<<

The Pennsylvania State University

The Graduate School

Department of Geosciences

VARIATIONS IN INSECT HERBIVORY ON ANGIOSPERM THROUGH THE

LATE AND EARLY IN THE BIGHORN BASIN, WYOMING, USA

A Dissertation in

Geosciences

by

Ellen Diane Currano

© 2008 Ellen D. Currano

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

August 2008

The dissertation of Ellen D. Currano was reviewed and approved* by the following:

Peter Wilf Associate Professor of Geosciences John T. Ryan, Jr., Faculty Fellow Dissertation Advisor Chair of Committee

Russell W. Graham Director of the Earth and Mineral Sciences Museum Associate Professor of Geosciences

Conrad C. Labandeira Curator of Paleoentomology, Smithsonian Institution Chairman of the Department of Paleobiology, Smithsonian Institution Special Member

Lee Ann Newsom Associate Professor of Anthropology Member Scientist of the Penn State Institutes of the Environment

Mark E. Patzkowsky Associate Professor of Geosciences

Scott L. Wing Curator of , Smithsonian Institution Special Member

Katherine H. Freeman Associate Department Head of Graduate Programs Professor of Geosciences

*Signatures are on file in the Graduate School

ii ABSTRACT

Climate, terrestrial biodiversity, and distributions of organisms all underwent significant changes across the Paleocene-Eocene boundary (55.8 million years ago, Ma). However, the effects of these changes on interactions among organisms have been little studied. Here, I compile a detailed record of insect herbivory on angiosperm leaves for the Bighorn Basin of Wyoming and investigate the causes of variation in insect herbivory. I test whether the changes in temperature, atmospheric carbon dioxide, and floral diversity observed across the Paleocene-Eocene boundary correlate with changes in insect damage frequency, diversity, and composition. Because these correlations cannot be recognized without regional, high-resolution studies, this thesis makes a major contribution to the ecological understanding of disturbance and biotic response. Insect damage censuses were conducted at nine stratigraphic levels ranging in age from 59 to 52.5 Ma. A total of 9071 fossil angiosperm leaves belonging to 107 species were examined for the presence or absence of 71 DTs. Damage frequency, diversity, and composition were analyzed on the bulk floras and individual host species. Chapter 1 focuses on insect herbivory during the Paleocene-Eocene Thermal Maximum (PETM).

The abrupt global warming and increase in atmospheric CO2 during the PETM make it the best geologic analog for modern anthropogenic warming. Chapter 2 examines small-scale spatial variability in insect damage along two early Eocene carbonaceous shale beds. I test whether spatial variability within a bed exceeds differences between beds. Chapter 3 extends the study interval through the early Eocene Cool Period and into the Eocene Thermal Maximum, when temperatures cool and then warm to a sustained Cenozoic maximum. Temporal trends in insect damage are generally greater than intra-bed variation, which is primarily due to differing floral composition. The Bighorn Basin dataset shows a very strong positive correlation between damage diversity and temperature. Damage diversity increases as temperature increases through the late Paleocene, peaks in the PETM, decreases during the early Eocene cooling, and then increases again during the warming to the sustained Eocene Thermal Maximum. Temperature probably affects insect herbivory by allowing diverse insect populations from lower latitudes to migrate northwards and by influencing insect metabolism and population density.

iii TABLE OF CONTENTS

Commonly Used Abbreviations...... vi List of Tables...... vii List of Figures...... viii Acknowledgements...... x

Introduction...... 1

Geologic and Paleontologic Setting...... 2 Insect Damage on Angiosperm Leaves...... 4 Research Objectives and Hypotheses...... 6 Methodology: Insect Damage Censuses...... 8 Summary...... 9

Chapter 1: Sharply Increased Insect Herbivory during the Paleocene-Eocene Thermal Maximum...... 11

Abstract...... 12 Introduction...... 12 Results and Discussion...... 13 Methods Data Collection...... 16 Quantitative Analyses of Insect Damage...... 16 Estimation of Mass per Area...... 17 Figure Captions...... 20 Supplementary Text Age Calibration for the Sites...... 26 Paleotemperature Estimate for the Tiffanian...... 26 Information on Photographed Specimens...... 28

Chapter 2: Patchiness and Long-Term Change in Early Eocene Insect Feeding Damage

Abstract...... 30 Introduction...... 30 Geologic Setting...... 32 Methods...... 33 Results Damage Frequency...... 37 Damage Diversity...... 38 Damage Composition...... 39 Early Eocene -Insect Interactions...... 41 Discussion...... 42 Conclusions...... 44

Chapter 3: A Quantitative Analysis of Insect Feeding on Angiosperm Leaves through the Late Paleocene and Early Eocene in the Bighorn Basin, Wyoming

Introduction...... 55 Geologic Background...... 56 Paleotemperature Record...... 57

iv Methodology Insect Damage Censuses...... 58 Statistical Analyses Damage Frequency...... 60 Number of Damage Types...... 60 Damage Composition...... 62 Time Series Analysis...... 63 Leaf Mass per Area Analyses...... 64 Plant Composition and Diversity...... 65 Insect Damage through Time Damage Frequency...... 69 DTL...... 70 DTO...... 71 Damage on Individual Host Families...... 72 Damage Composition...... 73 Changes in MA from Skeleton Coast to 15 Mile Creek...... 75 The Effects of Floral Diversity on Insect Damage...... 76 The Effects of Temperature on Insect Herbivory...... 78 Comparing Damage Frequency, DTL, and DTO...... 80 Moving Beyond the Bighorn Basin: A Brief Look at Insect Damage in the Western Interior during the Early Bulk Floras...... 81 Individual Species...... 83 Tracing Insect Damage on Plant Lineages...... 83 Floral Diversity, Temperature, and Insect Damage...... 84 Conclusions...... 85 Figure Captions...... 104

Conclusions...... 142

Appendix A: Additional Locality Information...... 147

Appendix B: Plant Morphotypes in the Bighorn Basin Floras...... 152

Appendix C: New Damage Types...... 260

Appendix D: Floral and Insect Damage Composition at Each Site...... 268

Appendix E: Selected R Codes Used In This Study...... 281

Appendix F: Complete Bighorn Basin Insect Damage Dataset...... 291

References...... 452

v COMMONLY USED ABBREVIATIONS

Time: Ma – million years ago myr – million years kyr – thousand years ETM – Eocene Thermal Maximum (~53 Ma) PETM – Paleocene-Eocene Thermal Maximum (55.8 Ma) K-T – -Tertiary Wa – Wasatchian Land Mammal Zone (early Eocene) Cf – Clarkforkian Land Mammal Zone (latest Paleocene) Ti – Tiffanian Land Mammal Zone (late Paleocene)

Fossil Floras: MC15 – 15 Mile Creek PN CP – Cool Period EC – Elk Creek – Chapter 1’s Wasatchian 2 flora HB – Hubble Bubble – Chapter 1’s PETM flora DS – Daiye Spa – Chapter 1’s Clarkforkian 3 flora DP – Dead Platypus LL – Lur’d Leaves - Chapter 1’s Tiffanian 5 flora SC – Skeleton Coast - Chapter 1’s Tiffanian 4 flora

MH – Mexican Hat CR – Castle Rock

Insect Damage: DT – Damage morphotype DTL – Number of damage types standardized by the number of leaves DTO – Number of damage types standardized by the number of damage type occurrences HF – Hole feeding MF – Margin feeding S – Skeletonization SF – Surface feeding M – Leaf mining G – Galling PS – Piercing and sucking

Other: MAT – Mean annual temperature MA – Leaf mass per area

vi LIST OF TABLES

Table i.1. Definitions of the functional feeding groups. p. 10.

Table 1.1. Sampling summary. p. 18. Table 1.2. Percentage of leaves damaged in each flora. p. 19. Table 1.3. Percentage of leaves in each flora with a given number of DTs. p.19. Table 1.4. Additional site information. p. 29. Table 1.5. Leaf mass per area estimates and damage frequency on individual host . p. 29.

Table 2.1. Summary of each quarry at Elk Creek and 15 Mile Creek. p. 45. Table 2.2. Summary statistics for the abundant plant species at 15 Mile Creek. p. 46. Table 2.3. Summary statistics for the abundant plant species at Elk Creek. p. 46.

Table 3.1. Site summaries. p. 88. Table 3.2. MAT estimates for the Bighorn Basin. p. 89. Table 3.3. Plant species used in new MAT estimates. p. 90. Table 3.4. Floral diversity and evenness. p. 113. Table 3.5. Leaf mass per area estimates. p. 94. Table 3.6. Correlations between MA and insect damage. p. 95. Table 3.7. Correlations between floral diversity and insect damage at a site. p. 97. Table 3.8. Correlations between a plant host’s relative abundance and insect damage. p. 98. Table 3.9. Frequency, DTL, DTO. p. 135. Table 3.10. Additional Western Interior floras from the late Cretaceous and early Paleogene. p. 99. Table 3.11. Summary of plant hosts at each site with at least 25 leaves. p. 100.

Table A1. Additional geographic and collection information about the fossil localities. p. 148. Table B1. Bighorn Basin leaf morphotypes. p. 153.

vii LIST OF FIGURES

Figure 1.1. Representative insect damage diversity on PETM leaves. p.22. Figure 1.2. Damage diversity on the bulk floras. p. 23. Figure 1.3. Damage diversity on individual species. p. 23 Figure 1.4. Two-way cluster analysis of functional feeding groups on species-site pairs. p. 24. Figure 1.5. Estimated leaf mass per area (MA) vs. damage frequency. p. 25.

Figure 2.1. Outcrop traces of the 15 Mile Creek and South Fork of Elk Creek carbonaceous shale beds. p. 47. Figure 2.2. Proportion of leaves with damage at 15 Mile Creek and Elk Creek. p. 48. Figure 2.3: Damage frequency of individual plant species at 15 Mile Creek and Elk Creek.p. 49. Figure 2.4. Resampling curves of insect damage diversity at 15 Mile Creek and Elk Creek. p. 50. Figure 2.5: Damage diversity resampled to 100 leaves at 6 stratigraphic levels in the Bighorn Basin. p. 51. Figure 2.6: Resampling curves of insect damage diversity on individual plant hosts 15 Mile Creek and Elk Creek. p. 52. Figure 2.7: NMS ordination of the relative abundances of the seven functional feeding groups on the 15 Mile Creek and Elk Creek quarries. p. 53. Figure 2.8: Two-way cluster analysis of functional feeding groups on species-site pairs at 15 Mile Creek and Elk Creek. p. 54.

Figure 3.1. Hypothetical DTL and DTO curves. p. 112. Figure 3.2. Floral diversity. p. 113. Figure 3.3. Floral rank abundance curves for the nine Bighorn Basin sites. p. 114. Figure 3.4. Cluster analysis of the Bighorn Basin sites based on floral composition. p. 115. Figure 3.5. NMS ordination of the Bighorn Basin sites based on floral composition. p. 115. Figure 3.6. Damage Frequency. p. 116. Figure 3.7. The percent of leaves in each flora with each functional feeding group. p. 117. Figure 3.8. The percent of leaves in each flora with a given number of DTs. p. 117. Figure 3.9. DTL. p. 118. Figure 3.10. DTO. p. 119. Figure 3.11. Insect damage on single plant families. p. 120. Figure 3.12. DT rank abundance curves. p. 121. Figure 3.13. DT rank abundance curves. p. 122. Figure 3.14. NMS of insect damage on the bulk floras. p. 123. Figure 3.15. Cluster analysis of insect damage on species-site pairs. p. 124. Figure 3.16. NMS of insect damage on species-site pairs. p. 125. Figure 3.17. Leaf mass per area vs. insect damage. p. 126. Figure 3.18. Floral diversity vs. insect damage on the bulk floras. p. 128. Figure 3.19. Plant abundance vs. damage frequency on individual host plants. p. 129. Figure 3.20. Plant abundance vs. DTL on individual host plants. p. 130. Figure 3.21. Plant abundance vs. DTO on individual host plants. p. 131. Figure 3.22. MAT vs. damage frequency. p. 132. Figure 3.23. MAT vs. DTL. p. 133. Figure 3.24. MAT vs. DTO. p. 134. Figure 3.25. Correlations between damage frequency and DTL and DTO. p. 135. Figure 3.26. Insect damage on the Western Interior bulk floras. p. 136. Figure 3.27. Damage frequency vs. DTO on the Western Interior bulk floras. p. 137. Figure 3.28. Insect damage on individual plant hosts from the Western Interior floras. p. 138. Figure 3.29. Insect damage on single plant lineages throughout the Western Interior. p. 140. Figure 3.30. Floral diversity and MAT vs. insect damage on the Western Interior bulk floras. p. 141.

viii Figure A1. Geographic map of the Bighorn Basin. p. 149. Figure A2. Geographic map of the cool period sites in the 311 meter carbonaceous shale. p. 150. Figure A3. The Bighorn Basin floras in geologic time. p. 151.

Figures B1-C97. Bighorn Basin leaf morphotype exemplars. p. 211-259. Figures C1-C10. New damage types. p. 263-267.

ix ACKNOWLEDGEMENTS

“Complications arose, ensued, and were overcome” - Captain Jack Sparrow, Pirates of the Caribbean: Dead Man’s Chest (Verbinski 2006). Without the help of the following people, complications could not have been overcome. I owe sincere thanks to all of them.

First, to my advisors Peter Wilf and Scott Wing. The two of you have provided me with incredible opportunities: the chance to travel across the world doing fieldwork, to go to conferences and make connections with a lot of amazing scientists, and to work at the Smithsonian Institution. Most importantly, you handed me the keys to a BMW of a project that could not fail and then stepped back and let me pursue it as I thought best. You have jointly molded me into the scientist that I am today and done everything imaginable to set me up for success. Peter, thank you for talking hours of science with me and for reading and critiquing a seemingly endless number of manuscript drafts and grant proposals. Scott, thank you for all your assistance in the field (including teaching me to drive off-road) and for the hours you spent morphotyping fossils with me.

To my committee members: Mark Patzkowsky, for teaching me what I should have learned in Dr. Foote’s analytical paleobiology class, for being willing to talk about my data with me and provide fresh eyes to difficult problems, and for encouraging me when graduate school seemed to tough. Conrad Labandeira, for spending hours looking at insect damage with me, teaching me a little basic entomology, and always making time when I needed his help. Russ Graham and Lee Newsom, for your support, encouragement, and scientific guidance.

To the funding sources the supported the research presented here: NSF graduate research fellowship, the Evolving Earth Foundation, the Geological Society of America, NSF EAR 0120727 and EAR-0236489, the Paleontological Society, Penn State (Centennial Research Award, Krynine Fund, Arnulf I. Muan Award, Ohmoto Award), the Petroleum Research Fund (grants 35229-G2 and 40546-A68), the Roland Brown Fund, and the University of Pennsylvania. And to Penn State and the Smithsonian Institution for providing me workspace.

x To my primary field assistants: Barbara Cariglino, Jeff Creamer, Dan Danehy, Kathleen Galligan, Stefan Little, Tessie Menotti, Eriks Perkins, and Kevin Rega. Without your help, I could not have collected the data for my thesis. You are all hard-working, dedicated, friendly people. Not many people can handle the heat, sun, and dust of the Bighorn Basin, the once a week showers, and the isolation of camping for weeks with just one other person. All of you rose to the challenge admirably and I thoroughly enjoyed our time in the field together.

To Mike Bies and the Worland Bureau of Land Management for the use of their facilities.

To Beth Ellis and Kirk Johnson for allowing me to analyze the Castle Rock data.

To others who helped for short times in the field: Leslie Ching, John and Diane Currano, Will Gallagher, John Galligan, Guy Harrington, Liz Lovelock, Skip Lyles, Francesca Smith, Kevin Werth, and Peter Wilf. Not only does increasing the number of people in a quarry increase the number of fossils collected, it also makes a day’s work more enjoyable, especially when the singing starts. One day, “Quarry, the Musical” will hit Broadway. And to other paleontologists and geologists who summered in the Bighorn Basin, let me camp with them, and participated in costume parties: Jon Bloch, Doug Boyer, and the University of Florida crew, and Aaron Diefendorf.

To those at the Smithsonian who helped me with fossil preparation, curation, documentation, and data analysis: Cat Warren, Erika Gonzalez, Amy Humphries, Gene Hunt, Amy Morey and Alan Rulis. Thank you, Gene, for all your help with R, guidance on statistical analyses, and brownie breaks. Amy Morey took beautiful pictures of the Bighorn Basin exemplars, provided an endless supply of Belgian chocolate, and always had a pun to brighten my day.

To all my friends and colleagues at the Smithsonian: Particularly Dan Chaney, Finnegan Marsh, Rebecca Snyder, and the members of the paleo- lunch table.

To my paleochicks bowling teammates, Cindy Looy and Caroline Stromberg (even though we never actually had that bowl-off). You kept me sane at the SI, gave me people

xi near my own age with whom to talk science, and have been amazing role models for me. Here’s to yearly sleep-overs in Seattle, Berkeley, and Oxford, OH.

To my fellow graduate students at Penn State: I have learned so much from all of you, both about science and about life. I could not have asked for a better group than our Newbie class of 2003, or Guadalupe Mountains Team Hyper-Carnivore. I have made friends here that I will keep for life. To Tyrone Rooney for never failing to make me laugh, Shawn Goldman for loving the Bears as much as I do, Zack Krug for being the big brother of the paleo group, James Bonelli for talking paleo and Johnny Depp, the boys on South Allen Street for letting me watch Bears games at their house, Christina Lopano and Audrey Hucks for being amazing roommates, Heather Savage for keeping me grounded and showing me how to lead a balanced life, the boys on Old Boalsburg Rd for being so fun to be around, Burt Thomas for his words of wisdom and barbequing skills, Lauren Fuqua for encouraging me to do anything and everything, and Katja Meyer for helping me keep my priorities straight. And to Steph Schmidt: who would have thought that one semester together at Penn State would be enough to form a lasting friendship, and maybe collaboration (if only we could figure out a project that involves both limnology and paleobotany).

To those who kept me sane and minimized the insomnia: my teammates on Biohazard, Geohazard, and Tappa Tappa Keg; the Chicago Bears; and Johnny Depp and the entire cast and crew of the three Pirates of the Caribbean movies.

And last, to those closest to me, for putting up with me through five years, for sticking with me when things seemed too tough, for the guidance, and most importantly the laughter. To Leslie Ching for the late-night phone calls, sympathetic ear, obscure medical diagnoses, silly cartoons, and weekend visits. To Jocelyn Sessa for being my roommate, officemate, traveling companion, and honorary big sister. In the last five years, I think I have learned more by talking with you about paleontology, science, and life than with any other person. To Dane Miller for pulling me kicking and screaming to the finish line and doing whatever it took to help me finish my thesis. To my family: Peter, Judy, Mom, and Dad. For loving me as I am, fully supporting all my decisions, and never pressuring me to take up a “more practical” profession. For everything that I can think of, plus those things I take for granted.

xii DEDICATION

I dedicate my thesis to Scott Wing, who introduced me to paleobotany and the Bighorn Basin and generously let me dig out all of his finest floras, including the magnificent PETM flora. During my 24 weeks of field work in the Bighorn Basin, I had some of the best times of my life and I became a stronger, more resilient person. I can truly say that without Scott, the project could not have succeeded, I would not have the opportunities I currently have, and I would not be the person I am today. Thank you for everything.

xiii INTRODUCTION

Paleontologic and geologic studies have shown that significant temperature fluctuations (Wing et al. 2000, Zachos et al. 2001), moderate floral turnover (Wing and Harrington 2001), and several large mammalian turnover events (Rose 1981, Clyde and Gingerich 1998, Gingerich 2001b) occurred during the late Paleocene and early Eocene (59 – 52.5 Ma). Plant-insect interactions are a dominant feature of terrestrial ecosystems, but their response to the environmental perturbations across the Paleocene-Eocene Boundary has been relatively unstudied (Wilf and Labandeira 1999, Wilf et al. 2001). This thesis tracks changes in insect herbivory during the late Paleocene and early Eocene in the Bighorn Basin of Wyoming. In addition to simply recording the variations in insect herbivory, I also test for correlations between these variations and external factors that can affect herbivory, such as temperature, plant diversity, and leaf mass per area. Although many studies have analyzed the responses of individual taxonomic groups to climate change (e.g. Rose 1981, Coope 1995, Clyde and Gingerich 1998, Alroy et al. 2000, DiMichele et al. 2001, Gingerich 2001b, Wing and Harrington 2001, Falcon- Lang 2004), very few have focused on how climate or other environmental changes affect interactions between organisms (Wilf and Labandeira 1999, Wilf et al. 2001, 2006). The variations in temperature observed across the Paleocene-Eocene boundary presumably drove changes in insect herbivore populations. This, in turn, affects the occurrence of insect feeding damage on angiosperm leaves. Supporting results have come from the studies of Wilf, Labandeira, and others (Wilf and Labandeira 1999, Wilf et al. 2001), who observed a long-term increase in insect-damage frequency and diversity in southern Wyoming from warm temperate Paleocene to subtropical early Eocene climates. However, these studies were conducted at relatively coarse temporal resolution and did not include the Paleocene-Eocene Thermal Maximum (PETM). It is essential to compile detailed records for single basins and depositional settings because many important patterns cannot be recognized without regional, high-resolution studies (e.g. Sweet 2001, Hotton 2002, Wilf and Johnson 2004). Studies of insect herbivory on fossil leaves provide key information on the ecology of feeding associations and the association of plants and their insect herbivores that cannot be obtained separately from plant macrofossils or insect body fossils. Therefore, this thesis contributes to the ecological understanding of disturbance and biotic response in deep time. Because the Paleocene-Eocene warming provides a model for the effects of

1 modern-day global warming on insect herbivory, studies of this time interval have implications for modern and near-future ecosystems. The Bighorn Basin was chosen as the study site because it has extensive fossil leaf deposits and its climate record shows both short- and long-term temperature changes. I conducted quantitative insect damage censuses at seven stratigraphic levels in the Bighorn Basin that encompass the significant temperature fluctuations across the Paleocene-Eocene boundary. Furthermore, Drs. Peter Wilf and Conrad Labandeira previously quantitatively censused insect damage at two additional Paleocene time horizons in the Bighorn Basin that were incorporated into this study. I then analyzed insect damage on bulk floras and single host species and tracked changes in damage through time on host-plant lineages. I identified correlations between insect damage metrics and floral diversity and temperature and compared the Bighorn Basin floras with other Paleogene floras from the Western Interior.

GEOLOGIC AND PALEONTOLOGIC SETTING The Bighorn Basin of northwest Wyoming (Figure A1) contains the most complete rock record available of terrestrial environments in the late Paleocene and early Eocene (Wing 1998, Gingerich 2001b). The basin has a long history of detailed study; biostratigraphy, chemostratigraphy, and magnetostratigraphy are well constrained (Rose 1981, Bown et al. 1994, Gingerich 2001b, Wing et al. 2005, Secord et al. 2006, Clyde et al. 2007), facilitating correlations between fossil localities and to the marine climate record. The Paleocene-Eocene boundary is defined by the base of the abrupt negative shift in carbon isotopes that also indicates the start of the Paleocene-Eocene Thermal Maximum (PETM). The late Paleocene is split into two land mammal zones, the Tiffanian (61.6 – 57.0 Ma) and Clarkforkian (57.0 – 55.8 Ma; Secord et al. 2006), and these land mammal zones are further divided into numeric subzones (five for the Tiffanian and three for the Clarkforkian). The early Eocene sites studied here fall within the Wasatchian mammal zone, which begins at the Paleocene-Eocene boundary 55.8 Ma and ends between 52 and 50.6 Ma (Machlus et al. 2004, Smith et al. 2008). The Wastachian is subdivided into nine subzones, Wa-M and then Wa-0 through Wa-7 (Gingerich 1989a, Yans et al. 2006). The Paleocene leaf localities analyzed in this study are part of the Fort Union Formation, and the Eocene leaf localities are in the Willwood Formation. Both formations are composed of fluvial sandstones, mudstones, lignites, and freshwater carbonates (Gingerich 1983), deposited primarily by meandering river systems. The two formations

2 are easily distinguished because the Fort Union contains predominantly drab and lignitic sediments, whereas the Willwood Formation has brightly-colored red and purple paleosols. The abundance of redbeds in the Willwood formation is generally attributed to a shift in precipitation regime, from the relatively wet late Paleocene to the seasonally dry early Eocene (Wing and Bown 1985). The early Paleogene is marked by global climate fluctuations, making it an excellent time period to study the effects of climate change on herbivory. These large shifts in climate are preserved in the record of mean annual temperature (MAT) for the Bighorn Basin (Wing et al. 2000). This record, shown in Figure A3, was generated using leaf margin analyses and oxygen isotope analyses of hematite on fossil bone (Wing et al. 2000). Four major temperature changes occurred during the early Paleogene: a gradual warming during the last two million years of the Paleocene; an abrupt temperature increase at the Paleocene-Eocene Boundary (the PETM); an early Eocene cool period; and a rapid warming to the Eocene Thermal Maximum ~53 Ma. The PETM is an abrupt and transient warming event, whereas the Eocene Thermal Maximum is a gradual warming to a sustained Cenozoic maximum temperature. Each of these changes affects insect herbivory, as will be demonstrated in Chapters 1 and 3.

The PETM, a transient spike of high temperature and pCO2, is one of the best deep-time analogues for modern, anthropogenic global warming (Kennett and Stott 1991, Koch and Gingerich 1992, Zachos et al. 2005). The PETM is marked by a negative carbon isotope excursion, consistent with the release of a large amount of 13C-depleted carbon to the atmosphere and ocean (Dickens et al. 1995, Zachos et al. 2005, Higgins and Schrag

2006, Pagani et al. 2006). Atmospheric pCO2 levels are estimated to have increased by a multiple of three to four (Zachos et al. 2003). Additionally, global mean surface temperatures rose at least 5oC over ~10 thousand years (kyr) and returned to background levels after ~100 kyr (Röhl et al. 2000, Zachos et al. 2003). Significant changes in terrestrial floras and faunas have been documented from the PETM. In the Bighorn Basin, there was a transient increase in floral diversity and change in plant species composition, reflecting a northward migration of subtropical taxa (Wing et al. 2005). A major immigration of vertebrates from Europe and Asia across high-latitude land bridges also occurred (Gingerich 2006). Exceptionally complete paleobotanical collections from the Paleocene and Eocene of the Bighorn Basin have already been made by Dr. Scott Wing of the Smithsonian Institution. These floras serve as a comprehensive baseline reference for the identification

3 of fossil plants. Additionally, they show changes in plant diversity and composition throughout the late Paleocene and early Eocene. Average plant diversity is highest in the late Paleocene and during the Eocene Thermal Maximum. Diversity drops during the latest Paleocene and remains relatively low through the early Eocene cool period (Wing 2000), except for a spike in diversity in the PETM (Wing et al. 2005, 2006). With the exception of a single occurrence of Populus wyomingiana in the latest Paleocene, the PETM plants are not found in the Paleocene in the Bighorn Basin, and do not appear again until the warming leading to the Eocene Thermal Maximum. Aside from the PETM, change in floral composition occurs in two steps. The first major shift occurs in the lowest 100 meters above the P-E boundary and is due to a spike in last appearances of many common Paleocene taxa. The second shift occurs during the warming to the Eocene Thermal Maximum and is primarily driven by a spike in first appearances (Wing 1998).

INSECT DAMAGE ON ANGIOSPERM LEAVES Fossil evidence of insect herbivory dates back to the early , and all of the fundamental feeding strategies for herbivorous insects, except leaf mining, were established by the Late (Labandeira 1998). Over the last 400 million years, trophic complexity (the relationship between the number of species and the density of trophic interactions) and insect feeding diversity (the number of distinct ways in which insects consume plants) have increased (Labandeira 2002a, 2006). Today, food webs incorporating plants, phytophagous insects, and carnivorous insects account for up to 75% of non-microbial global terrestrial biodiversity (Price 2002). Thus, plant-insect interactions affect practically all terrestrial life. Paleobiological studies of insect damage on fossil plants can provide valuable information about insect diversity, ecological interactions, and evolutionary adaptation. Very few insect body fossils are known from the late Paleocene and early Eocene (see p.85-88 of Grimaldi and Engel [2005] for a review of known Paleocene and Eocene fossil insects), studies of insect damage on plants is often the only way to learn about how insect diversity and ecological associations respond to Paleocene- Eocene environmental changes. Both paleobiological and ecological studies provide valuable information on how insects might have been affected. Individual host plants within a single flora vary in the frequency and diversity of insect damage on their leaves (Coley et al. 1985b, Coley and Barone 1996, Kursar and Coley 2003, Royer et al. 2007). Leaves are the fundamental photosynthetic unit of a plant, and the recent compilation and analysis of a global leaf trait dataset has shown that the

4 coordinated trade-offs among key leaf traits form a single, continuous, leaf economics spectrum (Wright et al. 2004). At one end of the spectrum are species that maximize nutrient retention by having a long leaf lifespan, low nutrient concentrations, and low photosynthetic and respiration rates. These species generally have thicker, tougher leaves with high leaf mass per area and are less palatable to insect herbivores (Coley and Barone 1996, Royer et al. 2007). At the other end of the leaf economics spectrum are plants that rely on rapid resource acquisition and fast growth; their leaves have low leaf mass per area, short leaf lifespan, high nutrient concentrations, and high rates of photosynthesis and respiration. These leaves are more palatable to insect herbivores (Coley et al. 1985b, Coley and Barone 1996, Kursar and Coley 2003, Fine et al. 2004). Thus, higher rates of herbivory are found on plants with short-lived than long-lived leaves (Coley et al. 1985b, Coley and Barone 1996, Kursar and Coley 2003). Using the fossil record of the middle Eocene in Utah, Wilf et al. (2001) observed more herbivory on leaves that are inferred to be long-lived than those that are short-lived. Royer et al. (2007) showed using both modern and fossil data that leaves with high leaf mass per area generally have less herbivory. Variations in extant insect herbivory along latitudinal and climatic gradients have been observed, and greater herbivory generally occurs in the tropics than in temperate regions (Coley and Aide 1991, Coley and Barone 1996, although see Price et al. 1998). A number of variables including temperature (Wilf and Labandeira 1999, Wilf et al. 2001, Bale et al. 2002), precipitation (Marquis and Braker 1994, Coley and Barone 1996, Price et al. 1998, Wright and Samways 1998, Givnish 1999, Wilf et al. 2001), and resource limitations (Coley et al. 1985a, Kursar and Coley 1991, 1992, 2003, Labandeira 2002a, Fine et al. 2004) have been proposed to explain these variations. Environmental variables influence insect population size, insect metabolism and development time, parasitoid populations, plant defense mechanisms, and plant diversity, which in turn impact attack frequency and diversity. Larger insect populations inflict greater damage, whereas better plant defenses typically decrease observed herbivory (Coley et al. 1985a, Fine et al. 2004). Greater plant diversity allows for greater insect specialization and thus higher herbivore diversity (Price 1991, Price 2002). Using the fossil record to study one geographic location over several million years, with relatively consistent edaphic conditions, eliminates the effect of latitudinal change and permits the correlations between herbivory and climate to be quantified.

5 Temperature affects insect abundance more directly than any other climatic variable because it influences insect life-cycle timing, number of generations per year, population density, and geographic range (Bale et al. 2002). Using the fossil record of Wyoming and Utah, Wilf, Labandeira, and others (Wilf and Labandeira 1999, Wilf et al. 2001) observed a long-term increase in insect-damage frequency and diversity as temperatures warmed during the early Paleogene. This observation supports the hypothesis that temperature and insect herbivory are correlated, independent of latitude (Wilf et al. 2001). In addition, temperature fluctuations also impact plant diversity and abundance (Currie and Paquin 1987, Adams and Woodward 1989, O'Brien 1993), which will in turn influence insect feeding. Most insect damage is highly specific, with an insect group targeting a single plant host (Bernays and Chapman 1994, Termonia et al. 2001, Farrell and Sequeira 2004). Therefore, one might expect more types of damage, particularly mines and specialized damage, on a more diverse bulk flora (Price 1991, Price 2002). In addition, greater plant diversity provides a greater diversity of resources for polyphagous insects. There is a general consensus in the literature that insect diversity increases with increasing plant diversity (Siemann et al. 1996, Wright and Samways 1998, Haddad et al. 2001, Novotny et al. 2006, 2007, Dyer et al. 2007). However, few studies have been conducted on how insect diversity and abundance on single plant species correlate with plant species richness within an entire community. Feeny (1976) hypothesized that a greater diversity of plants, and therefore of chemical defense compounds, protected a given plant from generalized herbivores.

RESEARCH OBJECTIVES AND HYPOTHESES 1. Measure insect damage on fossil angiosperm leaves from nine stratigraphic horizons spanning the Paleocene-Eocene boundary in the Bighorn Basin, Wyoming. Only dicots were examined in this study because, unlike monocots and ferns, their leaves are generally preserved whole and are therefore easy to divide into individual units and normalize for sampling effort.

