN, WYOMING, USA A Dissertation in Geosciences by Ellen Diane Currano © 2008 Ellen D. Currano Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2008 The dissertation of Ellen D. Currano was reviewed and approved* by the following: Peter Wilf Associate Professor of Geosciences John T. Ryan, Jr., Faculty Fellow Dissertation Advisor Chair of Committee Russell W. Graham Director of the Earth and Mineral Sciences Museum Associate Professor of Geosciences Conrad C. Labandeira Curator of Paleoentomology, Smithsonian Institution Chairman of the Department of Paleobiology, Smithsonian Institution Special Member Lee Ann Newsom Associate Professor of Anthropology Member Scientist of the Penn State Institutes of the Environment Mark E. Patzkowsky Associate Professor of Geosciences Scott L. Wing Curator of Paleobotany, Smithsonian Institution Special Member Katherine H. Freeman Associate Department Head of Graduate Programs Professor of Geosciences *Signatures are on file in the Graduate School ii ABSTRACT Climate, terrestrial biodiversity, and distributions of organisms all underwent significant changes across the Paleocene-Eocene boundary (55.8 million years ago, Ma). However, the effects of these changes on interactions among organisms have been little studied. Here, I compile a detailed record of insect herbivory on angiosperm leaves for the Bighorn Basin of Wyoming and investigate the causes of variation in insect herbivory. I test whether the changes in temperature, atmospheric carbon dioxide, and floral diversity observed across the Paleocene-Eocene boundary correlate with changes in insect damage frequency, diversity, and composition.
    [Show full text]
  • OREGON GEOLOGY Published by the Oregon Department of Geology and Mineral Industries
    OREGON GEOLOGY published by the Oregon Department of Geology and Mineral Industries VOLUME 47. NUMBER 10 OCTOBER 1985 •-_Q OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) VOLUME 47, NUMBER 10 OCTOBER 1985 Columbia County Exxon Corporation spudded its GPE Federal Com. I on Published monthly by the Oregon Department of Geology and Min­ September I. The well name is a change from GPE Federal 2, eraI Industries (Volumes 1 through 40 were entitled The Ore Bin). permitted for section 3. T. 4 N .. R. 3 W. Proposed total depth is 12.000 ft. The contractor is Peter Bawden. Governing Board Donald A. Haagensen, Chairman ............. Portland Coos County Allen P. Stinchfield .................... North Bend Amoco Production Company is drilling ahead on Weyer­ Sidney R. Johnson. .. Baker haeuser "F" I in section 10, T. 25 S .. R. 10 W. The well has a projected total depth of 5,900 ft and is being drilled by Taylor State Geologist ..................... Donald A. Hull Drilling. Deputy State Geologist. .. John D. Beaulieu Publications Manager/Editor ............. Beverly F. Vogt Lane County Leavitt's Exploration and Drilling Co. has drilled Merle I to Associate Editor . Klaus K.E. Neuendorf a total depth of 2,870 ft and plugged the well as a dry hole. The well. in section 25. T. 16 S .. R. 5 W .. was drilled 2 mi southeast of Main Office: 910 State Office Building, 1400 SW Fifth Ave­ nue. Portland 9720 I, phone (503) 229-5580. Ty Settles' Cindy I. drilled earlier this year to 1.600 ft. A.M. Jannsen Well Drilling Co.
    [Show full text]
  • Mcabee Fossil Site Assessment
    1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13
    [Show full text]
  • Fossil Plantsplants Colorado
    National Park Service Florissant Fossil Beds U.S. Department of the Interior Florissant Fossil Beds National Monument Fossil PlantsPlants Colorado More than 130 plant species have been described from Florissant. These are represented by leaves, fruits, flowers, seeds, wood, and pollen, yet the only fossils most visitors see are the stumps of ancient redwood trees. Why is this? Fossilization is a complex process that can be affected by a number of factors, and multiple forms of fossilization took place during Eocene Florissant. How were the fossil plants preserved? Most of the plant diversity at Florissant comes from the abundance of plants preserved in shale. The volcanic mudflow that preserved the redwood stumps was very high-energy, meaning that only the most durable plant parts, such as trunks, cones, and seeds, survived the flow intact. More Species like Sequoia (redwood, left) were preserved delicate plant parts like leaves frequently because they lived in wet valley bottoms near the and flowers were preserved lake. Pine (above left), mountain mahogany (above center), poorly or not at all. and oak (above right), which are seen less frequently as Delicate plant parts were deposited at the bottom of Lake Floris- fossils, lived on more distant hillsides. sant, a low-energy, low-oxygen environment. Their fine features are The abundance of certain species also plays a role in how preserved in paper shale, a very fine grained rock produced by the often they are preserved. Fagopsis longifolia, the most deposition of volcanic ash and a kind of microscopic algae called common fossil plant found at Florissant, is an understory tree diatoms.
    [Show full text]
  • Middle Eocene Trees of the Clarno Petrified Forest, John Day Fossil Beds National Monument, Oregon
    PaleoBios 30(3):105–114, April 28, 2014 © 2014 University of California Museum of Paleontology Middle Eocene trees of the Clarno Petrified Forest, John Day Fossil Beds National Monument, Oregon ELISABETH A. WHEELER1 and STEVEN R. MANCHESTER2 1Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27605-8005 USA; elisabeth_ [email protected]. 2Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA; steven@ flmnh.ufl.edu One of the iconic fossils of the John Day Fossil Beds National Monument, Oregon, USA, is the Hancock Tree—a permineralized standing tree stump about 0.5 m in diameter and 2.5 m in height, embedded in a lahar of the Clarno Formation of middle Eocene age. We examined the wood anatomy of this stump, together with other permineralized woods and leaf impressions from the same stratigraphic level, to gain an understanding of the vegetation intercepted by the lahar. Wood of the Hancock Tree is characterized by narrow and numerous vessels, exclusively scalariform perforation plates, exclusively uniseriate rays, and diffuse axial parenchyma. These features and the type of vessel-ray parenchyma indicate affinities with the Hamamelidaceae, with closest similarity to the Exbucklandoideae, which is today native to Southeast and East Asia. The Hancock Tree is but one of at least 48 trees entombed in the same mudflow; 14 others have anatomy similar to the Hancock Tree; 20 have anatomy similar to Platanoxylon haydenii (Platanaceae), two resemble Scottoxylon eocenicum (probably in order Urticales). The latter two wood types occur in the nearby Clarno Nut Beds. Two others are distinct types of dicots, one with features seen in the Juglandaceae, the other of unknown affinities, and the rest are very poorly preserved and of unknown affinity.
    [Show full text]