2. Measure small-scale spatial heterogeneity in damage within a single time horizon and compare spatial and temporal variations.

6 Hypothesis: Insect damage does not vary significantly within a single stratigraphic level. Damage frequency, diversity, and composition are more similar within a bed than between beds.

3. Assess insect herbivory on fossil leaves from the PETM. Hypothesis: Insect damage frequency and diversity are high in the PETM due to the increased temperature and atmospheric carbon dioxide.

4. Quantify changes in damage frequency, diversity, and composition on the bulk floras, individual plant hosts, and single plant lineages. Hypothesis: Changes in damage on the bulk flora are due to summed changes on each individual host plant within the flora. Therefore, trends in damage on individual plant species should be the same as those on the bulk flora.

5. Identify correlations between insect damage and leaf mass per area (MA), floral diversity, and temperature.

Hypotheses: A) Plant species with higher MA have less insect damage. B) As floral diversity increases, damage diversity on the bulk floras increases. C) The more abundant a plant species is at a site, the lower its damage diversity. D) As temperature increases, insect damage frequency and diversity should increase.

6. Place the Bighorn Basin floras within the wider context of the Paleogene Western Interior to look at the extended recovery of plants and insects from the K-T mass extinction. Insect damage censuses have been conducted at thirteen other sites in the Western Interior Rocky Mountain Basins (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b, Wilf 2008), and these data can be used to extend the study interval back to the latest Cretaceous. Additionally, they increase the geographic range to the Williston and Powder River Basins in the north and the Denver Basin in the south. In all, this dataset includes 21,875 leaves. Hypotheses: The Bighorn Basin floras have more diverse insect damage than floras from earlier in the Paleocene. Concurrent floras from southern

7 Wyoming have greater damage diversity than the Bighorn Basin floras because they are at lower latitude and grew in warmer temperatures.

METHODOLOGY: INSECT DAMAGE CENSUSES When conducting an insect damage census, every identifiable plant specimen is scored for insect damage. In this analysis, I only looked at non-monocot angiosperm leaves (traditionally and hereafter referred to as dicots) and leaflets (for compound leaves). In an insect damage census, leaflets of a compound leaf and simple leaves are considered to be equivalent because each is a discrete area of leaf tissue that an insect can eat or oviposit upon. Only those specimens consisting of more than half a leaf (or leaflet) are included in the censuses. A representative suite of voucher specimens is deposited in the Division of Paleobotany, National Museum of Natural History (USNM), under the collection numbers in Table 3.1. Insect damage is quantified by dividing it into discrete damage morphotypes, or DTs (Wilf and Labandeira 1999, Labandeira 2002a, Labandeira et al. 2007). To date, over 175 fossil DTs have been identified. The DTs can be subdivided into generalized DTs, made by insects that typically eat many taxonomically unrelated host plants, and specialized DTs, made by insects that typically eat only one or a few closely related host plants. Specialized damage is recognized by similarity to extant specialized feeders, by morphologically stereotyped damage patterns, and by restricted occurrences confined to particular host-plant species or tissue types in either fossil or extant host taxa (Labandeira et al. 2002b, 2007). The DTs present in this study are also divided into seven functional feeding groups: hole feeding, margin feeding, skeletonization, surface feeding, galling, leaf mining, and piercing and sucking, as described in Table i.1. Once the DTs on each leaf are identified, damage frequency, diversity, and composition can be tabulated for bulk floras and individual species. Damage frequency is calculated as the percent of leaves with damage, diversity is standardized among samples using resampling routines, and composition is analyzed with a variety of multivariate analyses. These damage metrics can finally be correlated with external variables like temperature and floral diversity. Additionally, because leaf mass per area can be estimated for fossil leaves (Royer et al. 2007), damage on individual species can be correlated with leaf mass per area. Detailed methodologies can be found in each of the three following chapters.

8 SUMMARY The Paleocene-Eocene sediments of the Bighorn Basin record a time of significant changes in climate, biodiversity, and floral and faunal compositon. This study contributes to paleo-environmental, paleoclimatic, and paleoecological reconstructions by providing new information on insect diversity and plant-insect interactions. Insect body fossils are preserved sporadically in the fossil record and uncommonly in plant deposits. However, an examination of plant damage provides direct ecological data and allows insect diversity to be estimated during times when insect body fossils are absent. During the late Paleocene and early Eocene, climate, terrestrial biodiversity, and biogeography all underwent significant changes. Thus, ecological hypotheses regarding the impact of temperature on herbivory can be tested without changing latitude. Understanding the impact of temperature on insect herbivores has important implications for modern agricultural practices. Because the PETM is the best geologic analog to the present, this study will help scientists predict the net long-term effects of anthropogenic pCO2 increase and global warming.

9 Table i.1. Definitions of the functional feeding groups

Functional Description of Damage Feeding Group Larval and adult insects consume the interior polygons or any other interior portion of leaf-blade tissue. Hole feeding is common in insects, and many Hole Feeding species within the orders Coleoptera, Hymenoptera, and consume leaves in this manner. Larval and adult insects consume leaf tissue by making roughly semicircular to Margin Feeding trench-shaped excisions from the leaf edge. Many caterpillars and weevils, along with other insect groups, feed along the margin of leaves. Larval and adult insects consume the entire thickness of leaf tissue, avoiding Skeletonization one or more ranks of venation. Examples of insects that skeletonize leaves include some species of Chrysomelidae, Crambidae, and Tenthredinidae. Larval and adult insects consume one or more layers of leaf from outside of the leaf, but do not consume the entire thickness of the leaf. Some insect Surface Feeding species in the Cecidomyiidae, Chrysomelidae, Curculionidae, and Thripidae, among others, surface feed. A gall is an abnormal plant structure, composed entirely of a host plant's tissue (Jolivet 1998). Larval and nymphal arthropods can induce gall formation; they are encapsulated within the gall and feed on secondarily produced nutrient- Galling rich tissues produced by the plant. Galls can also be caused by bacteria and fungi. Galls may occur on any leaf organ, although individual galling species are highly organ-, tissue- and host- specific. Examples of galling insects include many species of Aphidae, Cynipidae, and Cecidomyiidae. A mine is a feeding channel or area made by insect larvae inside the parenchymal, epidermal, vascular, or other tissues of a plant, in which the epidermis' outer wall is undamaged (Hering 1951). The mine begins with the oviposition site and terminates with an enlarged pupation chamber or terminal Leaf Mining region (Labandeira 2002a). Connecting these is a channel or blotch of consumed tissue layers and a characteristic frass trail. The four modern insect orders that contain species which make leaf mines are the Coleoptera (e.g. some Buprestidae), Diptera (e.g. Agromyzidae), Hymenoptera (e.g. Symphyta), and Lepidoptera (e.g. Gracillariidae). Insects in this functional feeding group have a single stylet or one to three pairs of stylets to pierce plant tissue and accessory mouthpart structures to Piercing and suck out sap and complex sugar solutions (Labandeira 2002a). Insects may Sucking feed on xylem, phloem, mesophyll, or other tissues. Many insect species in the Hemiptera are examples of piercing and sucking insects.

10 CHAPTER 1:

SHARPLY INCREASED INSECT HERBIVORY DURING THE

PALEOCENE-EOCENE THERMAL MAXIMUM

Ellen D. Currano, Peter Wilf, Scott L. Wing, Conrad C. Labandeira, Elizabeth C. Lovelock, Dana L. Royer

This chapter has already been published in PNAS 105(6):1960-1964. The study was conducted specifically to fulfill thesis requirements. EDC, PW, SLW, and CCL designed the research; PW and CCL collected the data at the Tiffanian 4a and 5b sites; EDC, SLW, and ECL collected the data at the PETM site; EDC collected the data at the Clarkforkian 3 and Wasatchian 2 sites; DLR contributed the methodology for the leaf mass per area analyses; EDC analyzed the data; EDC wrote the paper with helpful reviews from all the co-authors.

11 ABSTRACT The Paleocene-Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here, we use plant fossils from the Bighorn Basin of Wyoming, USA, to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5062 fossil leaves from five sites positioned before, during, and after the PETM (59 – 55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long- term effect of anthropogenic pCO2 increase and warming temperatures.

INTRODUCTION During the twenty-first century, global surface temperature is expected to increase o 1.8 – 4.0 C as higher atmospheric concentrations of greenhouse gases (especially CO2) are generated by human activities (Alley et al. 2007). Food webs incorporating plants and phytophagous insects account for up to 75% of modern global biodiversity (Price 2002), so their response to this anthropogenic change will have a profound effect on the biosphere.

Experiments show that plants grown in elevated CO2 tend to accumulate more carbon and have a higher carbon : nitrogen ratio; they are therefore nutritionally poorer (Bazzaz 1990, Lincoln et al. 1993, Whittaker 2001), leading to an average compensatory increase in insect consumption rates (Watt et al. 1995) as nitrogen becomes limiting. Modern insect herbivory and herbivore diversity are greatest overall in the tropics (Moran and Southwood 1982, Stork 1987, Coley and Aide 1991, Price 1991), implying a broad correlation between temperature and herbivory, and Pliocene-Pleistocene fossils show rapid shifts in the geographic ranges of insects in response to climate change (Coope 1995). These existing data provide limited insight into future changes, however. The complexity of plant-insect food webs makes it difficult to generalize from experiments to the response of natural ecosystems over long time scales (Zvereva and Kozlov 2006). Modern and Pliocene-

Pleistocene insect biogeographic patterns have not been directly linked to pCO2 and do not document the response of plant-insect food webs to rapid increases in temperature and pCO2. Well-preserved Paleocene-Eocene fossil angiosperm leaves show insect

12 feeding damage and therefore can be used to investigate the net effects of increasing temperature and pCO2 on full plant-insect food webs over long time scales. Beginning in the late Paleocene, global temperatures gradually warmed to the sustained Cenozoic maximum at ~53 Ma (Zachos et al. 2001). The PETM is a transient spike of high temperature and pCO2 representing ~ 100 thousand years (ky), superimposed on a longer interval of gradual warming (Gradstein et al. 2004, Zachos et al. 2005); it is one of the best deep-time analogues for the modern time-scale of global warming. The PETM is marked by a negative carbon isotope excursion, consistent with the release of a large amount of 13C-depleted carbon to the atmosphere and ocean

(Zachos et al. 2005). Atmospheric pCO2 levels are estimated to have increased by a multiple of three to four (Zachos et al. 2003). Additionally, global mean surface temperatures rose at least 5oC over ~10 thousand years (ky) and returned to background levels after ~100 ky (Röhl et al. 2000, Zachos et al. 2003). Significant changes in terrestrial floras and faunas have been documented from the PETM. In northwestern Wyoming’s Bighorn Basin, there was a transient increase in floral diversity and change in plant species composition, reflecting a northward migration of subtropical taxa (Wing et al. 2005). A major immigration of vertebrates from Europe and Asia across high-latitude land bridges also occurred (Gingerich 2006). Here, the recent discovery of floras from the PETM in the Bighorn Basin of Wyoming, USA (Wing et al. 2005, 2006), allows us to evaluate the effects of atmospheric and climatic change on plant-insect associations at significantly shorter and more ecologically and societally relevant time scales (104-105 yr) than previously possible using the fossil record (106 yr; 21). We conducted insect damage censuses on fossil angiosperm leaves at five sites in the Bighorn Basin positioned before, during, and after the PETM warming event (Table 1.1, 1.4, Methods). Each censused leaf was scored for the presence or absence of 50 discrete insect feeding morphotypes {(Labandeira et al. 2007); Fig. 1.1}, and the results were tabulated and analyzed, allowing us to determine changes in the diversity, frequency, abundance, and host species distribution of insect damage through the studied interval.

RESULTS AND DISCUSSION Damage diversity is low in the earlier late Paleocene (Tiffanian 4a and 5b), sharply increases in the latest Paleocene (Clarkforkian 3), peaks during the PETM, and then returns to intermediate values during the early Eocene. Both the bulk floras (Fig. 1.2) and

13 species-site pairs (Fig. 1.3) show a similar pattern, as do analyses of only specialized damage morphotypes {made by insects that usually eat only one or a few plant species; (Labandeira et al. 2002b)} or only mine morphotypes (Figs. 1.2, 1.3). The PETM is also distinct in the frequency of damage on its leaves: 57% of PETM leaves are damaged, compared with 15-38% for the Paleocene sites and 33% for the post-PETM site (Table 1.2). Individual PETM plant species have between 45 and 94% of their leaves damaged, and all but two have greater than 65% of leaves damaged (Fig. 1.4, 1.5). Tiffanian 4a species range from 28-48% of leaves damaged, Tiffanian 5b from 10- 48%, Clarkforkian from 25-65% damaged, and post-PETM from 33-34%. Additionally, 7.3% of the PETM leaves have 4 or more damage types, compared with 0.4-2.6% for the Paleocene sites and 1.4% for the post-PETM (Table 1.3). To examine changes in damage composition and distribution through time, we did a two-way cluster analysis (Kaufman and Rousseeuw 1990) of the seven functional feeding groups’ relative abundances on those 29 species-site pairs having at least 20 specimens per site (Fig. 1.4). Feeding on the individual Clarkforkian and PETM plant species (cluster 2) is distinct from that on the Tiffanian species (cluster 1) due to the rarity of the more specialized feeding groups (surface feeding, mining, galling, and piercing and sucking) in the Tiffanian. Mining and surface feeding are particularly abundant during the PETM, causing the majority of the PETM taxa to form a distinct cluster (2b) from the Clarkforkian taxa (2a). Thus, the increased diversity and frequency of damage in the PETM occurs on all plant species and is not driven by increased feeding on one particular host. All but one of the PETM plant taxa analyzed here have at least one insect mine morphotype (Fig. 1.1), compared to three of seven in the latest Paleocene and one each at the remaining three sites. The only abundant PETM species not mined is a small legume (dicot sp. WW001) whose leaflet area rarely exceeds 225 mm2. Mines also occur on three of the rare PETM taxa not shown in figure 1.3. Because the PETM plant species are not found at the other sites, we tested whether their leaves have significant structural differences that would make them more palatable to herbivores. Leaf mass per area (MA) is linked to a variety of important plant ecological traits, including lower nutrient concentrations and thicker and tougher leaves

(Coley and Barone 1996, Wright et al. 2004). Therefore, leaves with higher MA are generally less palatable to herbivores and have less insect damage (Coley and Barone

1996, Royer et al. 2007). Fossil MA can be estimated using an extensive modern calibration set that demonstrates a robust scaling relationship between width2 and

14 leaf mass, normalized for leaf area (Royer et al. 2007). The theoretical explanation is that a wider petiole has a greater cross-sectional area that scales to support a heavier leaf.

Critically, there are no site-level differences in MA (Fig. 1.5; an ANOVA of MA by sites yielded an F-value of 0.15 and p = 0.96, 4 degrees of freedom), indicating no significant differences in leaf properties between the PETM species and the species found at the other sites. Nearly all plant species from all five sites have low estimated MA that would be consistent with high palatability (Table 1.5, Fig. 1.5). Increases in insect damage diversity in the Bighorn Basin in the late Paleocene and early Eocene correlate positively with increasing temperature. The first significant change in insect damage composition and diversity occurs between the late Tiffanian and the late Clarkforkian, a time when both plant diversity (Table 1.1) and many of the dominant floral elements remain constant despite rising temperatures (Wing and Harrington 2001). A contemporary increase in herbivory from the Tiffanian to Clarkforkian, also without significant plant turnover, has been observed in southwestern Wyoming (Wilf et al. 2006). The late Paleocene and PETM increases in diversity of herbivory do not reflect a long-term radiation of insect herbivores because damage diversity decreases following the PETM, as temperature again declines. Therefore, increases in damage diversity, particularly of specialized feeding groups, may represent an influx of thermophilic herbivores to the mid-latitude regions rather than an in situ diversification and accommodation. Because the geographic ranges of plant species shifted significantly during the PETM, some insects may simply have followed their host plants to the Bighorn Basin. By the middle of the PETM, every plant species represented by at least 20 censused leaves had been colonized by specialized herbivores. We attribute the peak in insect feeding frequency during the PETM to the estimated tripling of atmospheric pCO2 and the associated abrupt temperature rise. The major increase in plant consumption is consistent with predicted effects of elevated pCO2 on foliar nitrogen concentration. Additionally, our damage diversity and frequency data indicate that both insect diversity and population density probably increased with temperature, although populations may have been limited by the decrease in food quality. The dramatic rise in diversity and frequency of herbivore attack on all abundant plant species during the PETM suggests that anthropogenic influence on atmosphere and climate will eventually have similar consequences.

15 METHODS Data Collection We analyzed 5062 fossil leaves from five sites with well-resolved ages (Wing et al. 2005, Secord et al. 2006) that span 3.7 My of the late Paleocene (Tiffanian – Clarkforkian) and early Eocene (Wasatchian) warming and subsequent cooling (Table 1.1, 1.4, SI Text, Appendix A). All five sites represent deposition in similar alluvial environments, and the leaf assemblages are parautochthonous. Fossil leaves and their insect damage were quantitatively censused from single stratigraphic horizons at each site. The three Paleocene sites have low plant diversity (Table 1.1), and the taxa are those typically found throughout the western interior of during the late Paleocene (Brown 1962); the youngest Paleocene site is only ~100 ky older than the PETM. The new site from the middle of the PETM carbon isotope excursion contains a diverse and unique flora for the Bighorn Basin (Wing et al. 2006). An early Eocene site post-dating the PETM carbon isotope excursion by ~0.6 My represents a return to pre-PETM temperatures, well before temperatures reached their Cenozoic maximum at ~53 Ma. Every morphologically identifiable, non-monocot angiosperm leaf (or leaflet for compound leaves) with more than half of the blade intact was scored for the presence/absence of 50 insect feeding morphotypes (Labandeira et al. 2007). A representative suite of voucher specimens is deposited in the Division of Paleobotany, National Museum of Natural History (USNM), under the collection numbers in Table 1.1. The complete census data are available in Appendix D. These damage types (DTs) can be classified into seven functional feeding groups: hole feeding (HF), margin feeding (MF), skeletonization (S), surface feeding (SF), galling (G), mining (M), and piercing-and-sucking (PS), as described elsewhere (Labandeira 2002a, Labandeira et al. 2007). The DTs can also be classified (Labandeira et al. 2007) as most likely to be specialized (made by insects that typically consume only one or a few closely related plant species) or generalized (typically made by polyphagous insects, e.g. most holes). Specialized feeding is delineated on evidence from extant analog feeders, morphologically stereotyped damage patterns, and restricted occurrences confined to particular host-plant species or tissue types in either fossil or extant host taxa (Labandeira et al. 2002b).

Quantitative Analyses of Insect Damage All analyses were done using R Version 2.2.0 (http://www.r-project.org/). The sample size for each flora was standardized by selecting a random subset of 800 leaves

16 without replacement and calculating the damage diversity for the subsample. This process was repeated 5000 times, and the results averaged to obtain the standardized damage diversity for the flora. The standard deviation for the resamples was calculated to provide error bars. The same procedure was used to standardize insect diversity to 20 leaves on each of the 29 species-site pairs with at least 20 specimens. The two-way cluster analysis was performed using a data matrix in which each cell is the proportion of leaves of species i at site j that had damage belonging to functional feeding group k. Data were square root transformed. R’s “agnes” function was then used to perform agglomerative hierarchical clustering analyses (Kaufman and Rousseeuw 1990), using Euclidean distances between samples and Ward’s method of clustering. The agglomerative coefficient, a dimensionless number between 0 and 1 that describes the strength of the clustering structure, is 0.89 for clustering of plant species and 0.65 for the clustering of functional feeding groups. The raw, proportional data were log-transformed and placed it into bins of 0 to -0.5, -0.5 to -1, -1 to -1.5, -1.5 to -2, and <-2; these were assigned successively smaller dot sizes in Figure 1.3.

Estimation of Leaf Mass per Area Every fossil leaf that clearly showed the attachment of the petiole to the leaf blade and had a reconstructable leaf area was used in the analysis. Eighty-five leaves, representing nineteen species-site pairs, fit these criteria. Each fossil was digitally photographed and extracted from the matrix using Photoshop. Measurements were made using Image J (http://rsb.info.nih.gov/ij/ ), and leaf mass per area (Table 1.5, fig. 1.5) was calculated using the protocol of Royer et al (2007).

17 Table 1.1. Sampling summary. Leaf species Epoch, Age # Leaf Site* MAT (oC) ‡ rarefied to 800 mammal zone (Ma) † Leaves species leaves § USNM 42395 Eocene, 55.2 16.4 ± 2.7 1008 6 5.1 ± 0.5 – 42399 ¶ Wasatchian 2 PETM USNM 42384 (Eocene), 55.8 20.1 ± 2.8 995 29 26.9 ± 1.3 ¶ Wasatchian 0 USNM 41643 Paleocene, 55.9 15.7 ± 2.4 857 16 15.9 ± 0.3 ¶ Clarkforkian 3 USNM 42042 Paleocene, 57.5 10.5 ± 2.9 || 1362 16 14.7 ± 0.9 (22) Tiffanian 5b USNM 42041 Paleocene, 58.9 10.5 ± 2.9 || 840 7 6.9 ± 0.2 (22) Tiffanian 4a

* Complete locality information is available in Table 1.4. USNM 42042 and 42041 have already been published (Wilf et al. 2006).

† Determined using the stratigraphic framework of Secord et al. (2006), Wing et al. (2005), and

Clyde et al. (2007).

‡ Errors are ± 1σ. MAT estimates for Wa2, PETM, and Cf3 are from Wing et al. (2000,

2006).

§ Errors indicate 95% confidence intervals on the rarefaction.

¶ New collection.

|| New paleotemperature estimate for the whole Tiffanian using leaf margin analysis on all published

Tiffanian Bighorn Basin floral lists.

18 Table 1.2. Percentage of leaves damaged in each flora.

Ti4 Ti5 Cf3 PETM Wa2 No 65.5 ± 1.6 85.1 ± 1.0 62.2 ± 1.7 47.2 ± 1.6 67.0 ± 1.5 damage

Damage 34.5 ± 1.6 14.9 ± 1.0 37.8 ± 1.7 57.3 ± 1.6 33.0 ± 1.5

Specialize 13.2 ± 1.2 0.8 ± 0.2 13.4 ± 1.2 21.6 ± 1.3 17.1 ± 1.2 d damage

Mines 0.1 ± 0.1 0.1 ± 0.1 1.1 ± 0.4 1.8 ± 0.4 0.7 ± 0.3

Note: because leaves can either have damage or not have damage, sampling error can be quantified using the equation for the standard deviation of binomially distributed outcomes

(Wilf 1997). Errors are ± 1σ.

Table 1.3. Percentage of leaves in each flora with a given number of DTs.

DTs Ti4 Ti5 Cf3 PETM Wa2 1 24.4 10.5 19.7 27.9 16.5 2 8.3 3.3 8.5 14 10.3 3 1.3 0.7 7 8 4.9 4 0.5 0.3 1.8 3.6 1.1 5 0.1 0.7 1.8 0.3 6 0.1 0.4 7 1.1 8 0.3 9 10 0.1

19 FIGURE CAPTIONS

Figure 1.1. Representative insect damage diversity on PETM leaves. White scale bars represent 1 mm and black scale bars 5 mm. (A) Dicot sp. WW007 (Fabaceae) leaf about one-third consumed by insect herbivores (USNM 530967). (B) Characteristic large, circular hole feeding (DT4) found only on dicot sp. WW006 (530968). (C) Serpentine mine with a solid frass trail becoming massive (DT43) on an unidentifiable dicot (530969), (D)

Polylobate to clustered galls (DT125) on dicot sp. WW007 (Fabaceae, 530970). (E) Blotch mine with a sinusoidal frass trail (DT37) on dicot sp. WW003 (530971). (F) Blotch mine with distinct coprolites and terminal chamber (DT35) on dicot sp. WW006 (530972). (G)

Serpentine mine with a solid frass trail (DT43) on dicot sp. WW004 (530973). (H)

Semilinear serpentine mine with terminal chamber (DT40) on dicot sp. WW005 (530974).

Figure 1.2. (a) Estimates of mean annual paleotemperature through the studied interval.

Additional information on these estimates is presented in Table 1.1. (b) Total damage diversity on each flora standardized to 800 leaves, with error bars representing one standard deviation above and below the mean of the resamples. (c) Specialized damage diversity standardized as in (b). (d) Diversity of mine morphotypes standardized as in (b).

Figure 1.3. (a) Total damage diversity on individual plant hosts standardized to 20 leaves by resampling as in Fig. 1.2. Each host species with more than 20 specimens is represented by a white bar; colored bars represent the average damage diversity for the specified species in each flora. Plant fossils belonging to taxa that have not been formally described are referred to by morphotype number. Taxa: Al = Alnus sp. (Betulaceae), Ama

= “Ampelopsis” acerifolia (?Cercidiphyllaceae), Ava = Averrhoites affinis (?Oxalidaceae or

Sapindales), Bs = Browniea serrata (Nyssaceae), Ca = “Celtis” peracuminata

(?Celtidaceae), Cg = genetrix (Cercidiphyllaceae), Da = Davidia antiqua

20 (Nyssaceae), Fa = “” artocarpoides (?), Mg = gracilis

(Platanaceae), Pa = Persites argutus (Lauraceae), Pr = raynoldsi (Platanaceae),

SC1 = dicot species SC1, Zf = Zizyphoides flabella (Trochodendraceae), 1 = dicot sp.

WW001 (Fabaceae), 2 = dicot sp. WW002 (Fabaceae), 4 = dicot sp. WW004, 5 = dicot sp.

WW005, 6 = dicot sp. WW006, 7 = dicot sp. WW007 (Fabaceae), 8 = dicot sp. WW008

(Salicaceae), 744 = dicot sp. FU744 (Betulaceae), 745 = dicot sp. FU745 (?Sapindaceae),

749 = dicot sp. FU749, 750 = dicot species FU750 (Fabaceae). Site abbreviations: Ti4 =

Tiffanian 4a, Ti5 = Tiffanian 5b, Cf3 = Clarkforkian 3, Wa2 = Wasatchian 2. (b) Specialized damage diversity, presented as in (a). (c) Diversity of mine morphotypes. Each species is represented by a bar color-coded according to flora, and taxon abbreviations are as in (a).

Figure 1.4. Two-way cluster analysis (Kaufman and Rousseeuw 1990) of insect damage on each plant host with more than 20 leaf specimens. Abbreviations for plant taxa as in

Fig. 1.2. Functional feeding groups: HF = hole feeding, MF = margin feeding, S = skeletonization, SF = surface feeding, M = mine, G = gall, PS = piercing and sucking. The dots are scaled according to the relative abundance of each functional feeding group on each plant host. The bar graph is the percentage of leaves of each taxon that has feeding damage.

Figure 1.5. Estimated leaf mass per area (MA), using the method of Royer et al. (2007), and damage frequency for individual plant species from each site. MA values are species means, and error bars represent the ±95% prediction interval. Errors in herbivory represent ±1σ, based on a binomial sampling distribution. Site abbreviations as in Fig. 1.2.

21 Figure 1.1. Representative Insect Damage on PETM Leaves

22 Figure 1.2. Damage Diversity on the Bulk Floras

(a) (b) (c) (d) 55 Wasatchian 2

PETM

56 Clarkforkian 3

57 Tiffanian 5b Age (Ma) Age

58

Tiffanian 4a 59

11 15 19 21 10 20 30 40 510152025 246 Mean annual Total damage Specialized Mining temperature diversity damage diversity diversity

Figure 1.3. Damage Diversity on Individual Plant Species (a) (b) (c) Ava Ava Ava Al Al

8 6 5 5 2 6 2 5 4 8 4 6 2 4 7 8 PETM Wa2 7 7 1 1 744 744 Cg 749 Cg749 750 745 Mg Pr 745 750 750 Mg Mg Pr Pr Bs DaFa Cg Bs Pr Fa Bs Ama Ama Pa Zf Pa Ca Zf Cg Cg SC1 SC1 Cg Ti4Bs Ti5 Cf3 Bs Pr Pr 4 8 12 16 2460.2 0.6 1 Total damage Specialized Mining diversity diversity damage diversity

23 Figure 1.4. Two-way Cluster Analysis, Plant Species-Site Pairs and Functional Feeding Groups

24 Figure 1.5. Estimated Leaf Mass per Area vs. Damage Frequency

25 SUPPLEMENTARY TEXT

Age Calibration for the Sites

The three Paleocene fossil localities were placed within the stratigraphic framework of Secord et al (2006). The two Tiffanian localities were previously placed in this framework and assigned ages (Wilf et al. 2006). The Clarkforkian site is found at the same stratigraphic level as University of Michigan vertebrate locality SC233. This locality is 1455 meters above the Cretaceous-Paleogene boundary based on Gingerich’s stratigraphic section for the southeast side of Polecat Bench (Gingerich 2001a). Assuming a constant sedimentation rate for Clarkforkian 3, the site was deposited 73.7% of the way through

Clarkforkian 3, yielding an age of 55.9 Ma in the Secord et al. stratigraphy. The PETM flora is from the middle of the carbon isotope excursion, giving it an age of 55.75 (rounded to 55.8) Ma. The post-PETM flora has been placed at the 112 m level in the Antelope

Creek Section of Clyde et al (2007). This section has the local base of the PETM (55.8

Ma) at -30 m and the local transition to C24n (53.808 Ma) at 455 m. The post-PETM flora can then be assigned an age of 55.2 Ma using a simple linear interpolation.

Paleotemperature Estimate for the Tiffanian

The majority of the mean annual paleotemperature estimates in Table 1 and Figure

1 come from published leaf margin analyses of Bighorn Basin floras (Wing et al. 2000,

2006). Significant warming between the Tiffanian and the late Clarkforkian has already been well-documented in southern Wyoming (Wilf 2000) and in deep sea cores (Zachos et al. 2001). However, no temporally well-constrained estimates have been published for the

Tiffanian in the Bighorn Basin because individual floras are species-poor.

Here, we obtained a paleotemperature estimate for the late Tiffanian by compiling a list of all published plant species found in the Bighorn Basin during this interval (Hickey

1980, Wing et al. 1995, Wilf et al. 2006) and then performing leaf margin analysis using

26 equations 2 and 4 of Wilf (2000). Because the fossil plants come from Tiffanian 4 through

Tiffanian 6, we place our paleotemperature estimate at the mid-point between the base of

Tiffanian 4 and the top of Tiffanian 6. The error bars on the time axis extend through this entire interval. Only leaf morphotypes that have been assigned names were used in this study to ensure continuity in plant identifications among different authors. Toothed plant species include “Ampelopsis” acerifolia, Aesculus hickeyi {this leaf type previously

Carya antiquorum (Manchester 2001)}, Beringiaphyllum cupanioides {previously Viburnum cupanioides (Manchester et al. 1999)}, Browniea serrata {previously Eucommia serrata and Dicotylophyllum anomalum (Manchester and Hickey 2007)}, Celtis aspera {previously

Vibernum asperum (Manchester et al. 2002)}, “Celtis” peracuminata, Cercidiphyllum genetrix, Chaetoptelea microphylla, Crataegus sp., Corylus insignis, Davidia antiqua

{previously Viburnum antiquum (Manchester 2002)}, “Ficus” artocarpoides,

Juglandiphyllites (formerly Pterocarya) glabra, “Meliosma” flexuosa, and Platanus raynoldsi. The species with entire leaves are Macginitiea gracilis {previously Platanus nobilis (Manchester 1986)}, “Magnolia” borealis, “Magnolia” magnifica, “Nyssa” alata,

Persites argutus, and “Sassafras” thermale. “Fraxinus” eocenica and Zizyphoides flabella may be either toothed or entire and are scored as 0.5, the intermediate value between toothed and entire species.

Similar results were obtained by using only the plant species from USNM localities

42041 and 42042, although the error bars were larger because fewer species have been found at these sites. Therefore, we opted to derive the estimate from published lists, even though their exact stratigraphic placement within the Tiffanian is not as well established.

27 Information on Photographed Specimens

USNM specimen 530967 is SW0503 #315; 530968 is SW0503 #281; 530969 is

SW0503 #249; 530970 is SW0503 #212; 530971 is SW0503 #398; 530972 is SW0503

#103; 530973 is SW0503 #330; 530974 is SW0503 #562.

28 Table 1.4. Additional site information.

Location of principal Site quarries (deg. N, deg. W) USNM 42395 – 42399 44.27980, 108.05080 * USNM 42384 43.94508, 107.61870 USNM 41643 44.83843, 109.07274 USNM 42042 44.87568, 108.87242 USNM 42041 44.84884, 108.75471

*The post-PETM Wasatchian 2 flora is found in a laterally extensive carbonaceous shale

that can be easily traced. The lithology makes it difficult to collect 1000 leaves from a

single quarry. Therefore, fossils were collected from 5 quarries spaced over 500 meters,

and the GPS coordinates given are that of the centrally located quarry (NAD27 CONUS

datum).

Table 1.5. Leaf mass per area estimates using petiole width measurements and damage frequency on individual host plants. PI = prediction interval, calculated as in Royer et al. (2007). % # leaves # petiole Standard MA MA leaves Site Species in measure- MA deviation, 2 95% PI 95% PI with census ments (g/m ) damage top bottom damage Wa2 Alnus sp. 178 5 72 104 50 33.1 3.53 Wa2 Averrhoites affinis 816 4 133 200 88 34.0 1.66 PETM Dicot sp. WW001 480 11 156 201 122 45.4 2.27 PETM Dicot sp. WW002 20 3 104 167 65 85.0 7.98 PETM Dicot sp. WW004 89 2 53 94 30 65.2 5.05 PETM Dicot sp. WW005 65 2 75 134 42 93.8 2.98 PETM Dicot sp. WW006 82 6 61 85 44 75.6 4.74 PETM Dicot sp. WW007 154 8 85 113 63 52.6 4.02 Cercidiphyllum Cf3 139 6 66 92 47 20.64 3.43 genetrix Cf3 Macginitiea gracilis 250 2 62 110 35 26.2 2.78 Cf3 Platanus raynoldsi 133 2 78 138 44 26.0 3.80 Cf3 Dicot sp. FU750 139 6 128 179 92 42.8 4.20 “Ampelopsis” Ti5 139 2 90 160 51 23.7 3.61 acerifolia Ti5 Browniea serrata 81 2 61 108 34 48.1 5.55 Ti5 Celtis aspera 20 2 90 160 51 10.0 6.71 Ti5 Persites argutus 763 11 92 118 72 9.4 1.06 Ti5 Zizyphoides flabella 206 6 102 143 73 9.7 2.06 Ti4 Browniea serrata 181 2 75 133 42 48.1 3.71 Cercidiphyllum Ti4 531 3 93 149 58 28.2 1.95 genetrix

29 CHAPTER 2:

PATCHINESS AND LONG-TERM CHANGE IN EARLY EOCENE

INSECT - FEEDING DAMAGE

ABSTRACT Many studies have examined temporal changes in insect feeding on angiosperm leaves, but none has considered variability within a single stratigraphic level. If spatial variability within a level is high, a single sample will not adequately represent the level and may either mask true temporal changes or create spurious ones. In order to measure the spatial variability in fossil insect feeding damage, eleven replicate samples were collected from two laterally extensive carbonaceous shale beds (55.2 and 52.6 Ma) from the early Eocene of the Bighorn Basin, Wyoming. Over 2800 fossil angiosperm leaves were scored for presence or absence of 50 insect damage morphotypes. Damage frequency, diversity, and composition were computed for both the bulk flora and individual plant species in each sample, and variation within a bed was compared to differences between the two beds. Differences in diversity and composition between beds were significantly greater than variations within a bed, and intra-bed variation was primarily due to differing floral composition. Damage frequency was more variable within a bed, however, than diversity. Damage diversity and composition reflect the number of insect species present, whereas damage frequency also depends on the number of insects present, which may be much more variable over small distances.

INTRODUCTION A primary objective of many paleoecological studies is to identify and quantify changes in community diversity, composition, and abundance structure through time. These biotic changes then can be tied to environmental perturbations, and the results may be relevant to the response of modern ecosystems to anthropogenic change. However, to fully understand community change through time, it is essential to first recognize how communities vary within a single time horizon. How does spatial variation compare with temporal variation? To what extent are temporal patterns disguised or created by sampling small-scale spatial variations within time periods?

30 Patchiness and spatial heterogeneity along a landscape have been demonstrated both in fossil and modern assemblages. A variety of invertebrate paleontological studies have shown that species abundance within an outcrop cannot be reliably assessed with a single bulk sample (Hayek and Buzas 1997, Bennington 2003, Bonelli et al. 2006). As the target population becomes more clumped and less homogeneous in distribution, the bias increases. Although fossil assemblages can be time averaged, potentially to homogenizing patchy communities (Kidwell and Bosence 1991), plant compression fossil deposits from fluvial settings generally represent only a single season to a few years (Wing and Dimichele 1995). Because there is a strong tendency for leaves to fall beneath the that sheds them, significant heterogeneity has been observed in samples of modern leaf litter within forests (Burnham et al. 1992). A single leaf litter sample from a modern temperate forest can capture as little as 45% of tree species, and collecting three samples at least 25 m apart raises the percent of species captured to 85% (Burnham 1993). This spatial variation in living forests is preserved in the fossil record when floras are preserved in carbonaceous shales that can be traced laterally (Davies-Vollum and Wing 1998, Ellis et al. 2003). When Davies-Vollum and Wing (1998) collected replicate samples along 250 m of fossiliferous horizon from the 15 Mile Creek carbonaceous shale in the Bighorn Basin, Wyoming, they found that at least one species in every sample differed from its mean overall abundance by more than 4 standard deviations. Studies in the Western Interior, USA, through the Paleocene and Eocene have identified important temporal trends in insect damage on angiosperm leaves. First, the Cretaceous-Paleogene mass extinction severely unbalanced food webs for at least one to two million years (Labandeira et al. 2002b, Wilf et al. 2006). Second, there is a strong correlation between insect damage diversity and temperature during the late Paleocene and early Eocene (Wilf and Labandeira 1999, Wilf et al. 2001, Currano et al. 2008). Finally, there is a high frequency of damage during the transient high temperature and pCO2 of the Paleocene-Eocene Thermal Maximum (Currano et al. 2008). Some of the stratigraphic levels in these studies are represented by two or more quarries to balance site pecularities (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Currano et al. 2008). However, due to limited outcrop exposure, some of the most important stratigraphic levels are represented by a single quarry. These include the early Paleocene Mexican Hat flora (National Museum of Natural History, USNM locality 42090) from southeastern Montana (Wilf et al. 2006) with extremely high insect damage diversity and the highly damaged PETM flora (USNM loc. 42384) in the Bighorn Basin, Wyoming (Currano et al. 2008).

31 The primary goal of this study is to assess the spatial heterogeneity in insect damage within a single time horizon so that the relative significance of change through time can be evaluated. I examine lateral variation in insect damage along two early Eocene carbonaceous shale beds in the Bighorn Basin that are separated in age by 2.6 Myr. I then compare heterogeneity in insect damage within a single stratigraphic level to differences between the levels.

GEOLOGIC SETTING Leaf compression fossils were collected from laterally extensive, organic-rich beds at South Fork of Elk Creek and 15 Mile Creek in the Willwood Formation of northwestern Wyoming’s Bighorn Basin (Fig. 2.1). The alluvial Willwood formation was deposited through the latest Paleocene and early Eocene and is predominantly composed of sandstones, mudstones, and brightly colored paleosols (Bown and Kraus 1981). Clays, silts, and sands were deposited by overbank flooding and episodic avulsions of meandering trunk rivers (Kraus 2001). The carbonaceous beds are composed of inter-fingering sedimentary sub-units between 4 and 50 cm thick (Davies-Vollum and Wing 1998) that extend laterally for tens to hundreds of meters and pinch in and out along the outcrop. Lithologies of these subunits include carbonaceous shale (sensu stricto), coal mixed with fine clastics, brown slickensided mudstone, well-bedded silty claystone with dicot leaf fossils, gray clay, and laminated clay (Davies-Vollum and Wing 1998). An entire carbonaceous shale bed represents 1000-3000 years of deposition, and each sedimentary sub-unit containing fossils is a small fraction of this time (Kraus and Aslan 1993, Davies-Vollum and Wing 1998). Although fossil plant material is found in all the sub-units, the best dicot leaf fossils come from the silty claystones. This sub-unit is a distal overbank deposit that formed during intervals of high sediment discharge. Fine-grained sediments buried locally derived leaves, preserving them. Thus, the fossil assemblages each represent locally-derived backswamp vegetation from a season to a few years. The Elk Creek carbonaceous shale (Figure 1) is exposed along the South Fork of Elk Creek in the east-central Bighorn Basin. It occurs at the 112 m level of the Antelope Creek section (Clyde et al. 2007) and is assigned an age of 55.2 Ma (Currano et al. 2008), placing it within the Wasatchian 2 mammal zone. The estimated mean annual paleotemperature at this time and place, from leaf-margin analysis is 16.4 ± 2.7 oC (Wing et al. 2000). The bed is exposed north-south for about 3 km and east-west for about 1 km

32 (Davies-Vollum and Wing 1998). The most complete non-monocotyledonous angiosperm (traditionally called dicots, a term used here for simplicity) leaf fossils are found at the southern end of the Elk Creek shale exposure. The floral assemblages contain just two to four dicot leaf species and are dominated by Alnus sp. and Averrhoites affinis (Currano et al. 2008). Alnus sp. is in the Betulaceae family, and modern Alnus fixes nitrogen. Averrrhoites affinis is a compound leaf with asymmetrical, untoothed leaflets, and its most likely taxonomic affinity is Sapindales. Equisetum sp. (horsetail, Equisetaceae), Glyptostrobus europaeus (conifer, bald cypress relative, Cupressaceae), and Zingiberopsis isonervosa (monocot, ginger family, Zingiberaceae) are also abundant at Elk Creek, indicating a wet substrate that was at least seasonally flooded (Wing 1984). The Fifteen Mile Creek bed is located along the south side of 15 Mile Creek in the central Bighorn Basin. It is in the Wasatchian 7 mammal zone, at the 621 m level of the Elk Creek section and 13 m below a bentonitic ash dated at 52.59 ± 0.12 Ma (Smith et al. 2004). The 15 Mile Creek shale was deposited during the Eocene Thermal Maximum, when global temperatures reached their sustained Cenozoic maximum (Zachos et al. 2001); the Bighorn Basin paleotemperature estimate, based on leaf margin analysis, at this time is 22.2 ± 2 oC. The bed is exposed for about 18 km east-west and 3 km north- south (Davies-Vollum and Wing 1998), and the most complete dicot leaf fossils are found near the east-west midpoint of the exposure. Floral composition is heterogeneous and likely reflects the proximity of individual quarries to of different species (Davies- Vollum and Wing 1998). The three most abundant dicot species are Alnus sp. (Betulaceae), “Dombeya” novi-mundi (Malvaceae), and Platycarya castaneopsis (Juglandaceae). Other common dicot species include Populus wyomingiana (Salicaceae), a Lauraceous species (Lauraceae sp. WW061), and a dicot species that is probably in the Magnoliaceae family (Dicot sp. WW052). Over forty dicot species have been identified at this level, and individual quarries have between six and eighteen dicot species. Glyptostrobus europaeus is also common at 15 Mile Creek, and seven ferns have been found, including Allantodiopsis erosa, Asplenium eoligniticum, Cnemidaria magna, Lygodium kaulfussi, and Thelypteris iddingsii.

METHODS Fossil leaf assemblages were quantitatively censused from multiple quarries along the Elk Creek and 15 Mile Creek beds (Fig. 2.1, Table 2.1). Quarry sites were selected based on rock cohesiveness and presence and preservational quality of dicot leaves. Five

33 censuses were conducted in the Elk Creek bed in 2004. Census sites follow a roughly 260 m north-south transect, and at least 30 m separate individual quarries. Sample sizes range from 56 to 312 leaves, depending primarily on the quality and accessibility of the fossils. Seven quarries were dug at 15 Mile Creek in 2005. The sites are distributed across a roughly 210 m north-south transect, and minimum separation between sites is 34.5 m. Sample sizes range from 51 to 492 fossils. A total of 1008 leaves were analyzed at Elk Creek and 1818 at 15 Mile Creek. At each census site, the fossil-bearing layer was identified and the overburden removed to make a bench quarry. Every identifiable dicot leaf (or leaflet for compound leaves) with at least half of the blade intact was scored for the presence or absence of 50 insect feeding morphotypes (damage types, DTs) (Wilf and Labandeira 1999, Labandeira 2002b, Labandeira et al. 2002a, 2007). Only dicots were examined in this study because, unlike monocots and ferns, their leaves (or leaflets) are generally preserved whole and are therefore easy to divide into individual units and normalize for sampling. Additionally, much of the literature on insect damage in the Rocky Mountain basins has focused on dicot leaves (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b, Currano et al. 2008). A representative suite of voucher specimens is deposited in the Division of Paleobotany, National Museum of Natural History (USNM collection numbers 42395 - 42399 and 42400 - 42406). The DTs can be subdivided into generalized damage types, made by insects that typically eat many different host plants, and specialized damage types, made by insects that typically eat only one or a few host plants. Specialized damage is recognized by similarity to extant specialized feeders, by morphologically stereotyped damage patterns, and by restricted occurrences confined to particular host-plant species or tissue types in either fossil or extant host taxa (Labandeira et al. 2002b, Labandeira et al. 2007). The DTs present in this study are also divided into seven functional feeding groups: hole feeding, margin feeding, skeletonization, surface feeding, galling, leaf mining, and piercing and sucking, as described elsewhere (Labandeira 2002a, Labandeira et al. 2007). The term functional feeding group refers to the way in which insects access foliar food. In the most broad sense, there are two divisions in insect feeding strategies (Labandeira 2002a); some insects consume plant material from the outside (exophytic feeding, including the functional feeding groups hole feeding, margin feeding, skeletonization, and surface feeding), whereas others feed on internal plant tissues (endophytic feeding, including the functional feeding groups piercing and sucking, leaf

34 mining, galling, oviposition, seed predation, and boring). Each of these functional feeding groups has a spectrum of damage made by phytophagous arthropods with distinctive suites of mouthpart types. Where appropriate, I analyze the data using the functional feeding groups laid out here because having seven variables allows for finer resolution of the plant hosts and sites into groups than would be possible with 50 (each damage types is considered separately) or 2 (only the super-groups of exophytic and endophytic damage are used) variables. Three metrics of insect damage have previously been analyzed in the fossil record: frequency, diversity, and composition. These can be considered on the bulk floras or on individual plant species at a site. In this study, the term “bulk flora” refers to all the leaves from a single hole in the ground, whereas “pooled sample” refers to all the leaves sampled from a stratigraphic level. Damage frequency is the proportion of leaves in a sample that are damaged. Damage diversity is the number of DTs present in a sample. It is not perfectly analogous to insect diversity because a single insect species may make multiple types of damage, and some generalized DTs may be made by many different species of insects. Damage composition describes the relative abundances of the DTs or functional feeding groups. Variations in composition through time reveal the particular relationships between host plants and insect herbivores and illustrate changes in the importance of different damage types or functional feeding groups. All three damage metrics indirectly reflect the number of insect species present, the nutrient content of a plant’s leaves, the abundance of structural and chemical defenses in the leaves, and the adaptations of insects to plant defenses. Damage frequency additionally depends heavily on the abundance and density of insect populations. To provide a regional context for the Elk Creek and 15 Mile Creek quarries, damage frequency, diversity, and composition are also shown at four additional stratigraphic levels in the Bighorn Basin. These sites are fully described in Currano et al. (2008) and Wilf et al. (2006), and each represents a single quarry. The Tiffanian 4 (58.9 Ma), Tiffanian 5 (57.5 Ma), and Clarkforkian 3 (55.9 Ma) sites are late Paleocene, and the PETM site (55.8) is from the transient warming at the Paleocene-Eocene Boundary. Because insect damage depends strongly on the physical properties of leaves (e.g. Coley et al. 1985b, Coley and Barone 1996, Kursar and Coley 2003, Royer et al. 2007), it is important to look at structural variation in leaves of different species. Leaves are the fundamental photosynthetic unit of a plant, and the recent compilation and analysis of a global leaf trait dataset has shown that the coordinated trade-offs among key leaf traits

35 form a single, continuous, leaf economics spectrum (Wright et al. 2004). One especially important leaf trait that can be estimated in fossils is leaf mass per area, or MA. Species with high MA generally have thicker, tougher leaves that are less palatable to insect herbivores (Coley and Barone 1996, Royer et al. 2007). Fossil MA can be estimated using an extensive modern calibration set that demonstrates a robust scaling relationship between petiole width2 and leaf mass, normalized for leaf area (Royer et al. 2007). The theoretical explanation for this relationship is that a wider petiole has a greater cross- sectional area and can support a heavier leaf. Every fossil leaf that clearly showed the attachment of the petiole (or petiolule) to the leaf blade and had a reconstructable leaf area was used in the analysis. Petiole width and leaf area were measured using Image J

(http://rsb.info.nih.gov/ij/), and MA was calculated for all dicot species whose percent abundance in the pooled sample exceeded 2%, using the protocol of Royer et al. (2007). Quantitative analyses were conducted using R version 2.4.1 (http://www.r- project.org/). In the damage diversity analyses, sample size was standardized by selecting random subsets of leaves without replacement and calculating the damage diversity for the subsample (as per Wilf et al. 2001). This process was repeated 5000 times for each subset size, and the results were averaged to obtain a standardized damage diversity for each quarry. The standard deviation for the resamples was calculated to provide error bars. Leaves are chosen as the fundamental sampling unit, rather than occurrences of damage types, because each leaf represents a potential site on which insects can feed. In essence, this procedure standardizes samples by leaf area available to insects and sampling effort. Several multivariate statistical analyses were used to determine the variation in relative abundances of functional feeding groups through time. The data were first arcsine square root transformed, which improves normality in proportional data by spreading the ends of the scale (Sokal and Rohlf 1995). Similarities between samples were compared using the Bray-Curtis similarity coefficient (Bray and Curtis 1957). The “metaMDS” function in R was used to ordinate the quarries using non-metric multidimensional scaling (NMS), and the “agnes” function was used to perform agglomerative hierarchical clustering with Ward’s clustering method. Analysis of similarity, or ANOSIM, was used to look for statistically significant differences between groups of samples. Both NMS and ANOSIM are non-parametric tests that work on ranked similarities between samples (Clarke 1993). ANOSIM gives a test statistic, R, which reflects observed differences between sites contrasted with differences among replicates within sites. R ranges from -1 to 1, and a

36 score closer to 1 indicates that replicates within sites are more similar to each other than to samples from different sites.

RESULTS Damage Frequency The proportion of leaves at each quarry with insect damage is shown in Fig. 2.2. Although the majority of the Elk Creek and 15 Mile Creek quarries have similar damage frequency to the respective pooled samples, there are notable exceptions. At Elk Creek, Quarry 0502 stands out because 68% of its leaves are damaged, compared with just 33% of the pooled sample. Sample size at 0502 is sufficiently high, and the floral composition is similar to the other sites. The elevated damage at 0502 is due to a high frequency of a single damage type, piercing and sucking DT 46. DT 46 is found on 45.9% of the leaves at 0502 and just 1.8% at 0501, 7.4% at 0503, 13.3% at 0504, and 2.3% at 0505. If DT 46 is removed from analyses, damage frequency at 0502 is reduced to 40%, whereas only marginal changes occur at the other quarries. Although 56% of the leaves are damaged at 15 Mile Creek, Quarry 0610 has just 41.2% of its leaves damaged. The frequency of damage at the other five quarries ranges from 55 – 61%. Quarry 0610 has only 51 leaves and is by far the smallest 15 Mile Creek quarry (Table 2.1). Its most abundant plant species is “Dombeya” novi-mundi, which has the lowest damage frequency of the common 15 Mile Creek taxa (Table 2.2). Small holes (DT1) and general skeletonization (DT16) are both moderately abundant at every quarry except 0610, where these damage types are at least three times less abundant than at any other quarry. There is no significant difference between the mean damage frequency at Elk Creek and 15 Mile Creek (t = 2.23, df = 4.82, p = .07), although if the extreme values at quarries 0502 and 0610 are removed, the frequency at 15 Mile Creek is significantly higher than at Elk Creek (t = 10.7, df = 4.19, p < .01). As illustrated in Fig. 2.2, the rank order of damage frequency on the stratigraphic levels could change if only a single quarry was considered at Elk Creek or 15 Mile Creek. Quarry 0502 at Elk Creek has the highest damage frequency of any of the quarries, and 0610 at 15 Mile Creek has a damage frequency that is similar to the Clarkforkian 3 and Tiffanian 4 samples. Figure 2.3 shows damage frequencies on the plant hosts that make up at least 2% of either pooled sample at each stratigraphic level. Sample sizes lower than 25 specimens are probably too small to be precise. At Elk Creek, there are significant differences in

37 damage frequencies among the quarries. For Alnus sp., Quarry 0503 is significantly higher than any other quarry and the pooled Alnus sp. sample. The majority of this increase in damage frequency is caused by higher frequencies of the same hole and margin feeding DTs present at the other quarries. For Averrhoites affinis, Quarry 0502 has a high damage frequency because of the abundance of piercing and sucking DT 46, as discussed above. At 15 Mile Creek, there are no significant differences in damage frequency among the “Dombeya” novi-mundi and Platycarya castaneopsis samples. For Alnus sp., none of the individual samples greater than 25 leaves is significantly different from the pooled 15 Mile Creek Alnus sp. Furthermore, the same species of Alnus occurs at both sites, and its damage frequency is significantly lower at Elk Creek than at 15 Mile Creek (t = -3.86, df = 6.5, p < .01).

Damage Diversity Damage diversity on the bulk floras at Elk Creek and 15 Mile Creek is shown in Fig. 2.4. At Elk Creek, four of the five individual quarries fall within the error bars of the pooled Elk Creek sample. The fifth quarry, 0504, has significantly higher diversity than the pooled sample. Quarry 0504 has a comparable number of leaves to the other quarries, and it is dominated by Averrhoites affinis, as are 0502, 0503, and 0505 (Table 2.3). Therefore, floral composition does not provide an explanation for the higher diversity. At 15 Mile Creek, the quarries are split into two groups in terms of their damage diversity. Quarries 0603 and 0606 have higher diversities than the pooled sample, although the difference is not significant. The other five quarries have fewer damage types than the pooled sample, and 0609 has significantly fewer. The differences in damage diversity between the quarries can be explained by looking at their floral compositions (Table 2.2). A G-test indicates significant heterogeneity in floral composition across the quarries (G = 595, with 30 degrees of freedom and p << 0.001), as previously demonstrated by Davies-Vollum and Wing (1998). Alnus sp. is the most abundant plant species at 0603 and 0606, whereas “Dombeya” novi-mundi is dominant at 0607 and 0610, and Platycarya castaneopsis is dominant at 0604, 0605, and 0609. Furthermore, Populus wyomingiana is relatively abundant at 0603 and 0606, while Dicot III is well-represented at 0604, 0605, 0607, and 0609. When the 15 Mile Creek quarries are pooled and the damage diversity on individual plant species is sub-sampled to 100 leaves, Alnus sp. and Populus wyomingiana have higher damage diversities than Dicot III, “Dombeya” novi- mundi, and Platycarya castaneopsis.

38 Variations in damage diversity between stratigraphic levels in the Bighorn Basin are illustrated in Fig. 2.5. When sub-sampled to 100 leaves, the individual quarries at 15 Mile Creek and Elk Creek fall within the error bars of the respective pooled samples. A t- test shows that 15 Mile Creek has a significantly higher mean damage diversity than Elk Creek (p < .05, df = 8). Fig. 2.5 demonstrates that the difference between stratigraphic levels is greater than the differences between quarries at a single stratigraphic horizon in this study. Resampling curves of insect damage diversity on individual plant hosts at Elk Creek and 15 Mile Creek are shown in Fig. 2.6. Only Alnus sp. and Averrhoites affinis at Elk Creek and Alnus sp., “Dombeya” novi-mundi, and Platycarya castaneopsis at 15 Mile Creek are widespread and abundant enough to warrant comparisons among quarries. At Elk Creek, the Averrhoites affinis samples generally fall within the error bars of the pooled sample, although site 0504 has a significantly higher diversity, as observed in the bulk flora. Although the sample sizes of Alnus sp. at Elk Creek are generally low, there appear to be real differences in damage diversity between quarries. Quarry 0503 has more types of hole feeding, margin feeding, and skeletonization than the other two sites, and it is the only quarry where Alnus sp. has surface feeding. However, the DTs that occur only at Quarry 0503 are represented by very few damage occurrences. At 15 Mile Creek, all of the samples that have at least 50 leaves fall within the error bars of the pooled samples.

Damage Composition Damage composition describes the relative abundances of the functional feeding groups in each sample. Qualititively, hole feeding, margin feeding, and skeletonization are abundant on all species at all sites. Piercing and sucking is more abundant at Elk Creek than at 15 Mile Creek, whereas surface feeding, galling, and leaf mining are more abundant at 15 Mile Creek. At Elk Creek, Alnus sp. has no galling, leaf mining, or piercing and sucking, and little surface feeding. Averrhoites affinis, has abundant piercing and sucking but no galling. At 15 Mile Creek, Alnus sp. has all seven functional feeding groups and is the most mined species in this study. Four percent of Alnus sp. leaves have mines, and there are seven types of leaf mines. One leaf mine type is distinctive of the Incurvariidae, four are most similar to modern Lepidoptera serpentine leaf mines, one resembles a serpentine Diptera leaf mine, and the other blotch mine type resembles those made by modern Hymenoptera (C. Labandeira, personal communication). Although “Dombeya” novi-mundi has all seven functional feeding groups, surface feeding, galling,

39 and piercing and sucking are relatively rare. Similarly, all functional feeding groups occur on Platycarya castaneopsis, but galling and leaf mining are relatively rare. Damage composition on Populus wyomingiana is most similar to Alnus sp., and all functional feeding groups are relatively abundant. Insect damage on Allophylus flexifolia is distinct from the other species at 15 Mile Creek because galls are more abundant than every functional feeding group except hole feeding. The galls are small (less than 2 mm) and distributed across the entire leaf blade. Lauraceae sp. WW061 has no leaf mining, galling, or piercing and sucking. Dicot sp. WW052 (?Magnoliaceae) has little damage other than hole feeding, margin feeding, and skeletonization. Several multivariate analyses were used to investigate differences in the relative abundances of insect damage types within and between horizons. In Fig. 2.7, the replicate quarries at Elk Creek and 15 Mile Creek, as well as the other Bighorn Basin insect damage censuses, were ordinated using non-metric multidimensional scaling. The Elk Creek and 15 Mile Creek replicates form distinct groups; the ANOSIM test statistic R is 0.66, with a significance value < .01. The Elk Creek quarries have low axis 1 scores and high axis 2 scores. Quarry 0501 does not plot near the other Elk Creek quarries because it is strongly dominated by Alnus sp., whereas the other quarries are predominantly Averrhoites affinis. The 15 Mile Creek quarries group in the lower left of the plot. The most distant point is 0610, whose placement may be partly due to its low sample size. Similar results were obtained when only the Elk Creek and 15 Mile Creek quarries were used in the analysis. Variations in the relative abundances of the functional feeding groups on individual plant species were examined using a two-way cluster analysis (Fig. 2.8). Every plant species with at least 20 leaves at an Elk Creek or 15 Mile Creek quarry was included in the analysis. The agglomerative coefficient, a dimensionless number between 0 and 1 that provides a means to evaluate how well a dendrogram summarizes the data, is 0.77 for the plant host clustering and 0.57 for the functional feeding group clustering. The samples appear to cluster based first on stratigraphic level and then on plant phylogeny. The 15 Mile Creek taxa are grouped in one cluster and the Elk Creek taxa in two additional clusters, with the exception of Alnus sp. at 0503, which groups with 15 Mile Creek species. Alnus sp. at 15 Mile Creek does not cluster with Alnus sp. at Elk Creek. The second-order clustering is strongly influenced by plant phylogeny. Host plants from the same quarry do not group together, indicating that the relative abundance of the functional feeding groups within a single stratigraphic level depends on plant species, not quarry within a single

40 stratigraphic level. All of the Averrhoites affinis samples form a distinct cluster, as do the 15 Mile Creek Alnus sp. samples. Four of five Platycarya castaneopsis, two of four “Dombeya” novi-mundi and two of three Elk Creek Alnus sp. samples also form distinct groups. Furthermore, the Platycarya castaneopsis cluster is next to the 15 Mile Creek Alnus sp. cluster. Juglandaceae and Betulaceae, the plant families to which these species belong, are both in the order Fagales.

Early Eocene Plant-Insect Interactions Insect damage diversity and frequency on both the bulk floras (excluding Quarry 0502) and individual species are greater at 15 Mile Creek than at Elk Creek (Figs. 2.2, 2.3, 2.4, 2.5, 2.6). There are also significant differences in the relative abundances of the functional feeding groups. In particular, specialized damage like leaf mining, galling, and some surface feeding is more diverse and abundant at 15 Mile Creek. These results are expected because the plants at 15 Mile Creek grew in a warmer climate than those at Elk Creek (Wing et al. 2000). Fossil insect damage diversity, particularly that of specialized insect herbivores, has been positively correlated with temperature (Wilf and Labandeira 1999, Wilf et al. 2001, Currano et al. 2008), and a comprehensive analysis of these and other Bighorn Basin floras in temperature context is in preparation. There are also differences in insect herbivory among plant hosts. Leaf traits and plant chemistry influence insect damage diversity, frequency, and composition. At 15 Mile Creek, Alnus sp. has a higher damage diversity, frequency, and relative abundance of surface feeding, leaf mining, galling, and piercing and sucking than any other plant species. Alnus sp. is likely more palatable to herbivores because it fixes nitrogen (Quispel 1954). In contrast, Platycarya castaneopsis has low damage diversity and frequency and relatively few leaf mines and galls. Platycarya castaneopsis is in the family Juglandaceae, which has high concentrations of defensive tannins (Fukuda et al. 2003). In addition, differences in leaf mass per area among the host plants in this analysis may contribute to the observed variation in herbivory (Tables 2.2 and 2.3). At 15 Mile Creek, Alnus sp. has a lower MA and higher damage frequency and diversity than Dicot sp. WW052 or Platycarya castaneopsis. When compared with the other abundance plant species at 15 Mile Creek,

Populus wyomingiana and “Dombeya” novi-mundi have intermediate MA and damage diversity. However, at Elk Creek, Averrhoites affinis has a significantly higher damage diversity than Alnus sp., even though its leaflets have a higher average MA. Because

41 Averrhoites affinis is the dominant plant resource at Elk Creek (over 80% of all censused leaves), insect herbivores would benefit by adapting to consume it.

DISCUSSION The variations in insect damage along a single stratigraphic level reflect heterogeneity in insect damage between plant species, within a plant species, and within an individual plant. Ecological studies provide a framework for understanding the causes of heterogeneity. Plant species differ greatly in their anti-herbivore defense mechanisms, depending on how they balance energy expenditure between growth and anti-herbivore defense. Some plants have a high growth rate and short-lived leaves, expend few resources on defense mechanisms, and therefore tend to experience relatively high herbivory levels (Coley et al. 1985a, Coley and Barone 1996, Kursar and Coley 2003, Fine et al. 2004). Other plants have a slow growth rate and long-lived leaves, making it beneficial for the plant to invest much energy in herbivore defense. Furthermore, 70% of insect species are oligophagous or monophagous (Bernays and Chapman 1994, Termonia et al. 2001, Farrell and Sequeira 2004), making the majority of plant-insect herbivore interactions highly species specific. Thus, different plant species will have different damage frequencies, diversities, and compositions, and these differences will be reflected in the bulk floras, as illustrated at 15 Mile Creek. Spatial variation in herbivory within a single plant species, or even an individual plant, has also been observed in modern ecosystems. For example, higher rates of herbivory have been reported in forest gaps and are attributed to increased growth and abundance of young leaves (Richards and Windsor 2007), which are more palatable than mature leaves (Coley and Barone 1996). Across a landscape, each plant grows in a slightly different environment, where temperature, humidity, and availability of nutrients, water, and light may vary. These, in turn, affect plant defense against herbivores and insect populations. Higher concentrations of water and nutrients may allow a plant to grow more quickly or produce more structural and chemical defense compounds. Individual leaves on the same plant are also exposed to different conditions. Leaves fully exposed to sunlight can photosynthesize more efficiently and fix more carbon. They therefore have a higher C:N ratio and more phenolics (Yamasaki and Kikuzawa 2003), both of which are disadvantageous to herbivores. For these and other reasons, canopy leaves have less damage than subcanopy leaves (Lowman 1985, Lowman and Heatwole 1992, Ribeiro and Basset 2007). In addition, the presence or absence of previous damage on an individual

42 can impact an insect’s decision to feed on a particular leaf (Levin 1976). Finally, there is vertical variation in insect species diversity and abundance, and both have been demonstrated to be higher in the canopy than the understory (Basset et al. 2001). Heterogeneity in damage within living forests is retained in the fossil record. However, although there is spatial variation in insect damage along a single stratigraphic horizon, it is less than the temporal variation between levels in this study. Insect damage diversity and composition are significantly more similar between quarries from the same level than between quarries from different levels. Damage frequency is usually consistent within a stratigraphic level, but there are notable exceptions such as Quarry 0502. The diversity and types of insect damage are less heterogeneous than the damage frequency. This is probably because each of these metrics provides slightly different information about plant and insect communities. Damage diversity and composition reflect the number and type of insect species that inhabit an area. New insect species must invade the landscape to get new damage types on the plant hosts. Barring a major abiotic perturbation, insect diversity is unlikely to drastically change across a landscape over the time that it takes for a fossil plant assemblage to be deposited. Damage frequency depends on the abundance and density of insects in an area. Local temperature and humidity can vary slightly across a forest, both vertically and horizontally, and this should have a greater effect on insect abundance than insect diversity. Furthermore, insect population numbers can be highly variable from season to season or year to year. In the tropics, insects are more abundant during the rainy season than the dry season, and insect outbreaks are generally worse in the wet season following a particularly dry year (Coley 1998). Population booms or outbreaks of a single insect species would be expressed in the leaf record as a marked increase in damage frequency but no change in damage diversity. It is likely that the elevated damage frequency at Elk Creek Quarry 0502 is due to an outbreak of piercing and sucking insects, an event that may even have occurred on a single tree. Because the sedimentary sub-units of the carbonaceous shale beds at Elk Creek and 15 Mile Creek pinch in and out along the outcrop, it is likely that not all the leaves preserved at each quarry are not from exactly the same season or year. Therefore, different damage frequencies might be expected due to inter-seasonal and inter-annual variations in insect abundance. The composition of damage depends on which insect species are present and their abundances. In this study, variation in abundance structure between stratigraphic levels exceeds variation within a single level, as long as one considers damage on a single plant

43 host or bulk floras with similar species composition. Even though Quarry 0502 had an extremely elevated damage frequency and a much higher occurrence of piercing and sucking DT 46 than the other Elk Creek quarries, it still plots closer to the Elk Creek quarries in the NMS ordination than to any other quarry. The same is true for Quarry 0504, which had significantly higher damage diversity than the other Elk Creek sites.

CONCLUSIONS In this study, temporal differences in insect damage are generally greater than small-scale spatial variations. As long as a single quarry adequately represents floral diversity and composition for the time horizon, it also captures damage diversity and composition. Therefore, the trends in insect damage diversity observed in the Paleocene and Eocene from single sites, such as the instability of food webs long after the K-P extinction (Wilf et al. 2006) and correlation between damage diversity and temperature (Currano et al. 2008), are supported. Damage frequency, however, can vary significantly within a stratigraphic level, and replicate samples are therefore recommended. If this is impossible, data taken from a single quarry should be carefully checked for extreme elevation of a single damage type.

44 Table 2.1. Summary of each quarry at Elk Creek and 15 Mile Creek. Errors in damage diversity are given as one standard deviation above and below the mean of the resamples, and errors on the percent of leaves damaged represent the binomial sampling error. GPS coordinates are given using the NAD CONUS27 datum. Damage # dicot # Carb. shale GPS # dicot diversity, % of leaves Quarry leaf damage unit coordinates leaves 100 damaged species types leaves EDC 44.28008; Elk Creek 56 4 9 NA 30.4 ± 6.1 0501 108.05089 EDC 44.2798; Elk Creek 122 4 15 14.2 ± 0.8 68.0 ± 4.2 0502 108.05081 EDC 44.28187; Elk Creek 285 3 19 15.3 ± 1.7 34.0 ± 2.8 0503 108.05129 EDC 44.28145; Elk Creek 233 2 22 16.4 ± 2.0 28.8 ± 3.0 0504 108.05111 EDC 44.28213; Elk Creek 312 2 20 13.6 ± 2.0 22.1 ± 2.3 0505 108.05125 EDC 44.17774; 15 Mile Creek 492 18 37 19.5 ± 2.3 60.8 ± 2.2 0603 108.55674 EDC 44.17719; 15 Mile Creek 106 10 17 16.5 ± 0.6 54.7 ± 4.8 0604 108.55708 EDC 44.17727; 15 Mile Creek 101 6 16 15.9 ± 0.3 58.4 ± 4.9 0605 108.55713 EDC 44.17862; 15 Mile Creek 475 17 35 20.3 ± 2.5 60.4 ± 2.2 0606 108.55707 EDC 44.17846; 15 Mile Creek 102 8 16 15.8 ± 0.4 58.8 ± 4.0 0607 108.55643 EDC 44.17910; 15 Mile Creek 494 15 30 15.9 ± 2.2 54.7 ± 2.2 0609 108.55713 EDC 44.17799; 15 Mile Creek 51 6 13 NA 41.2 ± 6.9 0610 108.55650

45

Table 2.2. Summary statistics for the abundant plant species at 15 Mile Creek. Leaf (or leaflet for Averrhoites affinis and possibly Platycarya castaneopsis) mass per area was reconstructed using petiole width analysis (Royer et al. 2007), and errors represent the 95% prediction intervals.

Damage % leaves % of leaves (or leaflets) at each quarry 2 Plant Species diversity, with MA (g/m ) 0603 0604 0605 0606 0607 0609 0610 100 leaves damage Alnus sp. 50.8 14.2 16.8 49.3 19.1 26.3 33.3 17.8 ± 2.2 65.9 ± 1.8 64 (+16, -12) Dicot sp. 2.2 17.9 12.9 1.7 8.6 8.3 3.9 11.8 ± 0.4 46.7 ± 4.8 82 (+49, -31) WW052 “Dombeya” 12.4 16.0 9.9 6.5 57.9 17.4 43.1 14.6 ± 1.8 55.5 ± 2.8 76 (+45, -28) novi-mundi Platycarya 13.4 45.3 57.4 17.1 9.9 34.4 5.9 14.1 ± 2.0 48.7 ± 2.4 115 (+69, -43) castaneopsis Populus 12.0 0.9 0 11.4 1.3 1.0 11.8 16.9 ± 1.5 43.3 ± 4.4 76 (+45, -28) wyomingiana

Table 2.3. Summary statistics for the abundant plant species at Elk Creek. Errors as in Tables 2.1 and 2.2.

% of leaves (or leaflets) at each Damage % leaves quarry 2 Plant Species diversity, 100 with MA (g/m ) 0501 0502 0503 0504 0505 leaves damage

Alnus sp. 80.4 82.0 15.1 5.6 24.4 13.3 ± 0.8 33.1 ± 3.5 72 (+32,-22)

Averrhoites affinis 14.3 97.5 83.2 94.4 75.6 17.1 ± 2.0 34 ± 1.7 133 (+67, -45)

46 Figure 2.1. Outcrop traces of the 15 Mile Creek and South Fork of Elk Creek carbonaceous shale beds used in this study. A dry riverbed cuts through the exposed Elk

Creek shale bed, causing the gap in the trace. Individual plant quarry sites are marked.

The GPS coordinates for each quarry are listed in Table 2.1.

47

Figure 2.2. Proportion of leaves with damage. Errors in herbivory represent ± 1σ, based on a binomial sampling distribution. The Tiffanian 4, Tiffanian 5, Clarkforkian 3, and PETM insect damage censuses are included here to provide a regional context for insect damage at Elk Creek and 15 Mile Creek. The data from these additional stratigraphic levels were collected from a single quarry, as described in Wilf et al. (2006) and Currano et al. (2008).

48 Figure 2.3: Damage frequency of individual plant species at Elk Creek (A) and 15 Mile Creek (B). The light gray histogram bars are individual quarries (left to right: 0501, 0502, 0503, 0504, and 0505 at Elk Creek and 0603, 0604, 0605, 0606, 0607, 0609, and 0610 at 15 Mile Creek), and the dark gray bars are the pooled damage frequency for each species. Error bars represent ± 1σ, based on a binomial sampling distribution. The number of leaves in each sample is given under the associated bar in the histogram. Because of the abundance of piercing and sucking DT 46 on Averrhoites affinis at 0502, a second histogram was constructed in which DT 46 was removed from analysis.

49 Figure 2.4. Resampling curves of insect damage diversity at Elk Creek (A), 15 Mile Creek (B), and both sites on the same plot (C). The pooled quarry resamples have been truncated to 300 leaves at Elk Creek (A) and 500 leaves at 15 Mile Creek (B). Error bars in A and B are one standard deviation above and below the mean of the resamples.

50 Figure 2.5: Damage diversity resampled to 100 leaves at 6 stratigraphic levels in the Bighorn Basin. Error bars represent one standard deviation above and below the mean of the pooled resamples.

51 Figure 2.6: Resampling curves of insect damage diversity on individual plant hosts. In the Elk Creek and 15 Mile Creek panels, the thin gray curves represent individual quarry sites, and the solid black lines represent the pooled quarries for the stratigraphic level. Error bars are one standard deviation above and below the mean of the resamples.

52 Figure 2.7: Two-dimensional results from NMS ordination of the relative abundances of the seven functional feeding groups on the individual Bighorn Basin quarries. The Tiffanian 4, Tiffanian 5, Clarkforkian 3, and PETM floras are displayed with the replicate quarries at Elk Creek and 15 Mile Creek. The scores for the functional feeding groups were computed using the weighted averaging method and are plotted on the same axes. Functional feeding groups are abbreviated HF (hole feeding), MF (margin feeding), S (skeletonization), SF (surface feeding), PS (piercing and sucking), M (leaf mining), and G (galling).

53 Figure 2.8: Two-way cluster analysis of insect damage on each plant host with >20 leaf specimens. Bold-face type is used to distinguish the 15 Mile Creek species-quarry pairs from those of Elk Creek. Plant species analyzed have been assigned to the following taxonomic groups: Allophylus flexifolia (Sapindaceae), Alnus sp. (Betulaceae), Averrhoites affinis (Sapindaceae?), Dicot III (Magnoliaceae?), “Dombeya” novi-mundi (Malvaceae), Platycarya castaneopsis (Juglandaceae), and Populus wyomingiana (Salicaceae). Functional feeding groups are abbreviated as in Fig. 7. The dots are scaled to the log relative abundance of the functional feeding group on the given sample.

54 CHAPTER 3: A QUANTITATIVE ANALYSIS OF INSECT FEEDING ON ANGIOSPERM LEAVES THROUGH THE LATE PALEOCENE AND EARLY EOCENE IN THE BIGHORN BASIN, WYOMING

INTRODUCTION Paleontologic and geologic studies have shown that significant temperature fluctuations (Wing et al. 2000, Zachos et al. 2001), moderate floral turnover (Wing and Harrington 2001), and one of the largest mammalian turnover events (Rose 1981, Gingerich 1989b, 2006) occurred during the late Paleocene and early Eocene (59 – 52.5 Ma). However, less is known about plant-insect interactions, a dominant feature of terrestrial ecosystems. Here, I examine how insect herbivory on angiosperm leaves varies throughout this interval. How do changes in temperature and floral diversity affect insect feeding on bulk floras, individual plant hosts, and single plant lineages? How does insect damage on floras from this time interval compare with floras from the latest Cretaceous and earlier in the Paleocene (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b), and what can they tell us about the extended rebound of terrestrial ecosystems from the K-T extinction? The Bighorn Basin is the ideal place to study plant-insect interactions during the late Paleocene and early Eocene because it contains the most complete rock record available of terrestrial environments (Wing 1998, Gingerich 2001b). Furthermore, biostratigraphy, chemostratigraphy, and magnetostratigraphy are well constrained (Rose 1981, Bown et al. 1994, Gingerich 2001b, Wing et al. 2005, Secord et al. 2006, Clyde et al. 2007). Here, I add four floras to those already presented in Chapter 1. These floras extend the study interval through the early Eocene cool period and into the Eocene Thermal Maximum (~53 Ma) and fill the gap between the late Tiffanian and the late Clarkforkian. I first present the changes in floral diversity and composition, and then changes in insect damage frequency, number of damage types resampled by leaves, and insect damage composition on bulk floras and individual hosts. I present a new damage metric, the number of damage types resampled by the number of damage occurrences, and assess its suitability for insect damage analyses. Then, I consider the effects of external factors on insect herbivory in these floras. I examine whether there are changes in leaf mass per area among sites and whether plant diversity affects insect damage.

55 Then, I focus on the effects of temperature on herbivory and quantify the positive correlation observed in Chapter 1. Finally, I integrate the Bighorn Basin floras into the pre- existing dataset of Cretaceous through Eocene insect damage in the Western Interior basins (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b).

GEOLOGIC BACKGROUND The nine stratigraphic levels used in this study are mapped and described in Table 3.1 and Appendix A. Here, I use the informal site names because they are more memorable than collector’s numbers, USNM (National Museum of Natural History) locality numbers, or mammal zones. In many of the figures, sites will be abbreviated by their initials. The four Paleocene sites (Skeleton Coast, Lur’d Leaves, Dead Platypus, and Daiye Spa) come from Polecat Bench and the Sand Coulee area in the Northern Bighorn Basin and are in the Fort Union Formation. Skeleton Coast, Lur’d Leaves, and Daiye Spa have been described elsewhere, placed in stratigraphic sections and assigned ages (Wilf et al. 2006, Currano et al. 2008). Dead Platypus is located within University of Michigan vertebrate locality SC92, which is at 1210 m in the southeastern Polecat Bench section (A. , personal communication). Using the ages and meter levels for the start and end of Clarkforkian 2 mammal zone in Secord et al. (2006) and assuming a uniform sedimentation rate for Clarkforkian 2 gives an age of 56.4 Ma for Dead Platypus. The five Eocene floras (Hubble Bubble, South Fork of Elk Creek, Cool Period, PN, and 15 Mile Creek) come from the central and southern Bighorn Basin and are in the Willwood Formation. The ages and meter-levels for Hubble Bubble and Elk Creek have already been published (Wing et al. 2005, Clyde et al. 2007, Currano et al. 2008), and the location of 15 Mile Creek is discussed in Chapter 2. The meter-levels of Cool Period and PN are well-established (Wing et al. 1995), and ages were obtained for Cool Period and PN using the updated Elk Creek stratigraphic section of Clyde et al. 2007. Fossils are preserved in two depositional environments. Elk Creek, 15 Mile Creek, and most of the Cool Period localities (USNM 42407-42410) are in laterally extensive carbonaceous shale deposits, as described in Chapter 2. The most complete and best- preserved leaf fossils are found in the silty-claystone layers, and the environment is reconstructed as a backswamp (Davies-Vollum and Wing 1998). The other sites are lenticular siltstone and mudstone units, Wing’s (1984) Type I carbonaeous units. These deposits are less than 300 m in lateral extent, contain multiple fining-upward sequences, and commonly have floating aquatic plants like Salvinia preauriculata. These sediments

56 accumulated when ponds formed in abandoned channel-beds, and changes in lithology and plant composition occurred as the water shallowed (Wing 1984).

PALEOTEMPERATURE RECORD Mean annual temperature for each stratigraphic level in the Bighorn Basin was either obtained from the literature or calculated using the floras studied collected here, museum collections, and published lists. A summary of the paleotemperature estimates for each site is given in Table 3.2, and the plant species used to obtain new paleotemperature estimates are given in Table 3.3. The general pattern, which is visible in both the marine oxygen isotope curves for the Cenozoic (Zachos et al. 2001) and terrestrial records from the Bighorn Basin (Wing 1998, Wing et al. 2000), shows a gradual warming through the late Paleocene, the abrupt PETM warming event, a return to background temperatures followed by a slight cooling in the early Eocene, and finally a warming to the maximum sustained Cenozoic temperature at the Eocene Thermal Maximum (~53 Ma). The late Paleocene is split into two land mammal zones, the Tiffanian (61.6 – 57.0 Ma) and Clarkforkian (57.0 – 55.8 Ma; Secord et al. 2006), and these land mammal zones are further divided into numeric subzones (e.g. Tiffanian 4). As discussed in Chapter 1, only a single paleotemperature estimate could be made for the late Tiffanian because of the low floral diversity. Several MAT estimates have been made for Clarkforkian 2, the mammal zone in which Dead Platypus occurs. These estimates range from 12oC to 16oC and are associated with errors of at least ± 2oC. I have calculated a new Clarkforkian 2 estimate using leaf margin analysis. The data used in this analysis are the dicot leaf morphotypes from three indisputably Clarkforkian 2 sites stored at the Smithsonian Institution: Dead Platypus, LJH6723, and SW9036 (Table 3.3). These sites were chosen because they are the largest collections, have the greatest diversity of dicot leaves, and have the best preserved leaves. Previously published MAT estimates for Clarkforkian 3 range from 15.7oC to 18oC with at least ± 2oC error. Because Daiye Spa is from the end of Clarkforkian 3 and is within 100 ka of the start of the PETM, I did a new paleotemperature estimate. It is based on the species at Daiye Spa and at SW0714, a new site in the southern Bighorn Basin that is approximately 10 m below the start of the PETM. SW0714 was morphotyped by Amy Morey and Erika Gonzalez, and I compared their morphotypes with the Daiye Spa morphotypes to be sure that the same plant species were not included twice in the analysis.

57 The new paleotemperature estimate for Daiye Spa (16.4oC ± 2.9) is warmer than that for Dead Platapus (12 oC ± 3; Table 3.2). There is also outside evidence to suggest that this is true. First, the temperatures from marine oxygen isotope studies shows a steady warming through the time interval equivalent to the Clarkforkian mammal zone (Zachos et al. 2001). Second, there is a lot of floral turnover both within Clarkforkian 3 and especially at the end of Clarkforkian 3 (S. Wing, personal communication). Although factors other than warming can drive floral turnover, several of the plant species with their first occurrence at Daiye Spa are thought to be thermophilic. Finally, there is marine (Tripati and Elderfield 2005) and Bighorn Basin (Secord et al. 2007) geochemical evidence for a warming in the last 100 to 150 kyr before the PETM. These studies and others (Thomas et al. 2002, Sluijs et al. 2007) have proposed that a pre-PETM warming could have triggered the release of the light carbon that caused the PETM. The PETM temperature estimate used in this study is from leaf margin analysis of the Hubble Bubble flora (Wing et al. 2006), and the remaining Eocene estimates are from Wing et al. 2000. Because new floras were collected from the Cool Period, I did a new paleotemperature estimate for this interval using my Cool Period collections and existing museum collections by Scott Wing. My Cool Period collections are from the 311 m level of the Elk Creek – Antelope Creek composite section (Clyde et al. 2007), as are the museum LB and DC1 collections (Wing 1981). Museum collections SW0130, SW0131, and DCF come from the 353 m level. In all, 26 plant morphotypes are found at these sites, which gives an MAT of 11.1oC ± 2.8oC that differs only slightly from the 10.8 ± 3.3oC of Wing et al. 2000.

METHODOLOGY Insect Damage Censuses Insect damage censuses were conducted at each stratigraphic level, with an initial goal of 800 leaves per census (Table 3.1, Table A1). The Elk Creek and 15 Mile Creek fossils are preserved in laterally extensive carbonaceous shales, and fossils were censused from five (Elk Creek) and seven (15 Mile Creek) smaller quarries, as described in Chapter 2. Fossils were collected from a single quarry each at Hubble Bubble, Daiye Spa, Dead Platypus, Lur’d Leaves, and Skeleton Coast, and 2 quarries less than 10 meters apart at PN. Because all identifiable non-monocot angiosperm leaves (hereafter referred to using the traditional although paraphyletic term “dicot”) were saved in the museum collections from Daiye Spa (SW9819 and SW994), I used these to supplement

58 my field collections. The target sample size was not reached at PN because of extreme weathering and inaccessibility of cohesive rock. Although there are extensive collections at the Smithsonian from PN, these collections are biased against common taxa and incomplete leaves and therefore are not included in the analysis. Plant fossils from the Cool Period are scarce, and a site of the caliber of those described above has not yet been discovered. Therefore, I lumped together the LB site (Wing 1981) and the 311 m carbonaceous shale (DC1 in Wing 1981). These sites are separated by 8.5 miles geographically and are within five meters of each other stratigraphically. Site USNM 37654 consists of 200 leaves censused at Lightning Bolt, and sites USNM 42407-42410 represent the 235 fossils counted from the 311 m carbonaceous shale. The museum collections from these sites contain 46 identifiable dicot leaves. Although the rare plant species are probably over-represented in the museum collections, they were included to increase both bulk sample size and the sample sizes of individual plant species, particularly Dicot sp. WW034. Furthermore, there is no significant difference in the percent of leaves damaged or the number of damage types present at a given sample size when the museum specimens are added to the field censuses. At each census site, the fossil-bearing layer was identified and the overburden removed to make a bench quarry. Every identifiable dicot leaf (or leaflet for compound leaves) with at least half of the blade intact was scored for the presence or absence of 71 DTs (Wilf and Labandeira 1999, Labandeira 2002b, Labandeira et al. 2002a, Labandeira et al. 2007). A total of 9071 leaves were examined. The DTs can be subdivided into generalized damage types and specialized damage types or the seven functional feeding groups of hole feeding, margin feeding, skeletonization, surface feeding, leaf mining, galling, and piercing and sucking, as described elsewhere and in previous chapters. Only dicots were examined in this study because, unlike monocots and ferns, their leaves are generally preserved whole and are therefore easy to divide into individual units and normalize for sampling effort. Additionally, much of the literature on insect damage in the Rocky Mountain basins has focused on dicot leaves (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b, Currano et al. 2008).

Statistical Analyses All analyses were done using R version 2.4.1. I will consider three components of insect damage: damage frequency, the number of damage types in a sample, and damage composition. These components can be computed for the bulk flora and for

59 individual plant species within a flora. Damage frequency and composition are easy to compare among samples of different sizes because these analyses use proportional data. The number of damage types in a sample, which other studies call diversity or richness, is highly influenced by sample size. Therefore it is necessary to standardize for sample size by subsampling the data. Samples can be standardized either by comparing the same number of leaves or the same number of occurrences of insect damage, and these two methods will be referred to as DTL and DTO, respectively. Frequency, DTL, and composition have been measured on fossils in the past (Wilf and Labandeira 1999, Wilf et al. 2001, 2005, 2006, Labandeira et al. 2002a, Labandeira et al. 2002b, Currano et al. 2008), and DTO is presented here for the first time. Each has a different meaning and should be used to answer different scientific questions.

Damage Frequency Damage frequency is the percent of leaves that are damaged. One can also consider the percent of leaves with specialized damage, mines, or a given number of damage types. Because a leaf either has damage (or specialized damage or a mine) or does not, error bars for damage frequency are calculated based on a binomial sampling distribution. Damage frequency depends heavily on the abundance and density of insect populations and is therefore more variable within a stratigraphic level than the number of damage types or the composition of damage (Chapter 2).

Number of Damage Types DTL is computed by selecting a random subset of X number of leaves without replacement and calculating the number of damage types in the subsample. This process is then repeated 5000 times, and the results averaged to obtain DTL for the given sample size. The standard deviation of the resamples is calculated to provide error bars. Undamaged leaves are included in the analysis. In essence, the DTL analysis standardizes for area of foliar tissue considered or sampling effort. This technique should be used to questions such as how many types of damage are there per unit of foliar tissue or how many ways do insects eat approximately equal sets of foliage resource? There is extremely strong ecological meaning to the DTL analysis. First, insect feeding damage occurs on leaves, and without leaves there can be no insect damage. Because DTL includes the uneaten leaves in the analysis, it standardizes the number of damage types observed to the entire resource available for feeding. Second, insects make

60 the decision to eat (or oviposit upon) or not to eat (or oviposit upon) a given leaf, and therefore insect damage is an ecological association that occurs on individual leaves. Thus, leaves should be the basic unit of sampling. There are two potential weaknesses to the DTL analysis. First, it is not completely independent of the frequency of damage. If two samples have the same number of damage types and identical relative abundance distributions of damage, but damage frequency is higher in one sample, then that DTL resampling curve will also be higher (Figure 3.1 a). Second, because undamaged leaves are included in the DTL analysis, it is impossible to distinguish between a site that has many leaves with the same damage type and a site that has very little damage, but each damage occurrence is a different damage type. Both sites will produce a DTL curve similar to that pictured in Figure 3.1 b. However, looking at the frequency data allows the two situations to be distinguished. The DTO analysis considers the occurrence of a damage type on a leaf to be equivalent to an individual. A leaf with no damage is not included in the analysis, and a leaf with two DTs counts as two DT occurrences. Multiple occurrences of the same damage type on the same leaf are not considered separately because it is especially likely that they were made by the same insect as part of the same feeding or oviposition event. Analytical rarefaction is used to subsample the number of DTs, and the standard error can be calculated using the methodology of Heck et al. (1975). The DTO metric answers the question, how many types of damage are in a flora or plant host independent of the frequency or density of damage? DTO provides information about the abundances of the damage types relative to each other, rather than to the foliar resource available. The main strength of the DTO metric is that, unlike DTL, it is independent of damage frequency. Therefore, it is potentially an important complement to DTL. Additionally, DTO curves can be computed within seconds, rather than the hours to days it takes to run the DTL resampling routines. Finally, DTO curves can distinguish between a site that has many leaves with the same damage type and a site that has very little damage overall, as illustrated in Figure 3.1 c. In the first case, there are many damage type occurrences and few types of damage, and so the resampling curve will quickly reach an asymptote. In the latter case, there are very few damage type occurrences, and only the very beginning of a resampling curve is visible. However, the DTO metric, too, has several weaknesses. First, DTO does not account for the amount of leaf tissue one looked at to find a given number of damage type occurrences. Therefore samples can be of very different sizes, and one might predict a higher number of DTs to be observed if more leaf

61 area is analyzed simply because a larger area is considered. Furthermore, if one sample has a considerably larger number of leaves than another, then more of the leaves (and their DTs) will come from outside the immediate area in which the quarry is located (Burnham et al. 1992). Second, insect damage events are not independent events; an insect may chose to feed (or oviposit) or not to feed (or oviposit) on a particular leaf because it is already damaged or is adjacent to a damaged leaf (Levin 1976). Discarding the information about which leaves are eaten turns a sample into one huge leafmat and therefore ignores important information about ecological associations between insects and leaves. Third, sample sizes become extremely small, particularly in the Paleocene when damage frequency is low. In bulk floral analyses, total damage was considered at 225 DT occurrences, specialized damage at 30 specialized DT occurrences, and mines at just five mine occurrences. Many plant species had to be eliminated from the analysis by plant species. Across all sites, there are 54 plant hosts with 20 leaves, and 48 plant hosts with 20 DT occurrences. Two plant hosts are lost in the Cool Period, one in Dead Platypus, and five in Lur’d Leaves, and two plant hosts are added in the PETM. When considering specialized damage, there are 50 plant hosts with at least 20 leaves and specialized damage, but only 16 with 20 specialized DT occurrences, none of which are in Lur’d Leaves or the Cool Period. Very few species have even five mine occurrences, and mine DTO could not be systematically analyzed.

Damage Composition Damage composition describes the occurrences and relative abundances of the DTs or functional feeding groups. Variations in composition through time tell about particular relationships between host plants and insect herbivores and illustrate changes in the importance of different damage types or functional feeding groups. Damage composition is quantitatively analyzed by using multivariate statistical techniques like cluster analysis or nonmetric multi-dimensional scaling (NMS) on a matrix of the proportion of leaves in a given sample that have each DT or functional feeding group. In general, analyzing the percent of leaves with each DT gives the same result as analyzing the percent of leaves with each functional feeding group. Reducing the dimensionality of the data from 71 DTs to 7 functional feeding groups increases the signal to noise ratio. Therefore, I display only the functional feeding group data here. The data were first arcsin square root transformed, as recommended by many statisticians because it spreads the ends of the scale for proportional data (Sokal and

62 Rohlf 1995). A dissimilarity matrix between all pairs of samples was then computed using the Bray-Curtis distance metric (Bray and Curtis 1957). Bray-Curtis is a city-block distance measure expressed as a proportion of the maximum distance possible, and is calculated as:

djk = (sum abs(xij – xik)/(sum (xij + xik)) where djk is the similarity between two samples j and k; xij is the percent abundance of the species i in sample j; and xik is the percent abundance of species i in sample k. Hierarchical, agglomerative cluster analyses were used in this study. This type of analysis acts on a matrix of dissimilarities between samples. The two samples, Sp and Sq, with the smallest dissimilarity are joined to produce a cluster. A new distance matrix is then computed, where Sp and Sq are eliminated and replaced by a union of the two. The two closest groups are merged, the distance matrix is recomputed, and this process continues until all the samples are grouped. Finally, a dendrogram is plotted. Ward’s linkage method, a space-conserving method based on minimizing the sum of squares of distance from each individual to the centroid of its group, was used. The agglomerative coefficient evaluates how well a dendrogram summarizes the data. It is a dimensionless number between 0 and 1 that describes the strength of the clustering structure obtained by the linking method. A low value means that little structure was found by the algorithm, whereas a value near 1 means that the data is highly structured. Cluster analyses force divisions on what is usually a gradient of data. Similarities between samples may be hidden by the step-wise cluster linkages and may be more evident when taxa are plotted on ordination axes. Therefore, ordination techniques like NMS should also be used to reduce the dimensionality of the data and describe the strongest patterns in species, or here DT, composition. Unlike many other ordination methods including PCA and DCA, NMS is not an eigen-analysis technique. Therefore, it makes no assumptions about the distributions of DTs (DCA and CA assume a unimodal response to a gradient) or relations among DTs (PCA assumes linear relationships among variables). In addition, NMS allows the use of any distance measure and has performed well on simulated data with gradients of unequal strength (Fasham 1977). NMS is an iterative search that uses rank distances between points to position samples on k dimensions (axes) in a manner that best preserves the ordination space by minimizing “stress,” the departure from monotonicity in the relationship between the distances in the original p-dimensional space and the k-dimensional ordination space.

63 Time Series Analysis Because every variable in the data set is a time series, there is likely a serial correlation, or non-random association of each value with the values immediately preceding and succeeding it in time. In order to test whether two time series are correlated with each other, rather than each one simply being correlated to time, first differences are used to remove any serial correlation. First differences are computed as follows:

dYt = Yt – Yt-1 and dXt = Xt – Xt-1 where t and t-1 are two consecutive stratigraphic levels, and X and Y represent two variables. Ideally, the data should be placed into bins of equal length (McKinney 1990). Because the census sites are separated by between 0.1 and 1.5 Myr, it is not possible to have equal time bins. Therefore, this is not a true first differences analysis. For all calculations, insect damage will be treated as the Y variable and external factors like temperature and floral diversity will be used as X variables. dXt and dYt can then be plotted against each other, and a regression line can be calculated. The slope of this regression line tells how Y changes as a function of X, and the coefficient of determination tells what proportion of the variation is explained by the regression.

Leaf Mass per Area Analyses Throughout the study interval, a great deal of floral turnover occurs; no single plant morphotype, or even family, can be traced all the way from Skeleton Coast to 15 Mile Creek. Are there significant structural differences between the leaves at these sites that are influencing insect herbivores? Are trends in insect herbivory through the late Paleocene and early Eocene simply due to changes in leaf mass per area, which correlates with leaf lifespan and toughness? Leaves are the fundamental photosynthetic unit of a plant, and the recent compilation and analysis of a global leaf trait dataset has shown that the coordinated trade-offs among key leaf traits form a single, continuous, leaf economics spectrum (Wright et al. 2004). One especially important leaf trait that can be estimated in fossils is leaf mass per area, or MA. Species with high MA generally have thicker, tougher leaves that are less palatable to insect herbivores (Coley and Barone 1996, Royer et al. 2007). They maximize nutrient retention by having a long leaf lifespan, low nutrient concentrations, and low photosynthetic and respiration rates. At the other end of the leaf economics spectrum are plants that rely on rapid resource acquisition and fast growth; their leaves have low MA, short leaf lifespan, high nutrient concentrations, and high rates

64 of photosynthesis and respiration. These leaves are more palatable to insect herbivores.

Mechanistically, leaves with a low MA have proportionally more photosynthetic mesophyll to maximize their photosynthetic rate (Wright and Westoby 2002). This tissue type is both rich in nitrogen and biomechanically relatively weak, which increases vulnerability to herbivory and physical hazards and results in a shorter leaf lifespan. There can be considerable variance in MA among plant species at a single site.

Fossil MA can be estimated using an extensive modern calibration set that demonstrates a robust scaling relationship between petiole width2 and leaf mass, normalized for leaf area (Royer et al. 2007). The theoretical explanation for this relationship is that a wider petiole has a greater cross-sectional area that scales to support a heavier leaf. Every fossil leaf that clearly showed the attachment of the petiole to the leaf (or petiolule to the leaflet) blade and had a reconstructable leaf area was used in the analysis. A total of 207 leaves, representing 63 species-site pairs, fit these criteria. Each fossil was digitally photographed and extracted from the matrix using Photoshop. Leaf area and petiole width were measured from the digital photographs using Image J (http://rsb.info.nih.gov/ij/ ). Leaf mass per area was calculated using the following formulas from Royer et al. (2007). 2 For individual plant species, log[MA] = 3.070 + 0.382 × log[PW /A]. 2 For entire sites, log[MA] = 3.214 + 0.429 × log[PW /A]. Where PW is petiole width and A is the area of the leaf(let) blade. For many analyses, only plant species with at least 2 measurable fossils and 20 leaves in the census were used, and this reduced the dataset to 177 leaves and 39 species-site pairs.

PLANT COMPOSITION AND DIVERSITY A complete list of the dicot leaf morphotypes found at each site and their abundances is given in Appendices B and C. Each morphotype is also described using the characteristics in the Manual of Leaf Architecture (Ellis et al. 2009) and photographed. Diversity, evenness, and relative abundance distributions for the Bighorn Basin floras are shown in Table 3.4 and Figures 3.2 and 3.3. Hubble Bubble has the highest diversity, followed by 15 Mile Creek and Cool Period. However, Cool Period may not be comparable to the other sites because it lumps together two sets of localities that are 8.5 miles apart and have slightly different lithologies, whereas the other sites represent either a single quarry or a single bed. Dead Platypus, Daiye Spa, Lur’d Leaves, and PN have intermediate species richness. However, the rarefaction curves for Lur’d Leaves and Daiye

65 Spa appear to be leveling, whereas those for Dead Platypus and PN are steadily increasing. Elk Creek and Skeleton Coast have extremely low floral diversities. The extremely low diversity and species composition of Skeleton Coast is typical of the Paleocene in the Western Interior, USA. The flora is dominated by Cercidiphyllum genetrix and also contains Browniea serrata, Davidia antiqua, and Platanus raynoldsi. All of these species are abundant in Paleocene floras from the Rocky Mountain basins. Although Lur’d Leaves is more diverse than Skeleton Coast, it also contains a typical suite of Paleocene species. Persites argutus strongly dominates the flora, and “Ampelopsis” acerifolia, Browniea serrata, “Celtis” peracuminata, Cercidiphyllum genetrix, Davidia antiqua, “Ficus” artocarpoides, Platanus raynoldsi, and Zizyphoides flabella are also important components of the flora. Dead Platypus has the highest diversity of the Paleocene localities and the second highest evenness, after Cool Period. The leaves from Dead Platypus come from a mudstone lens that extends laterally about 10 meters. The fossil layer is 1.2 meters thick, and floral composition changes from the top of the lens to its base. The basal 3 cm of fossil-bearing sediment is a very fine sandstone inter-laminated with mudstone. Fossils include Macginitiea gracilis and Platanus raynoldsi, and there is a mat of liverworts. At 3 cm, there is a mat of Davidia antiqua, and in the 10-15 cm above that, the dominant leaf species is Averrhoites affinis. From 18 to 23 cm, the lithology is laminated very fine sandstone, siltstone, and mudstone. Leaf preservation is best here, and Macginitiea gracilis, Platanus raynoldsi, Betulaceae sp. FU741, and Ginkgo are abundant. The next 17 cm are a blocky mudstone with an occasional half-centimeter very fine sandstone layer. In between the mudstone and the sandstone are Zizyphoides flabella and Cercidiphyllum genetrix. From 40 to 52 cm, Macginitiea gracilis, Platanus raynoldsi, Zizyphoides flabella, and Betulaceae sp. FU741 are preserved in a laminated siltstone with some slightly sandier layers. Seeds (including Deviacer wolfei), flowers, and bivalves are also found in this unit. There is an Averrhoites affinis mat at 42 cm. The next 40 cm grade from a laminated siltstone – very fine sandstone at the base to a blocky siltstone at the top. There are fewer leaves, and species include Zizyphoides flabella, Macginitiea gracilis, and Ginkgo. Several bivalve beds are distributed through the layer. The uppermost 30 cm of the lens fines from a siltstone to a blocky mudstone. There are fragmentary leaves, bivalves, and gastropods. Given the layered nature of Dead Platypus, it is possible that the fossils come from several flooding events or represent several generations of trees, and this is why the diversity and evenness at Dead Platypus is higher than at other sites.

66 The Daiye Spa flora is a mix of the typical Paleocene species as well as new species. Cercidiphyllum genetrix, Macginitiea gracilis, and Platanus raynoldsi are still abundant, whereas Browniea serrata, Davidia antiqua, Ternstroemites aureavallis, and Zizyphoides flabella form a much smaller component of the flora. Several of the rarer species at Dead Platypus, including Dicot sp. FU745 and Dicot sp. FU749, are found in much greater abundance. Fabaceae sp. FU750 is the earliest legume in the Bighorn Basin, and fossil SW9819-16 is morphologically identical to Populus wyomingiana, a species that had previously been recognized only in the PETM and the warming to the Eocene Thermal Maximum. The conifer Metasequoia occidentalis is also extremely abundant, and the fruits Macginicarpa glabra and Deviacer wolfei are present. The PETM Hubble Bubble flora is the most diverse flora in this study, with a rarefied diversity of 20 at 450 leaves. Although Hubble Bubble is moderately even, it also has a long tail of rare species. Hubble Bubble was morphotyped by S.L. Wing and E.C. Lovelock, who will soon publish a full description of the flora and its morphotypes. I briefly summarize their findings here. The most important components of the flora are legumes and thermophilic taxa, and there are no conifers (Smith et al. 2007). Many of the species found at Hubble Bubble have not been identified elsewhere; others have been found at PN or 15 Mile Creek or in the Gulf Coast Plain. The two most abundant morphotypes, WW001 (a lepto- to nano-phyllous legume or “LNL”) and Machaerium sp. are both legumes. The only other abundant species found elsewhere in the study is Populus wyomingiana. Elk Creek is an extremely low-diversity flora that is strongly dominated by Averrhoites affinis. The only other common dicot species is Alnus sp. Glyptostrobus europaeus, Zingiberopsis isonervosa, and Equisetum magna are all extremely abundant. Elk Creek was likely a swamp with a wet substrate that was at least seasonally flooded (Wing 1984). The diversity and evenness reported here for the Cool Period may be artificially high due to the lumping of floras. Therefore, I will discuss the composition of each quarry separately. The most abundant morphotypes in the USNM locality 37654 flora (LB site in Wing thesis) are “Ampelopsis” acerifolia and Dicot sp. WW037. Other moderately include taxa are Hamamelidaceae sp. WW031, Dicot sp. WW034, and Lauraceae sp. WW036. Dicot sp. WW034, Cercidiphyllum genetrix, Juglandaceae sp. FU740, and Betulaceae sp. WW030 are the most abundant morphotypes in the LB museum collections. Quarries USNM localities 42407-42410 are in the same carbonaceous shale horizon. USNM locality 42407 has less than 20 specimens, but six plant species, including Populus

67 wyomingiana, which was previously thought to disappear in the Bighorn Basin between the PETM and the warming to the Eocene Thermal Maximum. USNM localities 42408 and 42410 are almost exclusively Averrhoites affinis, and USNM locality 42409 is two-thirds “Dombeya” novi-mundi and one-third Averrhoites affinis. The majority of the taxa present in the Cool Period have teeth and small, well-developed areoles. The aquatic fern Salvinia preauriculata, as well as Glyptostrobus europaeus, Zingiberopsis isonervosa, and Equisetum magna are also abundant in the Cool Period. As indicated by its name, PN is strongly dominated by Macginitiea gracilis (formerly, Platanus nobilis), which makes up over 60% of the flora. The next two most abundant taxa are legumes, Fabaceae sp. WW040 and Machaerium sp. In total, there are six legume morphotypes at PN, four of which were found in the insect damage censuses; legume pods are also abundant. The only other species represented by more than five leaves are Platanus guillelmae and Populus wyomingiana. PN has a long tail of very rare species, which is the likely reason the rarefaction curve shows little leveling. Zingiberopsis isonervosa is abundant, and other non-dicots include Azolla sp., Potamogeton sp., Salvinia preauriculata, Spirodela magna, Thelypteris iddingsii, and a palm. After Hubble Bubble, 15 Mile Creek is the most diverse flora in the study. Evenness is also relatively high, although that may be partially because fossils were collected from multiple quarries in the same carbonaceous shale. Many of the plant taxa, particularly Platycarya castaneopsis and the fern Lygodium kaulfussi, are thermophilic and are characteristic of the warm early Eocene. The three most abundant species are Alnus sp., Platycarya castaneopsis, and “Dombeya” novi-mundi, and other common species include Populus wyomingiana, Dicot sp. WW052, and Lauraceae sp. WW061. Glyptostrobus europaeus is also present, and four ferns were found during census collection: Cnemidaria magna, Lygodium kaulfussi, Thelypteris iddingsii, and “Tatman fern.” Cluster analysis (Figure 3.4) and NMS (Figure 3.5) were used to quantitatively compare the nine sites by their dicot leaf composition. In the cluster analysis, the first split divides the Paleocene sites from the Eocene ones. Within the Paleocene, Dead Platypus and Daiye Spa form one group and Lur’d Leaves and Skeleton Coast another. Hubble Bubble and PN cluster, as do Elk Creek, Cool Period, and 15 Mile Creek. Elk Creek and Cool Period both have abundant Averrhoites affinis, and so they cluster, and 15 Mile Creek is joined to this cluster because it shares “Dombeya” novi-mundi and Populus wyomingiana with Cool Period. NMS provides a little more depth to this analysis. The

68 earlier Paleocene sites have the most negative scores on axis 1, and the warmest Eocene sites have the highest positive scores. As indicated by the cluster analysis, Elk Creek is quite similar to Cool Period, as is Dead Platypus to Daiye Spa. PN plots between Daiye Spa and Hubble Bubble because it shares Macginitiea gracilis with the Paleocene sites and Machaerium sp. and Populus wyomingiana with Hubble Bubble.

INSECT DAMAGE THROUGH TIME Damage Frequency The percent of leaves with damage, specialized damage, and mines is shown in Figure 3.6, and the percent of leaves at each site with each functional feeding group is shown in Figure 3.7. When considering total damage, the bulk floras split into two groups. The high damage group is made up of 15 Mile Creek, PN, and Hubble Bubble, and all have similar damage frequencies that exceed 50%. The remaining sites are between 30 and 42% damaged, except for Lur’d Leaves, where only 15% of leaves are damaged. The mean damage frequency on individual plant species at Hubble Bubble is 70%, followed by 61% and 51% at 15 Mile Creek and PN. The other sites’ means fall between 22% and 42%. Individual plant species at each site show a range of damage frequencies, which is expected because different plant species at a site invest differently in anti-herbivore defenses. The range in damage frequency is greatest at Hubble Bubble and 15 Mile Creek, which is consistent with the drier climate that has been suggested for the PETM and the ETM (Wing and Bown 1985, Kraus and Riggins 2007). The percent of leaves with specialized damage is significantly higher at Hubble Bubble than at any other site. Based, on Figure 3.7, this high specialized damage frequency is due to elevated surface feeding, galling, leaf mining, and piercing and sucking. Elk Creek has the next highest specialized damage frequency, due to the abundance of piercing and sucking DT46 as discussed in Chapter 2. 15 Mile Creek and Daiye Spa have intermediate specialized damage frequencies, and the remainder of the sites are relatively low, particularly Lur’d Leaves. Individual plant species at each site show a greater range of specialized damage frequencies than total damage frequencies. This is particularly apparent at 15 Mile Creek, which has both the plant species with the highest specialized damage frequency (Allophylus flexifolia) and species with low damage frequencies (Populus wyomingiana, Platycarya castaneopsis, “Dombeya” novi-mundi, and Dicot III) comparable to the early Paleocene sites. Hubble Bubble has the greatest number of species with abundant specialized damage. When the individual species values at a

69 single site are averaged to obtain a site mean, Hubble Bubble is the highest, 15 Mile Creek, Elk Creek, and Daiye Spa have intermediate values, and the remaining sites are relatively low. Thus, bulk floras and individual species show the same pattern. Leaf mining is most abundant at 15 Mile Creek and Cool Period, where 2.6% and 2.2% of the leaves are mined. At 15 Mile Creek, the mines occur on six species: Allophylus flexifolia, Alnus sp., Populus wyomingiana, “Dombeya” novi-mundi, Luehea newberryana, and Platycarya castaneopsis. Most of the mines are morphologically similar to those made by lepidopterans, and both Alnus sp. and Platycarya castaneopsis have mines characteristic of the Incurvariidae family (DT38). All of the mines at Cool Period are DT164 (a wide, sinusoidal mine packed with frass; see Appendix C for a full description) on ”Dombeya” novi-mundi, and this may represent an outbreak over a limited spatial area, perhaps a single tree. Leaf mining frequency is next highest at Hubble Bubble, where three common plant species have over 4.5% of leaves mined and another have >1% leaf mining damage. Blotch mines and lepidopteran serpentine mines are found in approximately equal abundances at Hubble Bubble. Dead Platypus, Daiye Spa, and Elk Creek all have intermediate abundance of mines. At Elk Creek, there are three mine types on Averrhoites affinis, whereas the other two sites each have mines on three common plant species (Macginitiea gracilis, Platanus raynoldsi, and Fabaceae sp. FU750 at Daiye Spa; Averrhoites affinis, Zizyphoides flabella, and Betulaceae sp. FU741 at Dead Platypus). Skeleton Coast, Lur’d Leaves, and PN all have extremely low leaf mining frequencies, and all are found on a single plant host: Cercidiphyllum genetrix at Skeleton Coast, Browniea serrata at Lur’d Leaves, and Macginitiea gracilis at PN. Figure 3.8 shows the percent of leaves at each site that has a given number of DTs. At all nine sites, most of the damaged leaves have only one DT. Hubble Bubble has a long tail of leaves with high damage diversities, and one leaf (Dicot sp. WW005) has 10 DTs. No other site has more than 6 DTs on a single leaf.

DTL Figure 3.9 shows the number of damage types on the bulk floras resampled to 450 leaves, and individual species resampled to 20 leaves. On the bulk floras, total, specialized, and mine DTL curves mirror the mean annual temperature curve. 15 Mile Creek, which was deposited during the sustained early Eocene Thermal Maximum has the highest DTL, followed closely by the PETM Hubble Bubble site. PN and Daiye Spa are the next highest in both temperature and total and specialized DTL, followed by Elk Creek and

70 Dead Platypus. Cool Period, Lur’d Leaves, and Skeleton Coast have the lowest total and specialized DTL and the coldest mean annual temperatures. The mine DTL pattern is nearly the same as the total and specialized pattern, except that PN is more similar to the earlier Paleocene sites than it is to the later Paleocene or other early Eocene sites. The general pattern for the individual species data matches the bulk floral pattern. All of the species in the two earlier Paleocene sites have low total and specialized DTL, and only Browniea serrata at Lur’d Leaves has a moderately high mine DTL. Total, specialized, and mine DTL on individual species gradually increase in through the late Paleocene and reach a peak in the PETM. Following the PETM, total and specialized DTL on individual species decrease through Cool Period. Mine DTL at Elk Creek is low, but sharply increases at Cool Period due to the abundance of mine DT164 on “Dombeya” novi-mundi. The DTL metrics then progressively increase to high values at 15 Mile Creek. Total, specialized, and mine DTL are lower, although the difference is not significant, at 15 Mile Creek than at Hubble Bubble.

DTO Total, specialized, and mine DTO on the bulk floras through the study interval all show different patterns (Figure 3.10), which are also different from the patterns in DTL. Total DTO is highest at 15 Mile Creek, Hubble Bubble, and Daiye Spa, and there are no significant differences between these floras. Lur’d Leaves is the next highest, followed by PN, Dead Platypus, Elk Creek, and Cool Period. Skeleton Coast has a significantly lower total DTO than any other site, and it is the only site that stands out as having a significantly different total DTO from the other sites. Specialized DTO is greatest at PN and 15 Mile Creek; Lur’d Leaves, Dead Platypus, Hubble Bubble, Daiye Spa, and Cool Period have intermediate values; and Elk Creek and Skeleton Coast have the lowest specialized DTOs. Mine DTO is relatively high at Hubble Bubble, 15 Mile Creek, and Daiye Spa, and Elk Creek, intermediate at Dead Platypus, and low at Cool Period. Because fewer than five mines were found at Skeleton Coast, Lur’d Leaves, and PN, these sites could not be included in the analysis. For total DTO, Daiye Spa, Hubble Bubble, and 15 Mile Creek have many species with high DTO at 20 DT occurrences. Therefore, they have the highest individual species mean total DTO. Dead Platypus, Lur’d Leaves, Cool Period, and PN all have intermediate values, and PN and Skeleton Coast are the lowest. However, Fabaceae sp. WW040 has a very low total DTO, and this pulls down the mean total DTO at PN. Only sixteen plant

71 hosts had at least 20 specialized DT occurrences, and none are from Cool Period or Lur’d Leaves. The small number of plant hosts makes it impossible to find meaningful differences between the sites. For example, PN has only one species, Macginitiea gracilis, with at least 20 specialized DT occurrences, and its DTO is 10.8. Hubble Bubble, on the other hand, has five species (Fabaceae sp. WW001, Machaerium sp., Dicot sp. WW004, Dicot sp. WW005, and Dicot sp. WW006) with over 20 specialized DT occurrences, and their DTOs range from 5.9 to 10.1. Skeleton Coast and Elk Creek appear to have low specialized DTOs relative to the other sites, yet Skeleton Coast is represented by a single host, Cercidiphyllum genetrix, and Elk Creek by just two hosts, Averrhoites affinis and Alnus sp. Because only three plant hosts (Alnus sp. at 15 Mile Creek, “Dombeya” novi- mundi at Cool Period, and Averrhoites affinis at Elk Creek) have at least five mine occurrences, the data do not yet exist to study changes in mine DTO.

Damage on Individual Host Families There is a significant floral turnover in the Bighorn Basin throughout the late Paleocene and early Eocene. Therefore, the changes in insect damage through the studied interval might simply be caused by changes in plant composition. For example, an influx of plants that are poorly defended against insect herbivores can cause an increase in damage. Tracing insect damage on single plant species or lineages will show if this is the case. Furthermore, it provides insight into the co-evolution of plants and insect herbivores. Although no plant species, or even plant family, is found at all nine stratigraphic levels in the study, Platanaceae and Cercidiphyllaceae are found in at least four stratigraphic levels. Damage frequency, DTL, and DTO are plotted for these two families in Figure 3.11. Cercidiphyllaceae is represented by a single species, Cercidiphyllum genetrix, that is found at all four Paleocene sites. Overall, the same general pattern is observed on Cercidiphyllum as on the bulk floras and individual species’ means. There is a decrease in total damage frequency at Lur’d Leaves, and Dead Platypus and Daiye Spa have slightly higher total damage frequency than Skeleton Coast. Cercidiphyllum genetrix at Daiye Spa shows the same significant increase in specialized damage frequency observed on the bulk flora. Skeleton Coast and Lur’d Leaves have low DTL, and then there is a steady increase through Dead Platypus and Daiye Spa. DTO shows a gradual increase from Skeleton Coast to Daiye Spa, excluding Lur’d Leaves because of its small sample size.

72 Platanaceae is represented by Platanus raynoldsi, which is found at all four Paleocene sites, and Macginitiea gracilis, which is found at Dead Platypus, Daiye Spa, and PN. Like Cercidiphyllum genetrix, Platanaceae generally displays the patterns in damage through time described on the bulk floras and individual species’ means. There is significantly higher total damage frequency at PN and specialized damage frequency at Daiye Spa (considering Platanus raynoldsi in isolation from Macginitiea gracilis). However, total damage frequency remains low at Dead Platypus and Daiye Spa. Total Platanaceae DTL for the Paleocene and specialized DTL show the general pattern observed elsewhere, but the significant increase in total DTL at PN is not observed on the bulk floras or individual species’ means. No clear pattern is discernable in Platanaceae DTO.

Damage Composition Rank abundance diagrams for the bulk floras are given in Figures 3.12, which gives ranked abundance in terms of the percent of leaves, and 3.13, which gives ranked abundance in terms of the percent of DT occurrences. The two sets of graphs look very similar except for different relative scaling on the y-axis because in the percent abundance calculations, the numerators stay the same and only the denominators change. The spread of y-values is greater when DT occurrences are considered because undamaged leaves are not factored into the analysis. The pattern in rank abundance distributions among sites is similar, regardless of which abundance percentage is considered. An NMS ordination was performed on a matrix of the percent of leaves at each site with each of the seven functional feeding groups, and the results are shown in Figure 3.14. Scores for the functional feeding groups are plotted on the same axes as the sites. Figure 3.7, which shows histograms of the data that went into the NMS analysis, also aids in interpreting these results. The Tiffanian sites Lur’d Leaves and Skeleton Coast plot far to the right on Axis 1 due to their scarcity of damage in general and specialized damage like surface feeding, leaf mining, galling, and piercing and sucking in particular. Hubble Bubble plots to the far left on Axis 1 because it has abundant specialized feeding damage and very little skeletonization. Surface feeding is especially abundant at Hubble Bubble, which is clearly indicated in the NMS plot. Hubble Bubble has the highest frequency of four of the seven functional feeding groups. Only Elk Creek has more piercing and sucking, and 15 Mile Creek and Cool Period have more leaf mining. 15 Mile Creek is closest to Hubble Bubble and has the second lowest Axis 1 score. The most important differences between 15 Mile Creek and Hubble Bubble are that 15 Mile Creek has more skeletonization and

73 less surface feeding and piercing and sucking. PN, Cool Period, Elk Creek, Daiye Spa, and Dead Platypus all have similar Axis 1 scores, but vary along Axis 2. The abundance of piercing and sucking at Elk Creek pulls it towards the top of Axis 2, whereas the abundance of skeletonization at PN gives it a lower Axis 2 score. The remaining sites have intermediate relative abundances of all the functional feeding groups and therefore plot at the center of the NMS ordination. Cluster analysis was used to look at changes in damage composition and distribution on individual plant species through time, and the results are shown in Figure 3.15. All species-site pairs with at least 20 leaves were used in the analysis. The abundance of the more specialized functional feeding groups drives the clustering, and I have arranged the clusters so that specialized damage increases from the bottom to the top of the figure. The first break in species-site pairs separates the majority of the Tiffanian species (Cluster 1) from everything else (Cluster 2). As shown previously in the frequency and DTL data, the Tiffanian species have less damage overall and very little specialized damage. The non-Tiffanian species-site pairs that fall in Cluster 1 are Daiye Spa and Dead Platypus Platanus raynoldsi, Elk Creek Alnus sp., Dead Platypus Macginitiea gracilis, and Cool Period Dicot sp. WW034, all of which have abundant hole feeding, margin feeding, and skeletonization, but little of anything else. Lur’d Leaves Browniea serrata is placed in Cluster 2 because it has occurrences of galling, leaf mining, and piercing and sucking. Cluster 2 is divided into two major clusters, which I have labeled 3 and 4. Cluster 4 contains all of the PETM taxa, half of the 15 Mile Creek taxa, Betulaceae sp. FU744 and Dead Platypus Averrhoites affinis. With a few exceptions, these species have all seven functional feeding groups and highly abundant specialized damage. It is peculiar that 15 Mile Creek Populus wyomingiana is not in this cluster since all seven functional feeding groups are extremely abundant, but that may simply be because cluster analyses force divisions on a gradient of data. The three other 15 Mile Creek species not in Cluster 4 are Dicot III, Platycarya castaneopsis, and “Dombeya” novi-mundi, which are most likely tougher and better-defended leaves than the other 15 Mile Creek species, as discussed in Chapter 2. In summary, the plant hosts in Cluster 4 are either PETM species or the most poorly defended species from warm time intervals. The majority of plant hosts in Cluster 3 come from Dead Platypus, Daiye Spa, Cool Period, and PN. The number of functional feeding groups present and their relative abundances are intermediate between Clusters 1 and 4. A split occurs in Cluster 3 between species-site pairs that have little skeletonization and no surface feeding (Cluster

74 3A) and those with relatively abundant skeletonization and surface feeding (Cluster 3B). The lower-order clusters either continue to show the pattern of increasing prevalence of specialized damage or are not highly resolved. The same data used in the cluster analysis were ordinated using NMS (Figure D). As expected, the species-site pairs form a gradient, with most of the Hubble Bubble and 15 Mile Creek species to the left of the plot and the Skeleton Coast and Lur’d Leaves species to the right of the plot. The individual species NMS is very similar to the site NMS, indicating that the pattern on the bulk flora is driven by what is occurring on every individual species. Thus, the PETM represents not just an influx of a few plant species with abundant and specialized damage; every plant species has abundant and specialized damage. Similarly, except for Lur’d Leaves Browniea, all of the species at Lur’d Leaves and Skeleton Coast have little damage. The species at PN, Cool Period, Elk Creek, Daiye Spa, and Dead Platypus have intermediate damage.

CHANGES IN MA FROM SKELETON COAST TO 15 MILE CREEK Leaf mass per area for all species-site pairs with at least twenty leaves in the census and two measurable fossils are listed in Table 3.5. Site means are also listed.

Plant species that are found at multiple sites generally have very similar MA, although there is a large but non-significant difference between Cercidiphyllum genetrix at Skeleton 2 Coast and Daiye Spa. The only species with MA greater than 100 g/m are legumes (Fabaceae sp. FU740, WW001, WW002), Platycarya castaneopsis, and Averrhoites affinis. There are no site-level differences in MA (an ANOVA of MA by sites yielded an F value of .45 and P = 0.86, 8 degrees of freedom) and nearly all plant species have low estimated MA that would be consistent with high palatability. At the site level, there is no correlation between MA and damage frequency, DTL, or DTO. Thus, the majority of the plant species at all sites have leaves with low MA that should be palatable to herbivores.

Figure 3.17 shows MA versus damage frequency, DTL at 20 leaves, and DTO at 20

DT occurrences for individual species at each site. There are no clear patterns in the MA vs. DTO plot. With the exception of Fabaceae sp. WW040 at PN, there is little variation in DTO. Fabaceae sp. WW040 likely has a low DTO because its relative abundance distribution is extremely uneven; approximately 65% of the DT occurrences are DT12

(general margin feeding). In the MA vs. frequency and MA vs. DTL plots, the Hubble

Bubble and 15 Mile Creek species have similar MA to the other species, but generally higher damage frequency and DTL.

75 Considering all species from all sites, there appears to be greater variability in damage frequency and DTL at lower MA, which may be due to the presence or absence of chemical defenses in the leaves. However, there are fewer species with high MA, which may also cause the seeming decrease in damage variability. There is not a significant decrease in damage at higher MA (Table 3.6), as demonstrated in Royer et al. (2007). There are several potential explanations for this. First, there are very few species with high

MA, and so this dataset may not capture enough of the MA spectrum to observe a decrease in damage at high MA. Second, several of the species with high MA make up over 50% of their respective floras (Elk Creek and Cool Period Averrhoites affinis). Therefore, these species should be more apparent to insect herbivores and may, in fact, be the only abundant dicot species for insects to consume. Third, three of the species with high estimated MA are legumes (Fabaceae sp. WW001, Fabaceae sp. WW040, and Fabaceae sp. FU750). Legumes have pulvinulate petiolules, which may artificially inflate the estimated MA. Additionally, because legumes can fix nitrogen, they may be more palatable to herbivores. Finally, two species with high MA (15 Mile Creek Platycarya castaneopsis and Hubble Bubble Fabaceae sp. WW001) come from extremely warm time periods, and the correlation between temperature and insect damage may mask a trend between MA and damage. If one considers the floras individually, there appears to be a general decrease in herbivory at higher MA at 15 Mile Creek, Hubble Bubble, Lur’d Leaves, and Skeleton Coast.

THE EFFECTS OF FLORAL DIVERSITY ON INSECT DAMAGE Most insect damage is highly specific, with an insect group targeting a single plant host (Bernays and Chapman 1994, Termonia et al. 2001, Farrell and Sequeira 2004). Therefore, one might expect more types of damage, particularly mines and specialized damage, on a more diverse bulk flora (Price 1991, Price 2002). Figure 3.18 shows dicot leaf diversity rarefied to 450 leaves versus DTL, DTO, and damage frequency. In all cases, there is a positive relationship between plant diversity and insect damage. However, the R2 values are generally low, and only floral diversity vs. mine frequency has a P-value less than .05 (Table 3.7). When first differences are used to remove autocorrelation, the positive correlation between mine frequency and floral diversity remains significant, while the P-values of relationships that were almost significant (total and specialized DTO) at least triple.

76 There are several reasons why a significant, positive correlation between insect damage and floral diversity is not observed. First, nine floras may be too few to see a significant correlation. Second, the floras are spread over an interval of roughly six million years. If plants and insects have different rates of evolution and co-evolution, this may hide a relationship between floral and insect damage diversity. Third, these floras are composed of different plant species. Although MA is not significantly different among sites, the proportion of species that use chemical defenses may be different. Fourth, many of these sites have a long tail of rare plant species that increase overall plant diversity. Most of these species are represented by just one or two leaves, and it is extremely unlikely that all the insect damage on the given host will be observed on so few leaves. Fifth, the strong influence of temperature on insect damage may mask the influence of floral diversity. For example, DTL has the strongest correlation with temperature. On the plots of DTL vs. floral diversity, the points that fall above the regression lines (Elk Creek, PN, Daiye Spa, 15 Mile Creek, and Hubble Bubble) are warm sites, whereas the points that fall well below the regression lines (Skeleton Coast, Lur’d Leaves, and Cool Period) are significantly cooler. Finally, there may be no correlation in these floras between plant diversity and insect damage diversity. Floras that have low plant diversity are generally dominated by a single plant species (e.g. Averrhoites affinis at Elk Creek). If a single plant dominates the landscape, it is quite apparent to insects, and many insect species may evolve the ability to eat it. This, then, would balance out the lower number of plants available for specialist herbivore consumption. However, for these nine sites, there is no correlation between floral evenness and insect damage. To further examine the effect of floral diversity and composition on insect damage, I considered the relationship between an individual plant species’ relative abundance in the flora and its percent damage, DTL, and DTO. Insect feeding reduces plant fitness, and therefore one might expect plant species that are abundant at a given site to have relatively low insect damage compared with the less common species. Alternatively, a plant species that is more abundant is more apparent to insect herbivores, and more insect species may adapt to eat that plant, as discussed above. Finally, if a landscape is being newly colonized by plants, plant species that grow quickly and invest little in anti- herbivore defenses might dominate the landscape, in which case the most abundant plant species could have a lot of damage. If all the floras are lumped together, there is no significant correlation between host relative abundance and insect damage (Table 3.8). If only a single flora is considered,

77 though, a pattern begins to emerge (Figures 3.19, 3.20, 3.21). However, floras containing a greater number of plant species with at least 20 leaves or DT occurrences are required to determine whether these patterns are significant. In particular, there are not enough data to determine whether there is a relationship between DTO and relative abundance (Figure 3.21). As illustrated in Figure 3.19 and 3.20, 15 Mile Creek, Hubble Bubble, Daiye Spa, and Lur’d Leaves show a decrease in percent damage and DTL as a host plant’s relative abundance in the flora increases. The most abundant plant at 15 Mile Creek is Alnus sp., which may have more damage than expected because it fixes nitrogen and has relatively low MA. Therefore, it is likely more palatable to herbivores than other plants at the site. PN, Elk Creek, and Skeleton Coast do not have enough plant species to see a pattern, and Cool Period is not, strictly speaking, a single flora. Dead Platypus, however, shows no relationship between a plant host’s relative abundance in the flora and frequency of damage or DTL. In general, though, the most abundant plant species at a site are the ones best able to protect themselves from herbivore damage.

THE EFFECTS OF TEMPERATURE ON INSECT HERBIVORY The relationship between mean annual temperature and insect herbivory is evident in figures 3.6 and 3.9, where damage frequency and DTL are plotted next to the MAT estimates for the Bighorn Basin. There is not so clear a relationship between temperature and DTO (Figure 3.10). In general, damage increases as temperature increases through the late Paleocene, peaks in the PETM, decreases during the early Eocene cooling, and then increases again during the warming to the Eocene Thermal Maximum. To test this relationship, I first plotted MAT versus total, specialized, and mine frequency, DTL, and DTO. Then, I used linear regression to search for significant correlations and used first differences to detrend the data. The results are shown in Figures 3.22, 3.23, and 3.24 and tables 3.9, 3.10, and 3.11. There is a significant positive correlation between MAT and total and specialized damage frequency. However, when serial autocorrelation is removed, only the relationship with specialized damage frequency remains significant. An even stronger correlation exists between MAT and DTL. Total, specialized, and mines all have R2 values over 0.75, and these values remain high and significant when the data are detrended using first differences. There is a weak, marginally significant correlation between MAT and total DTO, and no correlation between MAT and specialized DTO.

78 There are two reasons why temperature has such a strong effect on insect herbivory. First, modern insect herbivory and herbivore diversity are generally thought to be greatest overall in the tropics (Moran and Southwood 1982, Stork 1987, Coley and Aide 1991, Price 1991). As MAT increases in the temperate zone, insect species from lower latitudes can migrate northwards. Based on evidence from the Pliocene-Pleistocene fossil record, the geographic ranges of insects can shift very rapidly in response to climate change (Coope 1995). The hypothesis of specialized, thermophilic herbivores migrating to the Bighorn Basin is further supported by the composition analyses (Figures 3.15, 3.16), which show an increase in the frequency and diversity of specialized herbivore damage on all plant species during the warmer intervals. Second, temperature affects insect abundance more directly than any other climatic variable. In addition to its influence on insect geographic range, temperature can also influence life-cycle duration, the number of generations per year, and population density (Bale et al. 2002). As temperature increases, one might predict a greater number of insects per unit area and unit time. This, then, would cause an increase in damage frequency and DTL, but little to no change in DTO, since it is purely independent of the prevalence and density of insect damage. Figures 3.22, 3.23, and 3.24 show that this is, in fact, the case. DTL likely has the strongest correlation with temperature because it directly responds to both insect diversity and abundance. A migration of thermophilic herbivores will increase the number of DTs that can be observed in the flora, and an increase in insect abundance and population density will increase the frequency of insect attack. These two factors will act in tandem to increase DTL. Damage frequency depends most strongly on insect abundance and not on how many species of insects can feed. Therefore, it does not have a straightforward response to insect migrations and will have a weaker correlation with temperature than DTL. By being independent of damage frequency, DTO is not affected by insect abundance, provided that insect species’ populations are equally affected by temperature change. Because DTO is affected by evenness, if one damage type has a proportionally larger increase, then DTO will decrease. DTO should be affected by insect migrations because a new insect species will have new ways to eat plants. If these arguments about DTO are true, then there is evidence for a major migration (or in situ evolutionary radiation) of insect herbivores in the late Tiffanian, between Skeleton Coast and Lur’d Leaves. However, DTO then decreases again at Dead Platypus. There is not definitive

79 evidence for a transient warming in the late Tiffanian, which could have caused a temporary migration event like that observed in the PETM. Furthermore, no floral immigration events have been observed during this interval. If Lur’d Leaves instead represents an evolutionary radiation, where did all the insects go between the time of deposition of Lur’d Leaves and Dead Platypus? Because damage frequency increases over this interval, it is unlikely that DTO decreased between Lur’d Leaves and Dead Platypus because plant species evolved better antiherbivore defenses. Instead, DTO may be artificially high at Lur’d Leaves because of the extremely low number of damage occurrences compared with the other floras. If damage frequency is extremely low, rare DTs will have a greater weight in the analysis. Rare DTs may be caused by insect herbivores that do not generally feed on a given plant host, and therefore, the representation of damage given by DTO at a site like Lur’d Leaves may be skewed towards high DTO.

COMPARING DAMAGE FREQUENCY, DTL, AND DTO As expected, there is a strong, positive correlation between damage frequency and DTL (Figure 3.25 a, Table 3.12), which is observed for total, specialized, and mine damage. However, when serial autocorrelation is removed using first differences, only the relationship between specialized damage frequency and DTL remains significant. There is no correlation between frequency and DTO (Figure 3.25 b), but a weak positive correlation exists between the number of leaves in the census and total DTO (Figure 3.25 c). The nine sites show significant variation in frequency and DTL, but there is not as much variation in DTO. Furthermore, frequency and DTL can be related to MA, floral diversity, host-plant relative abundance, and temperature. Very few external variables can be correlated with DTO. This may be due to the low sample size (225 total DTO, 30 specialized, 5 mines). At Lur’d Leaves, though, that sample size represents over 1300 leaves. Dead Platypus, in comparison, has over twice as many DT occurrences on only 1016 leaves. A more extreme case is the Paleocene Castle Rock flora from the Denver Basin, which will be discussed in detail in the following sections. At Castle Rock, there are just 206 DT occurrences and two mines on 2309 leaves. It would be necessary to look at over ten thousand leaves to get a high number of DT occurrences, and this is not practical and rarely feasible. Alternatively, DTO may be a variable that does not change significantly among floras. The proportion of leaves damaged and the number of damage types per

80 unit of foliar tissue may better describe how insect herbivores utilize the available food resource.

MOVING BEYOND THE BIGHORN BASIN: A BRIEF LOOK AT INSECT DAMAGE IN THE WESTERN INTERIOR DURING THE EARLY PALEOGENE Insect damage censuses have been conducted in other Western Interior Rocky Mountain Basins (Wilf and Labandeira 1999, Wilf et al. 2001, 2006, Labandeira et al. 2002b, Wilf 2008), and these data can be used to extend the study interval back to the latest Cretaceous. Additionally, they increase the geographic range by extending from the Williston and Powder River Basins in the north to the Denver Basin in the south. The thirteen additional floras are described in Table 3.13, which is modified from Wilf et al. (2006) and Wilf (2008). The four latest Cretaceous floras are from the Williston Basin, as is the post-extinction Pyramid Butte site. The early Paleocene Mexican Hat and Castle Rock floras contrast strikingly; Mexican Hat has low plant diversity but many types of damage (particularly mines), whereas Castle Rock is an extremely diverse flora with very little insect damage (Wilf et al. 2006). The remaining floras come from southern Wyoming, and the Sourdough and Clarkforkian floras occur during the interval covered by the Bighorn Basin sites. Sourdough is closest in age to PN, and Clarkforkian to Dead Platypus. This dataset includes 21,875 leaves.

Bulk Floras Figure 3.26 summarizes the floral diversity and insect damage on the Western Interior census sites. With the exception of Castle Rock, the Paleocene and Eocene sites have low plant diversity relative to the Cretaceous. The Sourdough flora has a higher plant diversity than the Eocene Bighorn Basin floras, as expected due to its lower latitude and high MAT. DTL (Figure 3.26 b) shows a marked decrease at the K-T Boundary, a transient increase at Mexican Hat, and the lowest level of all at Castle Rock. DTL remains low through most of the Paleocene and does not reach pre-extinction values until the latest Paleocene (Daiye Spa) and PETM. Then there is a decrease in DTL in the post-PETM Eocene cool period, before a final rise to latest Cretaceous values at 15 Mile Creek. The two southern Wyoming sites have lower DTL than their correlative Bighorn Basin sites, which is contrary to predictions, given their higher temperatures and floral diversities. This may be due, in part, to the lower damage frequencies (Figure 3.26 c) on the southern

81 Wyoming sites and the correlation between damage frequency and DTL. In contrast, DTO, which is independent of damage frequency (Figure 3.27), has approximately the same values for the southern Wyoming and Bighorn Basin floras (Figure 3.26 d). Considering damage frequency, the majority of the sites fall between 20 and 40 percent of leaves damaged. The exceptions are Lur’d Leaves and Castle Rock, which are extremely low, and Hubble Bubble, PN, and 15 Mile Creek, which are high. Frequency does not drop below Cretaceous levels across the K-T boundary. Mine frequency varies throughout the study interval (Figure 3.26 f). The latest Cretaceous Battleship site is significantly higher than any other site. Mexican Hat, Hubble Bubble, Cool Period, and 15 Mile Creek also have high levels. Mine DTL (Figure 3.26 e) is relatively high in the Cretaceous and at Mexican Hat, then remains low for much of the Paleocene until it sharply increases in the Clarkforkian, concurrent with warming. 15 Mile Creek, Battleship, and Hubble Bubble have the highest mine DTL. Additionally, mine DTL shows the predicted higher values for the southern Wyoming sites than the Bighorn Basin sites. Overall, the variability in DTO among sites is low. The K-T extinction appears much less severe than when DTL is considered, and all of the Paleocene-Eocene floras except Pyramid Butte, Skeleton Coast, Persites Paradise, and Haz-Mat fall within the range of the Cretaceous sites. Hubble Bubble and 15 Mile Creek do not stand out as being particularly high, as they do in the DTL analysis. Most interesting, though, is that Mexican Hat and Castle Rock have essentially the same DTO. If DTO is a true representation of insect damage diversity, then diversity is as high at Castle Rock as it is at Mexican Hat. Castle Rock has approximately ten times as many host plants as Mexican Hat, and the Castle Rock leaves are collected from multiple quarries along a single bed, whereas Mexican Hat is a single quarry. Therefore, there is every reason to expect a higher diversity of insect feeding damage at Castle Rock, and there is no reason why Mexican Hat would preserve this diversity in the fossil record while Castle Rock would not. However, as described in Wilf et al. (2006), there are six mine types and 57 mine occurrences at Mexican Hat, and Platanus raynoldsi alone has mines made by three of the world’s four orders of leaf mining insects (only beetles are missing). Castle Rock, in contrast, has just 2 mines. Given all this evidence, it is not realistic to say that insect damage diversity at Castle Rock is the same as Mexican Hat, despite the equal DTOs. Perhaps the problem is that 175 DTOs at Castle Rock is simply too small of a sample size. Mexican Hat has close to 1200 DT occurrences on 2219 leaves. In order to get a comparable number of DT occurrences at Castle Rock, it would be necessary to look at nearly six times as many leaves. To get a comparable

82 number of mines, the Castle Rock sample size would need to be nearly 30 times as large as the Mexican Hat sample. This is a great difference in the amount of food resource considered, and it would become highly debatable whether the two samples are comparable.

Individual Species Figure 3.27 shows damage frequency, DTL, and DTO on individual species of the 21 Western Interior floras, and these data are summarized in Table 3.14. The Cretaceous species have a wide range of damage and mine frequencies, including frequencies above 60%. Most of the Paleocene species are below 40%, and notable exceptions include Corylites (Betulaceae) at Persites Paradise, Betulaceae sp. FU744 at Daiye Spa, and Dicot sp. FU749 at Daiye Spa. The PETM species are distinct from the other Paleocene- Eocene sites, and reach the same high damage frequencies as the end-Cretaceous floras. A similar pattern is visible in mine frequency (Figure 3.28 b). Cool Period “Dombeya” novi- mundi has the second highest damage frequency of all sites. The variations in DTLs on individual species (Figure 3.28 c,d) are comparable to those seen on the bulk floras. There is a large decrease across the K-T boundary, and DTL remains low throughout the Paleocene. The species at Castle Rock, in particular, are extremely low. DTL increases in the latest Paleocene, and PETM species have the highest DTL values of all. Then DTL decreases in the early Eocene before increasing again at 15 Mile Creek, where DTLs on individual plant species are comparable to high-DTL Cretaceous species. There is a wide range of mine DTLs in the Cretaceous. Mexican Hat has five plant hosts with mines, a number not reached again until the PETM. With regards to leaf mining, Mexican Hat is most comparable to the late Cretaceous, PETM, or ETM. At present, DTO on individual species has only been calculated for the Bighorn Basin and concurrent southern Wyoming sites. The southern Wyoming sites have similar DTO to their Bighorn Basin counterparts. The Bighorn Basin patterns in these data were discussed earlier, and the addition of the southern Wyoming Sourdough and Clarkforkian floras do not change these patterns.

Tracing Insect Damage on Plant Lineages Five plant lineages occur in at least seven of the stratigraphic levels considered in this study (Table 3.14: the Betulaceae, Cercidiphyllaceae, Laurales, Platanaceae, and Trochodendrales). Damage metrics on these lineages are plotted in Figure 3.29. I will

83 discuss only the most interesting patterns here. The Cercidiphyllaceae, Platanaceae, and Laurales occur in the most time intervals, and they generally display the same trends as the bulk floras: heavy damage in the Cretaceous, low damage in the early Paleocene (except for Mexican Hat), and then a final recovery to pre-extinction values in the latest Paleocene (Cercidiphyllaceae and Platanaceae) or early Eocene (Laurales), when temperature warms. The major difference between the bulk floras and single plant lineages is in mine DTL. For Cercidiphyllaceae, mine DTL steadily decreases through the interval. In the census data, there are no mines found on Laurales post K-T extinction. The Betulaceae and Trochodendrales do not display clear temporal patterns. Betulaceae sp. FU744 (Daiye Spa) stands out for its high DTL and DTO, and Alnus sp. at 15 Mile Creek for its high mine DTL.

Floral Diversity, Temperature, and Insect Damage In the Bighorn Basin, there is little correlation between dicot leaf diversity and insect damage. When the additional Western Interior sites are added, there is still no correlation between dicot leaf diversity and damage frequency. If Castle Rock is treated as an outlier and removed from the analysis, there are weak but positive correlations between dicot leaf diversity and total DTL, mine DTL, and DTO (Figure 3.30 a-c). These correlations, though, are strongly influenced the presence of a single high-diversity Cretaceous site, Dean Street. If this site is removed, R2 drops to 0.02 for total DTL, 0.003 for mine DTL, and 0.11 for DTO. Thus, there is still little to no significant correlation between floral diversity and insect damage. The entire Western Interior insect damage dataset can be used to test whether the correlation between temperature and herbivory extends beyond the Bighorn Basin and is true at a larger geographic and temporal scale. Figure 3.30 d-f shows MAT vs. damage frequency, total and mine DTL, and DTO for all sites, excluding Mexican Hat and Castle Rock. Both of these sites are outliers in total and mine DTL, and there is not a good MAT estimate for Mexican Hat. There are significant positive correlations between MAT and total DTL, mine DTL, and DTO; however, none have very high R2 values. There are several reasons why the correlation is considerably weaker when the entire Western Interior is considered. First, the study interval approximately doubles in length, expanding from 6.15 Myr to 13.78 Myr. It now encompasses the major extinction at the K-T boundary and the “dead zone” in the early Paleocene. Considering DTL, the points that are most above the regression lines are three of the four latest Cretaceous sites, Hubble Bubble,

84 and 15 Mile Creek. The points that fall most below the regression line are Pyramid Butte (just post-extinction) and the early late Paleocene sites (Skeleton Coast, Lur’d Leaves, Persites Paradise, Kevin’s Jerky, and Haz-Mat). Second, the geographic range increases, extending from southwestern North Dakota to southern Wyoming. Each basin may have different rates of plant and insect speciation and plant-insect coevolution, which would hide the correlation between temperature and herbivory. Therefore, it is essential to compile detailed records for single basins and depositional settings. Important patterns like the strong correlation between temperature and herbivory cannot be recognized without regional, high-resolution studies like the Bighorn Basin study described here.

CONCLUSIONS The primary objectives of this chapter were to measure insect herbivory at nine sites spanning the Paleocene-Eocene boundary in the Bighorn Basin, to describe temporal trends in herbivory, and to correlate these trends to external variables including floral diversity and temperature. Once this was completed, the Bighorn Basin floras were placed in the wider context of the Cretaceous-Paleogene Western Interior. The following thirteen points summarize the most important results of this study. I further elaborate on these points and tie them into the results of the first two chapters in the conclusion to my thesis.

1. In general, patterns in insect damage on individual plant hosts and single plant lineages are similar to patterns on the bulk floras. Therefore, variations in insect herbivory on the bulk floras are not caused solely by increases or decreases in plant diversity or changes in floral composition. Patterns in insect herbivory through time act on the level of individual plant hosts, which can then be scaled up to the bulk flora.

2. The Bighorn Basin sites can be divided into groups of high and low damage frequency. Hubble Bubble, 15 Mile Creek, and PN have high total frequency; Hubble Bubble, 15 Mile Creek, and Daiye Spa have high specialized damage frequency, and 15 Mile Creek, Cool Period, and Hubble Bubble have high mine frequency. The high mine frequency at Cool Period is likely due to an outbreak of beetle miners (DT164).

3. Total, specialized, and mine DTL mirror the MAT curve for the Bighorn Basin.

85 4. Patterns in DTO differ significantly from patterns in frequency and DTL, as do patterns in total, specialized, and mine DTO. Total DTO is high at 15 Mile Creek, Hubble Bubble, and Daiye Spa, moderately high at Lur’d Leaves, and low at Skeleton Coast. Specialized DTO is high at 15 Mile Creek and PN and low at Elk Creek and Skeleton Coast. Mine DTO is high at Hubble Bubble, 15 Mile Creek, Daiye Spa, and Elk Creek, intermediate at Dead Platypus, and low at Cool Period.

5. There is a significant, positive correlation between frequency and DTL, whereas DTO is fully independent of damage frequency.

6. Although Cercidiphyllum genetrix and Platanaceae generally show the same trends as the bulk floras, there is a significant increase in total and specialized DTL on Platanaceae at PN that is not seen elsewhere.

7. The relative abundances of the surface feeding, leaf mining, galling, and piercing and sucking are the most variable among the sites, and many of the damage types in these functional feeding groups are more specialized. These functional feeding groups have the strongest effect on ordinations and cluster analyses of bulk flora and species-site pairs. At one end of the spectrum is Skeleton Coast and Lur’d Leaves, with very little specialized damage. Hubble Bubble and 15 Mile Creek fall at the opposite end of the spectrum.

8. There are no significant changes in MA across the study interval and few significant correlations between MA and insect damage when species are considered independent of their site. The majority of the plant species have leaves with low MA that would be palatable to insect herbivores.

9. There is little to no correlation between floral diversity and insect damage on the bulk floras. Within a flora, there is a slight decrease in frequency and DTL as the host’s relative abundance increases.

10. There is no relationship between MAT and DTO, and a weak positive correlation between MAT and frequency. There is an extremely strong (R2 > 0.75) positive correlation between MAT and total, specialized, and mine DTL.

86 11. When the Bighorn Basin floras are integrated into the Western Interior dataset, the entire rebound of plant-insect interactions from the K-T extinction is visible. Considering DTL, there is a large extinction at the K-T boundary and low values through muc of the Paleocene (except for the unique Mexican Hat site). DTL finally reaches pre-extinction levels in the latest Paleocene and PETM.

12. DTO is not as variable as DTL through this interval. By this measure, there is not as severe an extinction at the K-T boundary and no “dead zone” in the early Paleocene. The warm PETM and ETM sites do not stand out from the other sites. Most interestingly, DTO is equal at Mexican Hat and Castle Rock, despite the fact that there are three orders of leaf mining insects at Mexican Hat and just two mines in total at Castle Rock. This suggests that DTO is not a reliable measure of insect damage diversity.

13. When the entire Western Interior dataset is considered, there is no correlation between floral diversity and only a weak positive correlation between MAT and DTL.

87 Table 3.1. Site Summaries Collector's Leaves Stratigraphic USNM Locality Meter Level Epoch, Age GPS Coordinates Depositional Locality Formation in Level Number (Section) Mammal Zone (Ma) (NAD CONUS 27) Environment Numbers Census EDC0603, 44.17774, 108.55674 EDC0604, 44.17719, 108.55708 EDC0605, 44.17727, 108.55713 Laterally extensive USNM 42400 - Eocene, 15 Mile Creek EDC0606, Willwood 700 (ECS) 52.75 44.17862, 108.55707 carbonaceous 1821 42406 Wasatchian 7 EDC0607, 44.17846, 108.55643 shale EDC0609, 44.17910, 108.55713 EDC0610 44.17799, 108.55650 EDC0601, Eocene, PN 37560 Willwood 530 (ECS) 53.4 44.27012, 108.34573 Mud/silt lens 693 EDC0602 Wasatchian 5 USNM 37654, EDC0701 = LB, 44.26160, 108.13148 EDC0701 & LB in 42407, EDC0702, 44.35614, 108.22542 mud/silt lens; rest Eocene,

88 Cool Period 42408, EDC0703, Willwood 311 (ECS) 54.2 44.35611, 108.22907 in laterally 491 Wasatchian 3-4 42409, EDC0704, 44.35689, 108.22903 extensive carb 42410 EDC0705 44.35554, 108.22214 shale EDC0501, 44.28008, 108.05089 EDC0502, 44.2798, 108.05081 Laterally extensive South Fork of USNM 42395 – Eocene, EDC0503, Willwood 112 (ECS) 55.2 44.28187, 108.05129 carbonaceous 1008 Elk Creek 42399 Wasatchian 1-2 EDC0504, 44.28145, 108.05111 shale EDC0505 44.28213, 108.05125 Hubble PETM (Eocene), USNM 42384 SW0503 Willwood PETM 55.8 43.94508, 107.61870 Mud/silt lens 995 Bubble Wasatchian 0 EDC0506, EDC04, Paleocene, Daiye Spa USNM 41643 Fort Union 1455 (SPB) 55.9 44.83843, 109.07274 Mud/silt lens 843 SW9819, Clarkforkian 3 SW994 Dead Paleocene, USNM 42411 EDC0706 Fort Union 1210 (SPB) 56.4 44.87195, 109.07320 Mud/silt lens 1016 Platypus Clarkforkian 2 Paleocene, Lur'd Leaves USNM 42042 PW0204 Fort Union 250 (WPB) 57.5 44.87568, 108.87242 Mud/silt lens 1364 Tiffanian 5b Skeleton Paleocene, USNM 42041 PW0203 Fort Union 340 (SPB) 58.9 44.84884, 108.75471 Mud/silt lens 840 Coast Tiffanian 4a ECS = Elk Creek-Antelope Creek composite section (Clyde et al . 2007). SPB and WPB = Southeast and West of Polecat Bench Sections (Secord et al . 2006). Table 3.2. MAT Estimates for the Bighorn Basin

Wing et al. 1998 Wing et al. 2000 Wing et al. 2006 Currano et al. 2008 New Calculation 15 Mile Creek 22.2 ± 2

PN 15.8 ± 2.2

Cool Period 10.8 ± 3.3 11.1 ± 2.8

South Fork of Elk Creek 16.4 ± 2.7

Hubble Bubble 20.1 ± 2.8

Daiye Spa 18 ± 2 15.7 ± 2.4 16.4 ± 2.9 89

Dead Platypus 14 ± 2 15.8 ± 2.2 12 ± 3

Lur'd Leaves 10.5 ± 2.9

Skeleton Coast 10.5 ± 2.9

Temperature estimates for Lur'd Leaves and Skeleton Coast were obtained using leaf margin analysis. The plant species used in the analysis are listed in Table 3.3 and are all the named species from the Late Tiffanian in the Bighorn Basin, as explained in Chapter 1.

Leaf margin analysis was used for the new Cool Period, Daiye Spa, and Dead Platypus calculations. The plant moprhotypes used in the analysis are listed in Table 3.3 and the choice of morphotypes is fully described in the text (Paleotemperature Record). Table 3.3. Plant Species Used in New MAT Estimates

TIFFANIAN Taxon Margin score "Amepelopsis" acerifolia 1 Beringiaphyllum cupanioides 1 Browniea serrata 1 "Carya" antiquorum / Aesculus hickeyi 1 Celtis aspera 1 "Celtis" peracuminata 1 Cercidiphyllum genetrix 1 Chaetoptelea microphylla 1 Corylus insignis 1 Crataegus sp. 1 Davidia antiqua 1 "Ficus " artocarpoides 1 Fraxinus eocenica 0.5 Juglandiphyllites glabra 1 Macginitiea gracilis 1 Magnolia borealis 0 Magnolia magnifica 0 "Meliosma " flexuosa 1 Nyssa alata 0 Persites argutus 0 Platanus raynoldsi 0 Sassafras thermale 0 Zizyphoides flabella 0.5

90 CLARKFORKIAN 2

DEAD PLATYPUS Taxon Margin score Averrhoites affinis 0 Betulaceae sp. FU741 1 Cercidiphyllum genetrix 1 Davidia antiqua 1 Juglandaceae sp. FU740 1 Macginitiea gracilis 0 Platanus raynoldsi 1 Ternstroemites aureavallis 1 Zizyphoides flabella 0.5 Dicot sp. FU733 1 Dicot sp. FU734 0 Dicot sp. FU735 1 Dicot sp. FU736 1 Dicot sp. FU737 0 Dicot sp. FU738 0 Dicot sp. FU739 1 Dicot sp. FU742 0 Dicot sp. FU745 1 Dicot sp. FU749 0

LJH6723 Taxon Margin score Celtis aspera 1 LJH 6723 3 major veins 1

SW9136 Taxon Margin score "Ampelopsis" acerifolia 1 "Ficus" artocarpoides 1 unid 913602 0

91 CLARKFORKIAN 3

DAIYE SPA Taxon Margin score Betulaceae sp. FU744 1 Browniea serrata 1 Cercidiphyllum genetrix 1 Davidia antiqua 1 Fabaceae sp. FU750 0 Macginitiea gracilis 0 Platanus raynoldsi 1 cf. Populus wyomingiana 1 Ternstroemites aureavallis 1 Zizyphoides flabella 0.5 Dicot sp. FU743 1 Dicot sp. FU745 1 Dicot sp. FU746 0 Dicot sp. FU747 0 Dicot sp. FU748 0 Dicot sp. FU749 0

SW0714 (only morphotypes not at Daiye Spa) Taxon Margin score DE 7 - "Ficus -like" 0 Corylites 1 "Not Averrhoites " 0 "Resin dotty" 0 "Crenate cretina" 1 DN8 1 DE5 0 DN3 1 DE6 0 DE3 "Hitchhiker's Thumb" 0 Entire specimen 111 0

92 COOL PERIOD Taxon Margin score "Ampelopsis" acerifolia 1 "Dombeya" novi-mundi 1 "Meliosma " longifolia 1 "Populus " wyomingiana 1 Acer silberlingii 1 Aesculus hickeyi 1 Alnus 1 Averrhoites affinis 0 Betulaceae sp. WW030 1 Cercidiphyllum genetrix 1 Chaetoptelea microphylla 1 Davidia antiqua 1 Hamamelidaceae sp. WW031 1 Juglandaceae sp. FU740 1 Lauraceae sp. WW036 0 Macginitiea gracilis 0 "Phoebe mckinneyi " 0 Platanus raynoldsi 1 Zizyphoides flabella 0.5 Dicot sp. WW032 0 Dicot sp. WW033 1 Dicot sp. WW034 0 Dicot sp. WW035 1 Dicot sp. WW037 1 Dicot VI 0 Dicot XII 0

93 Table 3.5. Leaf Mass per Area Estimates # petiole # leaves in M A 95% PI width 95% PI top census 2 bottom mmts (g/m ) 15 MILE CREEK Alnus sp. 692 15 64.3 79.6 52.0 Allophylus flexifolia 30 2 67.6 120.2 38.1 "Dombeya" novi-mundi 265 3 75.6 121.0 47.3 Lauraceae sp. WW061 62 3 70.4 112.6 44.0 Populus wyomingiana 127 3 75.8 121.2 47.4 Platycarya castaneopsis 441 3 115.4 184.7 72.1 Dicot sp. WW052 107 3 82.2 131.6 51.4 Site, only species with N>1 7 81.4 70.0 94.6 Site, all specimens 9 81.4 71.0 93.4

PN Fabaceae sp. WW040 155 19 107.7 130.2 89.1 Machaerium sp. 42 3 78.1 125.0 48.8 Macginitiea gracilis 437 6 68.3 95.3 49.0 Site, only species with N>1 3 88.1 71.2 108.9 Site, all specimens 5 82.8 69.8 98.3

COOL PERIOD Averrhoites affinis 128 6 123.1 88.2 172.0 Site, only species with N>1 1 129.5 90.7 184.8 Site, all specimens 5 100.5 83.4 121.1

ELK CREEK Alnus sp. 178 5 72.0 50.0 103.6 Averrhoites affinis 820 4 133.0 88.4 200.1 Site, only species with N>1 3 107.5 87.0 132.9 Site, all specimens 4 98.9 82.1 119.2

HUBBLE BUBBLE Fabaceae sp. WW001 480 11 156.5 121.8 201.0 Fabaceae sp. WW002 20 3 104.5 65.3 167.1 Machaerium sp. 154 8 84.6 63.3 112.9 cf. Rhus 5 2 95.9 54.0 170.5 Dicot sp. WW004 89 2 52.8 29.7 93.9 Dicot sp. WW005 65 2 75.4 42.4 134.0 Dicot sp. WW006 82 6 60.6 43.2 84.8 Site, only species with N>1 8 100.9 87.6 116.2 Site, all specimens 12 103.0 91.2 116.4

DAIYE SPA Cercidiphyllum genetrix 139 6 66.3 47.7 92.3 Fabaceae sp. FU750 139 6 127.8 91.5 178.6 Macginitiea gracilis 250 2 62.0 34.9 110.3 Platanus raynoldsi 133 2 77.7 43.7 138.1 Site, only species with N>1 4 91.0 75.5 109.7 Site, all specimens 7 87.5 75.4 101.5

94 # petiole M # leaves in width A 95% PI 2 census mmts (g/m ) bottom 95% PI top DEAD PLATYPUS Averrhoites affinis 179 9 122.1 92.8 160.5 Betulaceae sp. FU741 142 4 66.0 43.9 99.3 Davidia antiqua 64 2 80.5 45.3 143.1 Zizyphoides flabella 257 5 76.3 53.0 109.8 Platanus raynoldsi 119 2 88.8 50.0 157.9 Site, only species with N>1 5 91.2 77.0 108.1 Site, all specimens 9 80.5 70.2 92.4

LUR'D LEAVES "Ampelopsis" acerifolia 139 2 90.0 50.6 159.9 Browniea serrata 81 2 60.9 34.3 108.3 Chaetoptelea microphylla 4 2 84.4 47.5 150.1 "Celtis" peracuminata 20 2 90.2 50.8 160.4 Persites argutus 763 11 91.6 71.4 117.3 Zizyphoides flabella 206 6 102.4 73.4 142.9 Site, only species with N>1 6 88.8 75.9 104.1 Site, all specimens 9 91.9 80.3 105.2

SKELETON COAST Browniea serrata 181 2 74.8 42.1 132.9 Cercidiphyllum genetrix 531 3 93.0 58.1 148.8 Site, only species with N>1 2 85.0 65.8 109.7 Site, all specimens 4 78.5 64.9 94.8

PI = prediction interval, calculated as in Royer et al. (2007)

95 Table 3.6. Correlations Between M A and Insect Damage

2 M A vs. Residual SE R F statistic P value df Damage frequency 24.26 0.06 1.99 0.17 31 Specialized damage frequency 24.44 0.05 1.51 0.23 31 Mine frequency 24.08 0.07 2.50 0.12 31

Total DTL 23.51 0.12 4.15 0.05 31 Specialized DTL 22.38 0.13 4.52 0.04 31 Mine DTL 24.04 0.08 2.60 0.12 31

Total DTO 23.16 0.17 6.19 0.02 22 Specialized DTO 28.51 0.15 2.38 0.15 14

Results from R's linear model function with species MA as the independent variable and damage metrics as the dependent variable. All plant species at each site with at least 2 petiole width measurements were used in the analysis. Total, specialized, and mine DTL are at 20 leaves. Total and specialized DTO are at 20 DT occurrences.

96 Table 3.7. Correlations between Floral Diversity and Insect Damage at a Site

Bulk floral diversity Residual R2 F statistic P value rarefied to 450 leaves vs. SE Damage frequency 4.883 0.242 2.235 0.179 Specialized damage frequency 5.325 0.099 0.765 0.411 Mine frequency 3.820 0.536 8.086 0.025

Total DTL 4.411 0.381 4.314 0.076 Specialized DTL 4.557 0.340 3.604 0.099 Mine DTL 4.717 0.292 2.893 0.133

Total DTO 4.304 0.411 4.822 0.063 Specialized DTO 4.273 0.420 5.058 0.059

FIRST DIFFERENCES Bulk floral diversity Residual R2 F statistic P value rarefied to 450 leaves vs. SE Damage frequency 9.111 0.105 0.701 0.435 Specialized damage frequency 9.545 0.017 0.106 0.756 Mine frequency 6.463 0.550 7.318 0.035

Total DTL 8.679 0.187 1.384 0.284 Specialized DTL 8.909 0.144 1.009 0.354 Mine DTL 8.829 0.159 1.136 0.328

Total DTO 8.669 0.189 1.401 0.281 Specialized DTO 8.166 0.281 2.342 0.177

Results from R's linear model function with floral diversity (rarefied to 450 leaves) as the independent variable and damage metrics as the dependent variable. Total, specialized, and mine DTL are at 450 leaves. Total DTO is at 225 DT occurrences and specialized DTO is at 30 specialized DT occurrences

97 Table 3.8. Correlations Between a Plant Host’s Relative Abundance and Insect Damage on that Host

Residual % Abundance in flora vs. R2 F statistic P value df SE Damage frequency 17.18 0.04 2.09 0.15 52 Specialized damage frequency 17.39 0.01 0.79 0.38 52 Mine frequency 17.47 0.01 0.28 0.60 52

Total DTL 17.27 0.03 1.48 0.23 52 Specialized DTL 17.37 0.02 0.89 0.35 52 Mine DTL 17.47 0.01 0.30 0.59 52

Total DTO 17.79 0.04 1.80 0.19 44 Specialized DTO 22.60 0.07 1.06 0.32 14

Results from R's linear model function with percent abundance in the flora as the independent variable and damage metrics as the dependent variable. Total, specialized, and mine DTL are at 20 leaves. Total and specialized DTO are at 20 DT occurrences.

98 Table 3.10. Additional Western Interior Floras from the Late Cretaceous and early Paleogene

Age Flora Location MAT (oC) Selected References (Ma) Sourdough 53.5 Great Divide Basin, SW WY 21.3 ± 2.2 Wilf and Labandeira 1999, Wilf 2000 Clarkforkian 56.5 Washakie Basin, SW WY 18.6 ± 3.3 Wilf and Labandeira 1999, Wilf 2000 Persites Paradise 59 Great Divide Basin, SW WY 11.9 ± 3.3 Wilf et al. 2006 Kevin's Jerky 59 Washakie Basin, SW WY 11.9 ± 3.3 Wilf et al. 2006 Haz-Mat 59 Washakie Basin, SW WY 11.9 ± 3.3 Wilf et al. 2006 Castle Rock lower layer 63.8 Denver Basin, CO 21.5 ± 2.0 Ellis et al. 2004, Burnham et al. 2005 Mexican Hat 64.4 Powder River Basin, SE MT ? Lang 1996 Pyramid Butte 65.5 Williston Basin, SW ND 13.7 ± 3.2 Labandeira et al. 2002, Hicks et al. 2002, Johnson 2002, Wilf et al. 2003 Battleship 65.56 Williston Basin, SW ND 17.7 ± 2.5 Labandeira et al. 2002, Hicks et al. 2002, Johnson 2002, Wilf et al. 2003 Dean Street 65.71 Williston Basin, SW ND 20.4 ± 2.0 Labandeira et al. 2002, Hicks et al. 2002, Johnson 2002, Wilf et al. 2003

99 Somebody's Garden+ 66.28 Williston Basin, SW ND 6.7 ± 1.8 Labandeira et al. 2002, Hicks et al. 2002, Johnson 2002, Wilf et al. 2003 Luten's 4H Hadrosaur+ 66.53 Williston Basin, SW ND 12.6 ± 3.0 Labandeira et al. 2002, Hicks et al. 2002, Johnson 2002, Wilf et al. 2003

This table is modified from Wilf et al. (2006). Table 3.11. Summary of Plant Hosts at Each Site with at Least 25 Leaves Error, Error, Total Mine Error, % of % % % % DTL, 25 Error, DTL, 25 mine DTO, 20 SE, Flora Species Plant Group Leaves Flora dam. dam. mines mines leaves DTL leaves DTL DT occ DTO MC15 Alnus sp. Betulaceae 692 38.0 65.9 1.8 3.9 2.4 10.19 1.82 0.86 0.79 8.95 1.49 MC15 Platycarya castaneopsis Juglandaceae 441 24.2 48.8 2.4 0.5 1.0 7.73 1.65 0.12 0.33 8.45 1.46 MC15 "Dombeya " novi-mundi Malvaceae 265 14.6 55.5 3.1 1.5 1.6 8.32 1.73 0.38 0.58 8.15 1.39 MC15 "Populus " wyomingiana unknown 127 7.0 43.3 4.4 3.1 2.7 8.73 1.92 0.74 0.73 9.71 1.45 MC15 Dicot sp. WW052 Magnoliales 107 5.9 46.7 4.8 0 0 6.97 1.48 0 0 7.43 1.22 MC15 Lauraceae sp. WW061 Laurales 62 3.4 66.1 6.0 0 0 10.99 1.93 0 0 9.26 1.45 MC15 Allophylus flexifolia Sapindales 55 1.6 34.5 6.4 0 0 12.27 0.90 1.00 0.04 10.21 1.12 PN Macginitiea gracilis Platanaceae 93 63.1 52.4 2.4 0.2 0.2 8.71 1.69 0.06 0.24 8.70 1.45 PN Fabaceae sp. WW040 Fabaceae 33 22.4 56.8 4.0 0 0 4.78 1.27 0 0 4.85 1.20 PN Machaerium sp. Fabaceae 35 6.1 45.2 7.7 0 0 6.65 1.14 0 0 8.76 0.43 SD Alnus sp. Betulaceae 286 36.1 45.8 2.9 1.7 3.8 6.92 1.57 0.40 0.54 8.22 1.44 100 SD Apocynaceae sp. RR17 Apocynaceae 223 28.2 17.5 2.5 0 0 3.06 1.14 0 0 6.87 1.03 SD Hovenia cf. H. oregonensis Rosales 63 8.0 41.3 6.2 0 0 4.53 0.99 0 0 5.35 - SD "Populus " wyomingiana Salicaceae 37 4.7 35.1 7.8 0 0 6.26 1.07 0 0 - - SD Sloanea sp. Elaeocarpaceae 58 7.3 24.1 5.6 0 0 3.72 0.83 0 0 - - CP Averrhoites affinis Sapindales 437 26.1 31.3 4.1 0 0 4.92 1.39 0 0 7.58 1.18 CP "Ampelopsis" acerifolia ?Cercidiphyllaceae 155 15.3 36.0 5.5 0 0 6.92 1.37 0 0 9.93 1.04 CP Lauraceae sp. WW036 Laurales 128 7.1 34.3 8.0 0 0 7.43 1.00 0 0 7.68 0.49 CP "Dombeya" novi-mundi Malvaceae 75 18.9 39.8 5.1 11.8 3.3 6.57 1.71 0.97 0.17 7.85 1.12 CP Dicot sp. WW034 unknown 42 6.7 33.3 8.2 0 0 4.99 0.82 0 0 - - EC Alnus sp. Betulaceae 178 17.7 30.9 3.5 0 0 7.15 1.85 0 0 8.28 1.27 EC Averrhoites affinis Sapindales 820 81.3 33.8 1.7 0.9 1.6 6.95 1.88 0.22 0.45 8.18 1.53 HB Dicot sp. WW006 unknown 82 8.2 75.6 4.7 4.9 2.5 13.94 1.67 1.05 0.69 10.44 1.43 HB Dicot sp. WW005 unknown 65 6.5 93.8 3.0 6.2 2.5 16.00 1.61 1.18 0.64 9.37 1.44 HB Fabaceae sp. WW001 Fabaceae 480 48.2 44.6 2.3 0 0 7.39 1.76 0 0 8.25 1.42 HB Machaerium sp. Fabaceae 154 15.5 52.6 4.0 1.3 1.6 11.24 2.12 0.30 0.46 10.72 1.56 HB "Populus " wyomingiana unknown 40 4.0 70.0 7.2 2.6 1.9 16.24 2.09 0.62 0.48 10.16 1.51 HB Dicot sp. WW004 unknown 89 8.9 65.2 5.1 2.2 1.8 13.59 2.04 0.77 0.66 10.05 1.59 DS Macginitiea gracilis Platanaceae 250 29.7 27.2 2.8 1.6 2.4 7.49 2.26 0.46 0.59 10.23 1.54 DS Cercidiphyllum genetrix Cercidiphyllaceae 139 16.5 39.6 4.1 0 0 9.80 2.10 0 0 10.57 1.42 DS Fabaceae sp. FU750 Fabaceae 139 16.5 43.2 4.2 0.7 1.3 9.46 1.98 0.36 0.54 9.50 1.49 Error, Error, Total Mine Error, % of % % % % DTL, 25 Error, DTL, 25 mine DTO, 20 SE, Flora Species Plant Group Leaves Flora dam. dam. mines mines leaves DTL leaves DTL DT occ DTO DS Platanus raynoldsi Platanaceae 133 15.8 25.6 3.8 0.8 1.7 7.04 2.13 0.38 0.55 10.62 1.56 DS Betulaceae sp. FU744 Betulaceae 54 6.4 55.6 6.8 0 0 13.80 1.84 0 0 10.89 1.42 DS Dicot sp. FU745 ?Aceraceae 46 5.5 43.5 7.3 0 0 8.25 1.50 0 0 8.47 1.11 DS Dicot sp. FU749 unknown 32 3.8 62.5 8.6 0 0 10.58 0.96 0 0 9.27 1.14 DP Zizyphoides flabella Trochodendrales 257 25.3 39.3 3.0 1.2 1.7 7.45 1.90 0.26 0.44 9.70 1.50 DP Averrhoites affinis Sapindales 179 17.6 49.2 3.7 2.8 2.4 8.66 1.66 0.53 0.50 9.47 1.40 DP Betulaceae sp. FU741 Betulaceae 142 14.0 50.7 4.2 0.7 1.2 8.17 1.61 0.17 0.38 8.52 1.30 DP Macginitiea gracilis Platanaceae 135 13.3 35.6 4.1 0 0 5.83 1.31 0 0 7.45 1.28 DP Platanus raynoldsi Platanaceae 119 11.7 28.6 4.1 0 0 4.93 1.19 0 0 6.72 1.01 DP Cercidiphyllum genetrix Cercidiphyllaceae 76 7.5 35.5 5.5 0 0 6.68 1.54 0 0 9.24 1.14 DP Davidia antiqua Cornales 64 6.3 51.6 6.2 0 0 8.24 1.89 0 0 8.38 1.29 Cf Corylites sp. Betulaceae 524 70.0 31.7 2.0 1.3 4.2 5.22 1.48 0.32 0.53 7.91 1.40

101 Cf "Ampelopsis " acerifolia ?Cercidiphyllaceae 81 10.8 24.7 4.8 1.2 5 4.73 1.50 0.32 0.47 7.99 0.82 Cf Lauraceae FW3 Laurales 84 11.2 8.3 3.0 0 0 2.00 1.06 0 0 - - Cf Magnoliaceae FW7 Magnoliales 27 3.6 29.6 8.8 0 0 4.78 0.44 0 0 - - LL Persites argutus Laurales 763 56.1 9.6 1.1 0 0 2.57 1.58 0 0 8.05 1.35 LL Zizyphoides flabella Trochodendrales 205 15.1 9.8 2.1 0 0 2.70 1.53 0 0 8.31 0.98 LL "Ampelopsis " acerifolia unknown 139 10.2 23.0 3.6 0 0 4.28 1.32 0 0 7.87 1.04 LL Browniea serrata Cornales 81 6.0 48.1 5.6 2.5 5.1 9.25 2.14 0.53 0.50 9.06 1.50 LL Platanus raynoldsi Platanaceae 47 3.5 25.5 6.4 0 0 4.35 0.93 0 0 - - LL Cercidiphyllum genetrix Cercidiphyllaceae 34 2.5 20.6 6.9 0 0 4.68 1.12 0 0 - - LL Davidia antiqua Cornales 29 2.1 31.0 8.6 0 0 4.81 0.40 0 0 - - SC Cercidiphyllum genetrix Cercidiphyllaceae 530 63.5 28.3 2.0 0.4 1.3 5.24 1.52 0.09 0.29 7.52 1.28 SC Browniea serrata Cornales 179 21.4 49.2 3.7 0 0 5.78 1.13 0 0 6.10 1.07 SC Platanus raynoldsi Platanaceae 57 6.8 33.3 6.2 0 0 4.82 1.13 0 0 6.36 0.68 SC Dicot sp. SC1 unknown 48 5.7 47.9 7.2 0 0 7.03 1.24 0 0 7.35 0.96 PP Persites argutus Laurales 582 60.4 18.4 1.6 0 0 3.08 1.03 0 0 4.69 1.05 PP Corylites sp. Betulaceae 296 30.7 60.5 2.8 0 0 8.21 1.95 0 0 7.52 1.44 PP Cercidiphyllum genetrix Cercidiphyllaceae 36 3.7 36.1 8.0 0 0 5.21 1.54 0 0 5.95 0.21 KJ Averrhoites affinis Sapindales 893 67.7 30.5 1.5 0 0 5.50 1.68 0 0 8.12 1.37 KJ Beringiaphyllum cupanioides Cornales 272 20.6 34.9 2.9 0 0 6.60 1.80 0 0 8.63 1.45 KJ Celtis aspera Rosales 148 11.2 20.9 3.3 0 0 4.55 1.43 0 0 6.66 0.85 Error, Error, Total Mine Error, % of % % % % DTL, 25 Error, DTL, 25 mine DTO, 20 SE, Flora Species Plant Group Leaves Flora dam. dam. mines mines leaves DTL leaves DTL DT occ DTO HM Cercidiphyllum genetrix Cercidiphyllaceae 568 75.8 41.7 2.1 0.5 1.3 6.98 1.63 0.13 0.34 8.09 1.28 HM Platanus raynoldsi Platanaceae 102 13.6 26.5 4.4 0 0 5.59 1.45 0 0 7.94 1.01 HM Juglandiphyllites glabra Juglandaceae 78 10.4 15.4 4.1 0 0 2.73 0.82 0 0 - - CR CR043 ?Lauraceae 225 9.7 4.4 1.4 0 0 1.21 1.10 0 0 NC NC CR CR013 unknown 224 9.7 2.7 1.1 0 0 0.90 1.13 0 0 NC NC CR CR023 unknown 126 5.5 4.8 1.9 0 0 1.21 0.92 0 0 NC NC CR "Artocarpus " lessigiana ?Lauraceae 123 5.3 6.5 2.2 0 0 1.69 1.14 0 0 NC NC CR CR167 unknown 120 5.2 10.8 2.8 0 0 2.63 1.54 0 0 NC NC CR CR006 unknown 98 4.2 0.0 0.0 0 0 0.00 0.00 0 0 NC NC CR CR018 Rhamnaceae 79 3.4 10.1 3.4 0 0 3.18 1.48 0 0 NC NC CR CR005 ?Juglandaceae 72 3.1 1.4 1.4 0 0 0.68 0.95 0 0 NC NC CR Platanus marginata Platanaceae 68 2.9 7.4 3.2 0 0 1.95 1.09 0 0 NC NC

102 CR CR033 unknown 67 2.9 0.0 0.0 0 0 0.00 0.00 0 0 NC NC CR "Zizyphus" fibrillosa ?Piperaceae 57 2.5 5.3 3.0 0 0 2.87 1.97 0 0 NC NC CR CR042 unknown 54 2.3 7.4 3.6 0 0 3.51 2.37 0 0 NC NC CR CR059 unknown 48 2.1 4.2 2.9 2.1 50 2.07 1.40 0.52 0.50 NC NC CR CR074 unknown 46 2.0 8.7 4.2 0 0 3.61 1.76 0 0 NC NC CR CR058 unknown 43 1.9 7.0 3.9 0 0 1.76 0.83 0 0 NC NC CR CR017 ?Lauraceae 35 1.5 2.9 2.8 0 0 0.71 0.45 0 0 NC NC CR CR116 unknown 33 1.4 0.0 0.0 0 0 0.00 0.00 0 0 NC NC CR CR070 unknown 31 1.3 6.5 4.4 0 0 1.61 0.55 0 0 NC NC CR CR087 unknown 28 1.2 10.7 5.8 0 0 3.58 0.73 0 0 NC NC CR Lauraceae sp. CR010 Laurales 28 1.2 17.9 7.2 0 0 4.46 0.64 0 0 NC NC CR CR092 ?Juglandaceae 27 1.2 11.1 6.0 0 0 1.93 0.26 0 0 NC NC CR CR032 unknown 26 1.1 3.8 3.8 0 0 0.96 0.20 0 0 NC NC MH Platanus raynoldsi Platanaceae 1174 52.9 37.6 1.4 3.5 9.3 8.25 2.03 0.74 0.71 NC NC MH Juglandiphyllites glabra Juglandaceae 393 17.7 18.8 2.0 1.0 5.4 4.51 1.72 0.25 0.48 NC NC MH Zizypohides flabella Trochodendrales 230 10.4 42.6 3.3 3.0 7.1 8.06 1.99 0.61 0.59 NC NC MH Cercidiphyllum genetrix Cercidiphyllaceae 214 9.6 39.7 3.3 1.4 3.5 7.64 1.76 0.33 0.52 NC NC MH Lauraceae sp. MHL2 Laurales 87 3.9 35.6 5.1 0 0 9.07 1.74 0 0 NC NC MH Populus nebrascensis Trochodendrales 84 3.8 35.7 5.2 1.2 3.3 7.53 1.69 0.30 0.46 NC NC Error, Error, Total Mine Error, % of % % % % DTL, 25 Error, DTL, 25 mine DTO, 20 SE, Flora Species Plant Group Leaves Flora dam. dam. mines mines leaves DTL leaves DTL DT occ DTO Pyr Browniea serrata Cornales 204 37.2 31.4 3.2 0 0 5.51 1.72 0 0 NC NC Pyr Paranymphaea crassifolia unknown 62 11.3 19.4 5.0 0 0 6.14 1.74 0 0 NC NC Pyr Populus nebraskensis Trochodendrales 211 38.4 17.5 2.6 0.9 5.4 2.55 1.08 0.23 0.42 NC NC Bat Grewiopsis saportana Platanaceae 33 7.2 54.5 8.7 6.1 11.1 12.10 1.07 0.95 0.22 NC NC Bat Marmarthia pearsonii Laurales 182 39.7 23.6 3.1 9.9 41.9 5.44 1.74 0.94 0.23 NC NC DSt Liriodendrites bradacii Magnoliales 116 15.6 19.0 3.6 0 0 4.37 1.54 0 0 NC NC DSt Dicot sp. HC199 Laurales 88 11.8 37.5 5.2 3.4 9.1 7.58 1.85 0.63 0.48 NC NC DSt Marmarthia trivialis Laurales 74 10.0 45.9 5.8 0 0 10.50 1.88 0 0 NC NC DSt Platanus marginata Platanaceae 46 6.2 52.2 7.4 0 0 9.66 1.23 0 0 NC NC DSt "Zizyphus" fibrillosa Laurales 41 5.5 24.4 6.7 0 0 5.01 1.10 0 0 NC NC DSt "Artocarpus " lessigiana Laurales 40 5.4 27.5 7.1 0 0 5.23 1.23 0 0 NC NC DSt Marmarthia pearsonii Laurales 36 4.8 38.9 8.1 13.9 35.7 9.10 1.38 2.52 0.60 NC NC

103 DSt Grewiopsis saportana Platanaceae 28 3.8 78.6 7.8 3.6 4.5 12.30 0.68 0.90 0.31 NC NC DSt Dicot sp. HC280 unknown 28 3.8 57.1 9.4 0 0 6.79 0.43 0 0 NC NC DSt "Ficus " planicostata Laurales 27 3.6 63.0 9.3 3.7 5.9 11.60 0.67 0.92 0.27 NC NC SG Urticales sp. HC081 Rosales 464 30.4 40.5 2.3 0.2 0.5 4.76 1.16 0.06 0.23 NC NC SG Rosaceae sp. HC080 Rosales 212 13.9 11.8 2.2 0.5 4.0 2.54 1.37 0.12 0.33 NC NC SG "Cinnamomum " lineafolia Trochodendrales 163 10.7 27.6 3.5 0 0 6.48 1.84 0 0 NC NC SG Dicot sp. HC135 unknown 102 6.7 87.3 3.3 0 0 7.48 1.31 0 0 NC NC SG Cercidiphyllum ellipticum Cercidiphyllaceae 94 6.2 57.4 5.1 8.5 14.8 12.70 2.24 1.81 0.93 NC NC SG Cercidiphyllaceae sp. HC229 Cercidiphyllaceae 91 6.0 45.1 5.2 0 0 4.53 1.24 0 0 NC NC SG Dicot sp. HC084 Laurales 53 3.5 34.0 6.5 0 0 4.82 0.83 0 0 NC NC SG Dicot sp. HC090 unknown 51 3.3 9.8 4.2 0 0 2.37 0.77 0 0 NC NC SG Dicot sp. HC211 unknown 39 2.6 38.5 7.8 0 0 2.90 0.82 0 0 NC NC SG Dicot sp. HC131 unknown 32 2.1 25.0 7.7 0 0 4.29 0.72 0 0 NC NC SG Leepierceia preartocarpoides Platanaceae 32 2.1 59.4 8.7 0 0 6.53 0.60 0 0 NC NC SG Dicot sp. HC224 Rosidae 28 1.8 39.3 9.2 0 0 4.78 0.43 0 0 NC NC SG Ranunculaceae sp. HC226 Ranunculaceae 26 1.7 19.2 7.7 0 0 2.92 0.27 0 0 NC NC LH "Dryophyllum " subfalcatum unknown 204 47.7 15.7 2.5 0.5 3.1 4.24 1.89 0.12 0.33 NC NC LH Leepierceia preartocarpoides Platanaceae 100 23.4 23.0 4.2 0 0 5.59 1.78 0 0 NC NC LH Cercidiphyllum ellipticum Cercidiphyllaceae 29 6.8 79.3 7.5 3.4 4.3 11.20 0.81 0.86 0.35 NC NC LH aff. Cercidiphyllum Trochodendrales 27 6.3 3.7 3.6 0 0 0.93 0.26 0 0 NC NC For DTO, NC means not calculated, and "-" means not enough DT occurrences FIGURE CAPTIONS

Figure 3.1. Hypothetical DTL and DTO curves. a) Two DTL curves in which the same number of DTS are observed and the DTs occur in the same proportions relative to each other. However, the frequency of each damage type is twice as high in sample 1 than it is in sample 2, making the number of DTs observed at most leaf sample sizes larger. b) Low DTL can be caused by many occurrences of one DT or many undamaged leaves. c) DTO can be used to distinguish between a sample with many undamaged leaves (sample 1) and a sample with many leaves having the same DT (sample 2).

Figure 3.2. Dicot leaf diversity. Rarefaction curves for the late Paleocene (dark blue) and early Eocene (orange) sites. Ages for each site are given in Table 3.1.

Figure 3.3. Dicot leaf rank abundance curves for the nine Bighorn Basin sites. The abundant plant morphotypes are abbreviated as follows. At 15 Mile Creek, Al = Alnus sp., Pc = Platycarya castaneopsis, Dn = “Dombeya” novi-mundi, Pw = Populus wyomingiana, and 052 = Dicot sp. WW052. At PN, Mg = Macginitiea gracilis, F040 = Fabaceae sp. WW040, and M = Machaerium sp. In the Cool Period, Ava = Averrhoites affinis, Dn = “Dombeya” novi-mundi, Ama = “Ampelopsis” acerifolia, 037 = Dicot sp. WW037, L036 = Lauraceae sp. WW036, and 034 = Dicot sp. WW034. At Elk Creek, Al = Alnus sp. and Ava = Averrhoites affinis. At Hubble Bubble, F001 = Fabaceae sp. WW001, M = Machaerium sp., 004 = Dicot sp. WW004, 005 = Dicot sp. WW005, and 006 = Dicot sp. WW006. At Daiye Spa, Mg = Macginitiea gracilis, F750 = Fabaceae sp. FU750, Cg = Cercidiphyllum genetrix, and Pr = Platanus raynoldsi. At Dead Platypus, Zf = Zizyphoides flabella, Ava = Averrhoites affinis, B741 = Betulaceae sp. FU741, Mg = Macginitiea gracilis, Pr = Platanus raynoldsi, Cg = Cercidiphyllum genetrix, and Da = Davidia antiqua. At Lur’d Leaves, Pa = Persites argutus, Zf = Zizyphoides flabella, and Ama = “Ampelopsis” acerifolia.

104 At Skeleton Coast, Cg = Cercidiphyllum genetrix, Bs = Browniea serrata, Pr = Platanus raynoldsi, and SC1 = Dicot sp. SC1.

Figure 3.4. Cluster analysis of the Bighorn Basin sites based on floral composition. Sites were clustered using Bray-Curtis distances and Ward’s clustering method. The agglomerative coefficient for the cluster analysis is 0.44.

Figure 3.5. NMS ordination of the Bighorn Basin sites based on the relative abundance of dicot species. The Paleocene sites are open circles, and the Eocene sites are closed circles. Ages for each site are given in Table 3.1.

Figure 3.6. Damage Frequency. a) Mean annual temperature estimates for the Bighorn Basin, as discussed in Table 3.2. b) Total damage frequency on the bulk floras. Error bars in frequency represent ±1σ, based on a binomial sampling distribution. c) Specialized damage frequency on the bulk floras. d) Mine frequency on the bulk floras. e) Total damage frequency on individual host plants. Each white bar represents a plant host with at least 25 leaves in the flora. The colored bars are the means of the white bars at the site, and the error bars represent one standard deviation. f) Specialized damage frequency on individual host plants, as in (e). g) Mine frequency on individual plant hosts. Each bar represents a single plant species, and only those hosts with mines are shown.

Figure 3.7. The percent of leaves in each flora with each functional feeding group. HF = hole feeding, MF = margin feeding, S = skeletonization, SF = surface feeding, G = galling, M = leaf mining, and PS = piercing and sucking.

Figure 3.8. The percent of leaves in each flora with a given number of DTs. The number of DTs observed on a single damaged leaf ranges from one to ten (Dicot sp. WW005 at Hubble Bubble).

105 Figure 3.9. Number of damage types standardized by leaves (DTL). a) MAT, as in Figure 3.6. b) Total DTL on each flora standardized to 400 leaves, with error bars representing one standard deviation above and below the mean of the resamples. c) Specialized DTL standardized as in (b). d) Mine DTL standardized as in (b). e) Total DTL on individual plant hosts standardized to 20 leaves by resampling as in (b). Each host species with more than 20 specimens is represented by a white bar; colored bars represent the average DTL for the specified species in each flora. f) Specialized DTL, as in (e) g) Mine DTL. Each species is represented by a bar color-coded according to flora, and only those species with mines are shown.

Figure 3.10. Number of damage types standardized by damage type occurrences (DTO). a) MAT, as in Figure 3.6. b) Total DTO on the bulk floras standardized to 225 DT occurrences. The error bars represent Heck et al.’s standard error for analytical rarefaction. c) Specialized DTO on the bulk floras standardized to 30 specialized DT occurrences. Errors as in (b). d) Mine DTO on the bulk floras rarefied to 5 mine occurrences. Errors as in (b). e) Total DTO on individual plant hosts standardized to 20 DT occurrences. All plants with at least 20 DT occurrences are represented by a white bar, and the colored bars represent the means for the sites. Error bars are one standard deviation. f) Specialized DTO on individual plant hosts standardized to 20 specialized DTOs. Errors as in (b).

Figure 3.11. Insect damage on single plant lineages. a) Total and specialized damage frequency on Cercidiphyllum genetrix at all sites with at least 20 Cercidiphyllum genetrix leaves. Errors bars in represent ±1σ, based on a binomial sampling distribution. b) Total and specialized DTL on Cercidiphyllum genetrix standardized to 20 leaves, with error bars representing one standard deviation above and below the mean of the resamples.

106 c) Total and specialized DTO on Cercidiphyllum genetrix standardized to 20 DT occurrences, with error bars representing Heck et al.’s standard error. At Dead Platypus, there are not 20 specialized DT occurrences. d) Total and specialized damage frequency on the two Platanaceae species, Platanus raynoldsi and Macginitiea gracilis, with at least 20 leaves at many of the Bighorn Basin sites. Errors as in (a). e) Total and specialized DTL on Platanaceae, presented as in (b). f) Total and specialized DTO on Platanaceae, presented as in (c). At Skeleton Coast, Lur’d Leaves, and Dead Platypus, there are not 20 specialized DT occurrences on Platanus raynoldsi. Lur’d Leaves also does not have 20 DT occurrences on Platanus raynoldsi. Dead Platypus and Daiye Spa do not have 20 specialized DT occurrences on Macginitiea gracilis.

Figure 3.12. DT rank abundance curves. Each point is the percent of leaves at a given site with a given damage type, and the most abundant DTs are labeled.

Figure 3.13. DT rank abundance curves. Each point is the percent of DT occurrences at a given site of a given damage type, and the most abundant DTs are labeled.

Figure 3.14. NMS of insect damage on the bulk floras. The nine sites were ordinated in NMS based on the percent of leaves with each functional feeding group. Paleocene sites are open circles and Eocene sites are closed circles. The seven functional feeding groups were also ordinated based on their occurrences at the sites, and they are plotted on the same axes (+ symbols). Functional feeding groups are abbreviated as in Figure 3.7.

Figure 3.15. Cluster analysis of insect damage on species-site pairs, based on the relative abundances of the seven functional feeding groups. Each plant host with at least 20 leaf specimens was included in the analysis. The dots are scaled according to the relative abundance of each functional feeding group on each plant host. Functional feeding groups abbreviated as in Figure 3.7. The significance of the numbered clusters is explained in the text.

107 Figure 3.16. NMS of insect damage on species-site pairs. The unlabeled points are the plant hosts of Figure 3.15 ordinated by the relative abundances of each functional feeding group. Scores for the functional feeding groups are plotted on the same axes, as in Figure 3.14.

Figure 3.17. Leaf mass per area vs. insect damage.

a) Estimated MA, using the method of Royer et al. (2007), and damage frequency for individual plant species from each site. All species with at least 20 leaves in a flora and two specimens with a reconstructable area and the petiole preserved are included in the 2 analysis. Error bars for MA are often at least ±50 g/m (Table 3.5) and are not shown because they clutter the graph too much. R2 and p values are given on the graph. At 15 Mile Creek, Al = Alnus sp., Dn = “Dombeya” novi-mundi, L061 = Lauraceae sp. WW061, Pc = Platycarya castaneopsis, Pw = Populus wyomingiana, and 052 = Dicot sp. WW052. At PN, F040 = Fabaceae sp. WW040, M = Machaerium sp., and Mg = Macginitiea gracilis. In the Cool Period, Ava = Averrhoites affinis. At Elk Creek, Al = Alnus sp. and Ava = Averrhoites affinis. At Hubble Bubble, F001 = Fabaceae sp. WW001, F002 = Fabaceae sp. WW002, M = Machaerium sp., 004 = Dicot sp. WW004, 005 = Dicot sp. WW005, and 006 = Dicot sp. WW006. At Daiye Spa, Cg = Cercidiphyllum genetrix, F750 = Fabaceae sp. FU750, Mg = Macginitiea gracilis, and Pr = Platanus raynoldsi. At Dead Platypus, Ava = Averrhoites affinis, B741 = Betulaceae sp. FU741, Da = Davidia antiqua, Pr = Platanus raynoldsi, and Zf = Zizyphoides flabella. At Lur’d Leaves, Ama = “Ampelopsis” acerifolia, Bs = Browniea serrata, Cp = Celtis peracuminata, Pa = Persites argutus, and Zf = Zizyphoides flabella. At Skeleton Coast, Bs = Browniea serrata and Cg = Cercidiphyllum genetrix.

b) Estimated MA and total DTL for individual plant species from each site. Abbreviations as in part a.

c) Estimated MA and total DTO for individual plant species from each site. Abbreviations as in part a.

108 Figure 3.18. Dicot leaf diversity vs. insect damage on the bulk floras. a) Dicot leaf diversity rarefied to 450 leaves vs. total, specialized, and mine frequency. Regression lines are from a linear model, and R2 values are shown on the plot. b) Dicot leaf diversity rarefied to 450 leaves vs. total, specialized, and mine DTL standardized to 450 leaves. Regression lines as in (a). c) Dicot leaf diversity rarefied to 450 leaves vs. total DTO rarefied to 225 DT occurrences and specialized DTO rarefied to 30 DT occurrences. Regression lines as in (a).

Figure 3.19. Host-plant abundance vs. damage frequency on individual host plants. The relative abundance of each plant species with at least 20 leaves is plotted against the percent of leaves with total, specialized, and mine frequency.

Figure 3.20. Host-plant abundance vs. DTL on individual host plants. The relative abundance of each plant species with at least 20 leaves is plotted against total, specialized, and mine DTL, standardized to 20 leaves.

Figure 3.21. Host-plant abundance vs. DTO on individual host plants. The relative abundance of each plant species with at least 20 DT occurrences is plotted against total and specialized DTO, standardized to 20 total or specialized DT occurrences.

Figure 3.22. MAT vs. damage frequency. a) Total, specialized, and mine frequency on the bulk floras plotted against MAT estimates from Table 3.2. In these figures, MAT of Daiye Spa is 16oC, and Dead Platypus is 12oC. Regression lines are from a linear model, and R2 values are shown on the plot. b) First differences of MAT vs. total damage frequency. c) First differences of MAT vs. specialized damage frequency. d) First differences of MAT vs. mine frequency.

Figure 3.23. MAT vs. DTL. a) Total, specialized, and mine DTL on the bulk floras plotted against MAT estimates, as in Figure 3.22. DTL is standardized to 450 leaves. b) First differences of MAT vs. total DTL. c) First differences of MAT vs. specialized DTL.

109 d) First differences of MAT vs. mine DTL.

Figure 3.24. MAT vs. DTO. a) Total and specialized DTO on the bulk floras plotted against MAT estimates, as in Figure 3.22. Total DTO is rarefied to 225 DT occurrences, and specialized DTO to 30 DT occurrences. b) First differences of MAT vs. total DTO. c) First differences of MAT vs. specialized DTO.

Figure 3.25. Correlations between damage frequency and DTL and DTO. a) Total, specialized, and mine frequency vs. total, specialized, and mine DTL, respectively. DTL is standardized to 450 leaves, and linear regression lines are included. b) Total and specialized damage frequency vs. total and specialized DTO. Total DTO was rarefied to 225 DT occurrences, and specialized DTO to 30 specialized DT occurrences. c) Number of leaves at each site vs. its total DTO, rarefied to 225 DT occurrences.

Figure 3.26. Insect damage on the Western Interior bulk floras. Site symbols are coded according to time period and basin. a) Plant species at each site, rarefied to 400 leaves. Error bars are Heck et al.’s (1975) standard error. b) Total DTL, standardized to 400 leaves, with error bars representing one standard deviation above and below the mean of the resamples. c)Total damage frequency, with errors bars representing ±1σ, based on a binomial sampling distribution. d) DTO at 175 DT occurrences. Error bars are Heck et al.’s standard error. e) Mine DTL, standardized to 400 leaves, with error bars representing one standard deviation above and below the mean of the resamples. f) Mine frequency, with errors bars representing ±1σ, based on a binomial sampling distribution.

Figure 3.27. Damage frequency vs. DTO on the Western Interior bulk floras.

110 Figure 3.28. Insect damage on individual plant hosts from the Western Interior floras. Each point is a plant host with at least 25 leaves, and points are coded based on the flora’s time period and basin. a) Total damage frequency. b) Mine frequency. c) Total DTL standardized to 25 leaves. d) Mine DTL standardized to 25 leaves. e) Total DTO standardized to 20 DT occurrences. To date, only the Bighorn Basin and southern Wyoming species have had their DTO calculated.

Figure 3.29. Insect damage on single plant lineages throughout the Western Interior. All Betulaceae, Cercidiphyllaceae, Laurales, Platanaceae, and Trochodendrales samples with at least 25 leaves are included in the plots. a) Total damage frequency. b) Total DTL standardized to 25 leaves. c) Total DTO standardized to 20 DT occurrences. To date, only the Bighorn Basin and southern Wyoming species have had their DTO calculated. d) Mine DTL standardized to 25 leaves.

Figure 3.30. Dicot leaf diversity and MAT vs. insect damage on the bulk floras. Floral diversity at each site is rarefied to 400 leaves. MAT estimates are described in Tables 3.2 and 3.13. Black diamonds represent total damage, and gray triangles mines. The anomalous Castle Rock flora is plotted as “+” for total damage metrics and “x” for mine metrics. Mexican Hat could not be included in the MAT plots because it does not have a good MAT estimate. a) Floral diversity vs. total damage frequency. b) Floral diversity vs. total and mine DTL, standardized to 400 leaves. c) Floral diversity vs. total DTO standardized to 175 DT occurrences. d) MAT vs. total damage frequency. e) MAT vs. total and mine DTL, standardized to 400 leaves. f) MAT vs. total DTO standardized to 175 DT occurrences.

111 Figure 3.1. Hypothetical DTL and DTO Curves

a)

1

2 DTL

Number of Leaves

b) DTL

Number of Leaves

c) DTO

1 2

Number of DT occurrences

112 Figure 3.2. Dicot Leaf Diversity

30

Hubble Bubble 15 Mile Creek

20 Cool Period Dead Platypus

Daiye Spa PN Lur’d Leaves Plant Species 10

Skeleton Coast Elk Creek

500 1000 1500 2000 # Leaves

Table 3.4. Floral Diversity and Evenness

Diversity, Div. Pielou's Flora N S 450 leaves error J PIE 15 MC 1821 24 17.55 1.61 0.40 0.77 PN 693 14 12.07 1.14 0.30 0.55 CP 491 18 17.74 0.49 0.52 0.85 EC 1008 6 4.78 0.85 0.21 0.31 HB 995 25 20.00 1.60 0.39 0.72 DS 843 16 14.68 0.91 0.50 0.82 DP 1016 19 14.28 1.52 0.48 0.84 LL 1364 15 12.47 1.02 0.39 0.65 SC 840 7 6.53 0.50 0.39 0.55

N is the number of leaves in the census, and S the total number of plant species. Diversity was rarefied to 450 leaves using analytical rarefaction and the error represents Heck's standard error (1975). Pielou's J (Pielou 1969) and PIE (Hurlburt 1971) are evenness metrics.

113 Figure 3.3. Dicot Rank Abundances 15 Mile Creek PN Cool Period Elk Creek Hubble Bubble

Ava

Mg

F001 Al

Ava Pc F040 Dn Al Dn Ama M 037 004,006,005 Pw, 052 M L036, 034 114 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 01020 01020 01020 01020 01020

Daiye Spa Dead Platypus Lur'd Leaves Skeleton Coast

% of Leaves Cg Pa

Mg Zf F750, Cg Ava Bs Pr B741,Mg,Pr Zf Ama Cg,Da Pr SC1 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

01020 01020 01020 01020 Rank Abundance Figure 3.4. Cluster Analysis, Bulk Floras, Dicot Composition PN 53.4 Ma 55.2 Ma 55.9 Ma 52.8 Ma Elk Creek 54.2 Ma Daiye Spa 57.5 Ma Mile Creek 55.8 Ma 56.4 Ma 59.8 Ma Cool Period Lur’d Leaves Dead Platypus Hubble Bubble Skeleton Coast

Figure 3.5. NMS, Bulk Floras, Dicot Composition

Elk Creek

15 Mile Creek Cool Period

Lur’d Leaves NMS 2 NMS Dead Platypus

Hubble Bubble Skeleton Coast Daiye Spa

PN -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 1.5

NMS 1

115 Figure 3.6. Damage Frequency (e) (f) (g)

52 (a) (b) (c) (d)

15 Mile Creek

1 53 PN PN

2 CP

54 Cool Period

3

116 55 Elk Creek HB EC

4 Hubble Bubble PETM 5 56 6 Daiye Spa 7 Age (Ma)

Dead Platypus

57 DP MC15 8

Lur’d Leaves 58

9 Skeleton Coast

59 SC LL DS

11 15 1923 10 30 50 51525123 20 60 100 10 30 50 515 % of l e a ve s % of leaves % of leaves Mean annual % of leaves % of leaves with % of leaves damaged with specialized mined temperature with damage spec. damage mined damage Figure 3.7. Percent of Leaves with Each Functional Feeding Group 45

35

25 % of leaves % 15

5

HF MF S SF G M PS

15 Mile Creek Elk Creek Dead Platypus PN Hubble Bubble Lur'd Leaves Cool Period Daiye Spa Skeleton Coast

Figure 3.8. Percent of Leaves with a Given Number of DTs

35

25

15 % of leaves

5

13 5 135 13 5 135 13 579 135 13 135 13 15MC PN CP EC HB DS DP LL SC # DTs

117 118

Age (Ma) 58 56 54 53 52 59 57 55 PETM temperature Mean annual 11 19 15 11 23 Figure 3.9.NumberofDamage Types StandardizedbyLeaves(DTL) a b c (d) (c) (b) (a) Hubble Bubble Elk Creek 15 MileCreek Dead Platypus Skeleton Coast Lur’d Leaves Daiye Spa Cool Period PN Total DTL 020 10 30 40 3 1 9 7 6 5 2 8 4 Specialized 51525 DTL 26 Mining DTL 10

SC LLDP DS HB EC CP PN MC15 4 Total DTL 8 12 16 e f (g) (f) (e) Specialized 246 DTL 0.2 Mining DTL Mining 0.6 1 119 Figure 3.10.NumberofDamage Types StandardizedbyDamage Type Occurrences (DTO)

Age (Ma) 59 58 56 54 53 52 57 55 PETM temperature Mean annual 11 19 15 11 23 a (b) (a) 15 MileCreek Cool Period PN Skeleton Coast Lur’d Leaves Daiye Spa Hubble Bubble Elk Creek Dead Platypus 5152535 Total DTO 9 8 4 014 10 6 2 Specialized DTO (c) ? ? ? 135 Mine DTO (d)

SC LLDP DS HB EC CP PN MC15 2610 at 20DTOsat Total DTs e (f) (e) Specialized DTs Specialized at 20DTOs at 26 10 Figure 3.11. Insect Damage on Single Plant Lineages

Cercidiphyllum genetrix (a) (b) (c) DS

DP *

LL

SC

10 20 30 40 510 510 % Damage DTL DTO

Total Specialized

Platanaceae (d) (e) (f) PN

DS * DP * LL * SC *

20 40 5105101520 % Damage DTL DTO

Platanus raynoldsi Total Specialized Macginitiea gracilis Total Specialized * Refer to caption for more information

120 Figure 3.12. DT Rank Abundances, % Leaves 15 Mile Creek PN Cool Period Elk Creek Hubble Bubble 2

2 1

12 12 12 2 16 2 46 3, 16 2, 12 12 1 46 3 3 46 1 1 4 5 3 29 5 4 1, 16 3 5, 8, 32 29 13 57 15, 13, 14 121 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0 1020304050 0 1020304050 01020304050 01020304050 01020304050 Daiye Spa Dead Platypus Lur'd Leaves Skeleton Coast % of Leaves

2

2 1 1 12 2 12 16 16 3 2 4 1 1 3 56 4 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0 1020304050 0 1020304050 01020304050 01020304050 Rank Abundance 122

% of DT Occurrences

0.00 0.05 0.10 0.15 0.20 0.25 10203040500 15 Mile Creek PN Cool Period Elk Creek Hubble Bubble Hubble Elk Creek Cool Period PN Creek 15 Mile 2 12 3, 16 1 46 5 29 Figure 3.13.DT Rank Abundances, %DT occurrences 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 10203040500 10203040500 12 2 1 2 16 12 3 4 1 5 13 Daiye Spa Daiye 4 R a nk A 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 10203040500 01020304050 2 12 2, 12 3 Dead Platypus Dead 3 16 1 1, 16 5 5, 46,164 bu n da n 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 ce 01020304050 01020304050 2 1 2 12 46 Lur'd Leaves 1 16 3 4 5 12

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 01020304050 01020304050 Skeleton Coast 1 2 1 2 16 12 3 46 56 3 29 4 4 Figure 3.14. NMS, Insect Damage on Bulk Sites

PS EC

M CP LL HB DS NMS 2 NMS MF SF 15MC DP HF

G

PN S

SC -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -0.4 -0.2 0.0 0.2 0.4 0.6 NMS 1

123 HFMF SSFG PS M MC15 Allophylus flexifolia HB Dicot sp. WW006 HB Fabaceae sp. WW002 HB Dicot sp. WW005 4 MC15 Alnus sp. MC15 Lauraceae sp. WW061 HB Dicot sp. WW004 HB Populus wyomingiana MC15 Aleurites fremontensis DS Betulaceae sp. FU744 DP Averrhoites affinis HB Machaerium sp. HB Fabaceae sp. WW001 MC15 “Dombeya” novi-mundi MC15 Platycarya castaneopsis DP Betulaceae sp. FU741 2 PN Macginitiea gracilis MC15 Populus wyomingiana DP Cercidiphyllum genetrix DP Zizyphoides flabella CP “Ampelopsis” acerifolia DP Juglandaceae sp. FU740 MC15 Dicot sp. WW052 B DS Fabaceae sp. FU750 CP Lauraceae sp. WW036 DS Cercidiphyllum genetrix PN Fabaceae sp. WW040 PN Machaerium sp. 3 CP Averrhoites affinis EC Averrhoites affinis CP “Dombeya” novi-mundi DS Macginitiea gracilis A LL Browniea serrata CP Dicot sp. WW037 DP Davidia antiqua DS Dicot sp. FU745 DS Dicot sp. FU749 CP Dicot sp. WW034 DP Platanus raynoldsi DP Macginitiea gracilis EC Alnus sp. SC Dicot sp. SC1 DS Platanus raynoldsi SC Cercidiphyllum genetrix

Figure 3.15. Cluster Analysis of Insect Cluster Pairs Damage on Species-site 3.15. Figure LL Zizyphoides flabella LL Cercidiphyllum genetrix LL “Ampelopsis” acerifolia LL Platanus raynoldsi 1 SC Platanus raynoldsi SC Browniea serrata LL Davidia antiqua LL Persites argutus LL “Ficus” artocarpoides LL “Celtis” peracuminata

124 Figure 3.16. NMS, Insect Damage on Species-site Pairs

PS MF

G 125 HF M

SF S Figure 3.17. Leaf Mass per Area vs. Insect Damage a) 005

F002

006 Af Al DS 004 L061 DP Dn Mg F040 M Pc B741 Da Bs Ava Bs 052 F001 Pw M F750 Zf Al Ava Pr Ava Mg Cg Pr Ama Cg

Pa Zf R2 = .02 Cp p = .40

b) 005

006 004 F002 Af DS L061 DP Al M Cg Mg F750 Bs Pw Dn Ava B741 Da Ava Pc Mg Zf M F001 052 Al Pr Bs Pr Cg Ava Ama Pa Zf Cp R2 = .05 p = .19

126 Figure 3.17. Leaf Mass per Area vs. Insect Damage c)

Cg Pr 006 M Af 004 Mg Pw Zf Ava L061 005 F750 Bs Mg F002 Al M B741 Pa Pc F001 DS Al Da Zf Ava Dn Ama DP Ava Cg 052 Pr Bs

F040

R2 = .04 p = .13

127 Figure 3.18. Dicot Leaf Diversity vs. Insect Damage a) 70 60

2 50 R = 0.23, p = 0.18

40

30

20 R2 = 0.10, p = 0.41 % of leaves damaged leaves % of 10 R2 = 0.53, p = 0.03

510152025 Floral diversity at 450 leaves b) 40

2 30 R = 0.38, p = 0.08

20 2 R = 0.34, p = 0.10

DTL at 450 leaves DTL at 10

R2 = 0.29, p = .13

510152025 Floral diversity at 450 leaves c) 30 2 R = 0.41, p = 0.06 25

20

15 R2 = 0.42, p = 0.06 10

DT0 at 225 / 30 DTO 225 / DT0 at 5

510152025 Floral diversity at 450 leaves

Total Specialized Mines

128 Figure 3.19. Host Plant Abundance, Frequency

Percent of LeavesDamaged 15 Mile Creek PN Cool Period Elk Creek Hubble Bubble 129 0 5 10 15 20 25 30 35 020406080 020406080 0 102030405060 010203040 10 20 30 10 30 50 10 15 20 25 20 40 60 80 10 20 30 40 50

Daiye Spa Dead Platypus Lur'd Leaves Skeleton Coast

Total Damage Specialized Damage Mines 010203040 0 102030405060 01020304050 0 1020304050

51525 51525 10 30 50 10 30 50 Percent Abundance in Flora Figure 3.20. Host Plant Abundance, DTL

15 Mile Creek PN Cool Period Elk Creek Hubble Bubble DTL 0246 024681012 02468 0123456 0 5 10 15 20 130 10 20 30 10 30 50 10 15 20 25 20 40 60 80 10 20 30 40 50

Daiye Spa Dead Platypus Lur'd Leaves Skeleton Coast

Total Damage Specialized Damage Mines 0123456 0 2 4 6 8 10 12 0246 02468

51525 510152025 10 30 50 10 30 50 Percent Abundance in Flora Figure 3.21. Host Plant Abundance, DTO

15 Mile Creek PN Cool Period Elk Creek Hubble Bubble 345678 5678910 6 7 8 9 10 11 45678910 678910

131 10 20 30 10 30 50 10 15 20 25 20 40 60 80 10 30 50 DTO

Daiye Spa Dead Platypus Lur'd Leaves Skeleton Coast

Total Damage Specialized Damage 4567 67891011 6789 6789 51525 51525 10 30 50 10 30 50

Percent Abundance in Flora Figure 3.22. MAT vs. Damage Frequency

a) 60 2 HB R = 0.57, p = 0.02 PN MC15 50

DP 40 CP DS

SC 30 EC

20 R 2 = 0.62, p = 0.01 LL % of Leaves Damaged 10

R 2 = 0.32, p = 0.12 0 10 12 14 16 18 20 22 24 MAT (C)

Total Specialized Mines

b)30 c)10 d) 6

-10 10 -10 10 -10 10 Change in Frequency

2 2 2 -30 R = 0.20 -10 R = 0.61 -6 R = 0.01 p = 0.26 p = 0.02 p = 0.86

Change in Temperature

132 Figure 3.23. MAT vs. DTL at 450 leaves

a) 40 MC15 HB DS 2 30 R = 0.89, p < 0.01 PN DP CP EC 20 LL R2 = 0.89, p < 0.01 SC # Damage types # Damage 10

R2 = 0.78, p < 0.01 0 10 12 14 16 18 20 22 24

MAT (C)

Total Specialized Mines

b)10 c)6 d) 6

-10 10 -10 10 -10 10 Change in DTL

2 2 2 -10 R = 0.779 -6 R = 0.740 -6 R = 0.562 p < 0.01 p < 0.01 p = 0.03

Change in Temperature

133 Figure 3.24. MAT vs. DTO a) 30 DS HB 2 LL R = 0.43, p =0.05 25 MC15 DP PN EC 20 CP

15 SC 2 R = 0.14, p = 0.32 10 # Damage types # Damage

5

0 10 12 14 16 18 20 22 24 MAT (C)

Total (225 DT occ) Specialized (30 DT occ) b) 10 c) 8

-10 10 -10 10 Change in DTO

2 2 -10 R = 0.211 -8 R = 2E-06 p = 0.25 p = 0.99

Change in Temperature

134 Figure 3.25. Frequency, DTL, DTO Table 3.9. First Differences, (a) 40 Frequency vs. DTL Residual 2 F p- R value 2 SE statistic R = 0.61, p = 0.01 Total 15.20 0.36 3.37 0.12 30 Spec. 4.68 0.52 6.50 0.04 Mines 1.14 0.44 4.85 0.07

20 DTL

10 R2 = 0.54, p = 0.01

R2 = 0.54, p = 0.02

10 20 30 40 50 60 % of Leaves Damaged (b) 30

25

20

15 DTO

10

5

10 20 30 40 50 60 % of Leaves Damaged (c) 30 R 2 = 0.27

25

20

15 DTO

10

5 Total Specialized Mines 500 1000 1500 2000 # Leaves in analysis

135 Figure 3.26. Western Interior Insect Damage, Bulk Floras

Dicot species (400 Leaves) DTL (400 Leaves) % Damage 50 100 20 30 40 20 40 60 80 52

54

56 P-E

58

60 Age (Ma)

62

64

66 K-T

(a) (b) (c)

E, SWY E, Bighorn P, SWY P, Bighorn P, Powder River P, Denver P, Williston K, Williston

DTO (175 DT occurrences) DTL Mines (400 Leaves) % Mines 10 20 30 40 2468 2468 52

54

56 P-E

58

60 Age (Ma)Age

62

64

66 K-T

(d) (e) (f)

136 Figure 3.27. Damage Frequency vs. DTO

35

30

25

20

15

10 DTO (175 DT occurrences)

5

R 2 < 0.01 p = 0.76 10 20 30 40 50 60 % of leaves damaged

137 Figure 3.28. Western Interior, Individual Species % Damage % Mines 20 40 60 80 100 51015 52 (a) (b)

54

56 P-E

58

Age (Ma) Age 60

62

64

K-T 66

E, SWY E, Bighorn P, SWY P, Bighorn P, Powder River P, Denver P, Williston K, Williston

DTL (25 leaves) DTL Mines (25 leaves) 5 10 15 20 123 52 (c) (d)

54

56 P-E

58

Age (Ma) 60

62

64

K-T 66

138 Figure 3.28. Western Interior, Individual Species

DTO 4812 52 (e)

54

56 P-E

58

Age (Ma) Age 60

62

64

K-T 66

E, SWY E, Bighorn P, SWY P, Bighorn

139 Figure 3.29. Western Interior, Damage on Plant Lineages % Damage DTL 20 40 60 80 100 51015 52

54

56 P-E

58

Age (Ma) Age 60

62

64

K-T 66

Betulaceae Cercidiphyllaceae Laurales Platanaceae Trochodendrales DTO Mine DTL 24681012 0.5 1 1.5 2 2.5 3 52

54

56 P-E

58

Age (Ma) Age 60

62

64

K-T 66

140 Figure 3.30. W. Interior, MAT and Dicot Leaf Diversity vs. Damage (a) (b) (c)

60 35 35 R2 = 0.22 30 30 2 50 p = .04 R = 0.35 p = .01 25 25 40 20 20 30 DTL DTO

% Damage 15 15 20 10 10

10 2 141 5 R = 0.218 5 p = .04

10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 Flor al dive r s ity Floral diversity Floral diversity (d) (e) (f) 60 35 35

50 30 30

25 25 40 20 20 30 2 2 DTL R = 0.30 DTO R = 0.22

% Damage 2 R = 0.194 15 p = .01 15 p = .04 20 P = .06 10 10 2 10 5 R = 0.47 5 p = .001

5 10152025 510152025 5 10152025 MAT MAT MAT CONCLUSIONS

The work presented here provides a comprehensive, quantitative, and high- resolution analysis of insect damage on angiosperm leaves through the late Paleocene and early Eocene (59 – 52.5 Ma) in the Bighorn Basin of Wyoming. Insect damage censuses were conducted at nine stratigraphic levels: four in the late Paleocene, one in the PETM, and four in the early Eocene. These sites encompass the gradual late Paleocene warming, abrupt PETM global warming event, early Eocene cooling, and warming to the sustained Eocene Thermal Maximum. Damage frequency, diversity, and composition were analyzed at each site on the bulk floras and individual plant hosts. Then, trends in herbivory were identified and tied to changes in external variables such as temperature, pCO2, floral diversity, and leaf mass per area. Finally, the Bighorn Basin sites were added to other Western Interior insect damage sites to look at the extended recovery from the K-T extinction. It is not until the latest Paleocene and PETM, almost 10 myr after the extinction, that the number of damage types standardized by leaves reaches its pre- extinction levels. Insect damage data for many of the stratigraphic levels considered in this work and others (Wilf et al. 2006) consist of a single quarry. However, if spatial variability within a level is high, a single sample will not adequately represent the level and may either mask true temporal changes or create spurious ones. In order to measure the spatial variability in fossil insect feeding damage, replicate samples were collected at Elk Creek and 15 Mile Creek, two laterally extensive early Eocene carbonaceous shale beds. Variations in damage frequency, diversity, and composition within a bed were compared to differences between the two beds. There are variations in all three damage metrics within a bed, reflecting heterogeneity in the live forest. However, differences in diversity and composition between beds were significantly greater than variations within a bed, and intra-bed variation was primarily due to differing floral composition. Damage diversity and composition are most strongly influenced by the number and types of insect species present, which may be less variable over small geographic distances. Damage frequency, on the other hand, was more variable within a bed than diversity or composition because it depends heavily on the number of insects present, which can vary considerably over small distances (Basset et al. 2001). For example, an outbreak of a single insect species on just one tree can significantly elevate damage frequency. Two possible insect outbreaks were observed in the Bighorn Basin study sites: piercing and sucking insects on Averrhoites

142 affinis at EDC0502 (DT 46, Elk Creek) and beetle miners on “Dombeya” novi-mundi at USNM 42409 (DT 164, Cool Period). Chapter 2 provides evidence that temporal differences in insect damage are generally greater than small-scale spatial variations. As long as a single quarry adequately represents floral diversity and composition for the time horizon, it also captures damage diversity and composition. Therefore, the exceptional diversities (standardized by number of leaves in the analysis) at Mexican Hat and Hubble Bubble are representative of the forest in which the sampled leaves lived. Elevated damage diversity, though, should be carefully investigated to determine whether it was caused by the outbreak of a single insect species over a limited geographic area or it represents an increase across many host plants and insect species. In Chapter 3, two damage metrics were presented to measure the number of DTs at a given site: DTL (DTs standardized by the number of leaves in the analysis) and DTO (DTs standardized by DT occurrence). DTL can be calculated for total, specialized, and mine damage on both individual species and bulk floras, and it varies considerably across the studied interval. Although DTL is correlated with frequency, it has very strong ecological meaning because it considers insect feeding damage on the same amount of foliar resource available for insect consumption. DTL shows a significant decrease at the K-T boundary and an extended “dead zone” in the early Paleocene, which is consistent with the extremely low floral diversity found across the Western Interior. Trends in DTL correlate strongly with changes in temperature. There is no correlation between DTO and damage frequency. However, in this dataset, there is not as much variability in DTO, which is surprising because the interval spans a major mass extinction, a major perturbation to the global carbon system and climate, a gradual warming, and significant changes in floral composition. Warm sites like Hubble Bubble and 15 Mile Creek do not have exceptionally high DTO, and there are little to no correlations between DTO and temperature, floral diversity, or any other variable considered in the study. It is possible that the sample sizes for DTO are too low to obtain meaningful results. In the broader Western Interior dataset, total DTO was considered at 175 DT occurrences. In the Bighorn Basin dataset, total DTO was considered at 175 DT occurrences, specialized DTO at 30 specialized DT occurrences, and mine DTO at 5 mine occurrences. The rarefaction curves for total DTO at Mexican Hat, Hubble Bubble, and 15 Mile Creek do not begin to level off until 600 to 800 DT occurrences. In order to obtain samples of this size, at least 3000 leaves would need to be analyzed at Lur’d Leaves and

143 over 6000 at Castle Rock. For many stratigraphic levels, it is not possible to excavate that many leaves. For those localities where it is possible, it would take approximately 500 man-hours (this is equivalent to a solid month of field work) just to field census that many leaves from one stratigraphic level. Setting aside the logistical problems of obtaining a large enough sample to find meaningful trends in DTO though time, the question remains whether DTO is a good metric to measure the diversity of insect feeding damage on plants. Mexican Hat and Castle Rock, two early Paleocene floras that are exceptional for different reasons, provide an interesting case study. The rarefaction curves for Castle Rock and Mexican Hat indicate that both floras have approximately the same DTO at all sample sizes. However, at these sample sizes, the DTO curve for Castle Rock does not show any leveling. Hypothetically, say that another 4000 leaves were collected at Castle Rock, giving 600 total DT occurrences, and the rarefaction curve began to level off. In all likelihood, DTO for Castle Rock at 600 DT occurrences would either be greater than or equal to Mexican Hat. It seems misleading to say that insect feeding diversity is equal at the two sites when three times as much leaf tissue was considered at Castle Rock than at Mexican Hat. If one considers damage composition at the two sites, there are three orders of leaf miners present at Mexican Hat, versus just two total mines at Castle Rock (approximately the same number of leaves are in each census). Today, there are only four orders of leaf miners in the entire world. Furthermore, the Castle Rock leaves come from several quarries, which should capture spatial heterogeneity. These observations suggest that it is even more misleading to say that insect damage diversity at Castle Rock and Mexican Hat are equal. In conclusion, DTO is a useful analysis to study DT evenness and the relative abundance distributions of damage, but it is not a good representation of the number of ways that insects access leaf tissue at a given time and place. DTL is a much more effective metric to answer this question. The most important finding in this study is the strong, positive correlation between temperature and insect herbivory within the Bighorn Basin. DTL increases when temperature increases during the late Clarkforkian warming, the PETM and the ETM. However, these increases in DTL could simply reflect the gradual diversification of plants and insects over the course of millions of years. This scenario can be definitively ruled out, however, because DTL decreases following the PETM and in the Cool Period, when temperature decreases. Although warming gets most of the attention because of the

144 parallels to modern global warming, intervals of cooling are just as important, if not more so. The PETM flora has high total, specialized, and mine frequency and DTL, both on the bulk flora and on the individual species. Surface feeding, leaf mining, galling, and piercing and sucking are especially abundant in the PETM. Both temperature and pCO2 abruptly increase in the PETM, and there are theoretical reasons why each should affect insect herbivory. Because the R2 values for MAT vs. DTL are extremely high, temperature is causing most of the variation in the number of damage types observed on a given amount of leaf tissue, and pCO2 has little effect. Increasing temperature allows diverse insect populations from the tropics and subtropics to migrate northwards, resulting in an increase in specialized functional feeding groups on the leaves. Additionally, temperature influences insect metabolism and population density (Bale et al. 2002), and greater insect populations are expected at higher temperatures, which may explain the increase in damage frequency. There is only a weak correlation between MAT and damage frequency, and it disappears when first differences are used to remove serial autocorrelation within the dataset. Therefore, other external factors besides (or in addition to) temperature are driving changes in damage frequency. There are strong theoretical reasons why carbon dioxide levels should influence damage frequency. Plants grown at elevated pCO2 for a few months have lower foliar nitrogen concentrations (Bazzaz 1990, Lincoln et al. 1993, Whittaker 2001), and insects would need to eat more leaf tissue to gain the nutrients they need (Watt et al. 1995). Unfortunately, a good proxy to estimate pCO2 in the Paleocene and Eocene does not currently exist, and it is impossible to tell whether changes in pCO2 affect damage frequency on the Bighorn Basin floras. However, if pCO2 does positively correlate with damage frequency, then the floras at PN and 15 Mile Creek indicate that atmospheric carbon dioxide levels were also elevated when these floras were living. Stomatal indices on ginkgo cuticles from Bighorn Basin sites ranging in age from the Cool

Period to PN were used to estimate pCO2, and the results were all under 350 ppm (Royer et al. 2001). If this is true, then pCO2 does not impact the frequency of insect attacks on leaves. This study did not quantitatively consider the amount of leaf tissue affected by insect herbivores. Qualitative observations, though, suggest that insects consumed a greater amount of leaf tissue during the PETM. The PETM leaves have many large holes and extensively chewed margins (Figure 1.1), which make them distinct from leaves at

145 other sites. If this is true, it suggests that although carbon dioxide may not affect the number of insect feeding events, it could affect the amount of leaf tissue consumed during each event. A logical follow-up to this project would be to quantitatively measure leaf area removed at the PETM site and at 15 Mile Creek, the nearest analog in temperature and DTL. Although the correlation between temperature and DTL is extremely strong within the Bighorn Basin dataset, the two are only weakly correlated when the dataset is expanded to include the entire Western Interior. The study interval now encompasses the major extinction at the K-T boundary and the “dead zone” in the early Paleocene, which may mask the influence of temperature changes. Alternately, each basin may have different rates of plant and insect speciation, plant-insect coevolution, and insect migration. Thus, the conclusion to this study is not that DTL is high when temperature is high. Instead, this work shows DTL increases as temperature increases within a limited geographic region. As anthropogenic global warming occurs, sites around the world should show increases in DTL.

146 APPENDIX A: ADDITIONAL LOCALITY INFORMATION

Table A1. Additional geographic and collection information about the fossil localities. Figure A1. Geographic map of the study site. The GIS framework for the maps was put together by Courtney Warren. Figure A2. Geographic map of the cool period sites in the 311 meter carbonaceous shale. See figure A1 for the placement of these sites in the larger context of the Bighorn Basin. Figure A3. The Bighorn Basin floras in geologic time. Ages, MAT, and mammal zone are shown graphically for the nine floras in this study. For the mammal zones, Wa = Wasatchian, Cf = Clarkforkian, Ti = Tiffanian, To = Torrejonian, and Pu = Puercan. See Tables 1.1, 1.4, 3.1, and 3.2 for additional information.

147 TABLE A.1. ADDITIONAL SITE INFORMATION

Site County USGS 1x24k Quad Name Year collected Principal Collectors 15 Mile Creek Bighorn Dead Indian Hill 2006 Currano PN Bighorn Wardell Reservoir 2006 Currano Cool Period (EDC0701-5) Bighorn Jones Reservoir 2007 Currano Elk Creek Bighorn Orchard Bench 2005 Currano Hubble Bubble Washakie Castle Gardens 2005 Currano and Wing Daiye Spa Park Badlands Hills 2004 and 2005 Currano Lur'd Leaves Park Elk Basin 2002 Labandeira and Wilf Skeleton Coast Park Elk Basin SE 2002 Labandeira and Wilf 148 Figure A1. Map of the Bighorn Basin and Study Sites

Wyoming

DP LL

149 DS SC

CP, USNM 42407-42410 PN EC CP, USNM 37654 MC15 HB

100 km Figure A2. Fossil Localities in the 311 m Carb Shale (Cool Period)

44.35689o N, 108.22903o W 42409 44.35614o N, 108.22542o W 42407 42408 o o 44.35611 N, 108.22907 W 42410 44.35554o N, 108.22214o W

300 m

Four of the five Cool Period sites are in a laterally extensive carbonaceous shale bed that occurs at the 311 meter-level in the Elk Creek - Antelope Creek composite section (Clyde et al. 2007). These sites are shown here, labeled by USNM locality number.

150 -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53 01 025 20 15 10 MAT (C)

151 PALEOCENE EOCENE Mammal Cf-3 Cf-2 Cf-1 Ti-3 Torr Ti-2 Ti-6 Ti-5 zone Ti-4 Ti-1 Wa Wa0 Pu ? 52 56 58 54 60 64 62 65.5 Dead Platypus Lur’d Leaves Lur’d Daiye Spa Hubble Bubble South ForkElkCreek Cool Period PN 15 MileCreek Skeleton Coast Age (Ma) Flora APPENDIX B: PLANT SPECIES AND MORPHOTYPES IN THE BIGHORN BASIN FLORAS

The leaves in this study were divided into plant morphotypes that are listed in Table B1. Some of these morphotypes have been formally described and named. For these species, I list the taxonomic affinity and the location of the most recent description. If a genus is in quotes, I suspect that, although the name is valid, the generic assignment is incorrect. Morphotypes that have not been formally named were given informal morphotype names and Fort Union (FU) or Willwood (WW) morphotype numbers. Informal morphotype names are placed in quotes and are not italicized. I described each morphotype that was not already well-defined using the directions in the Manual of Leaf Architecture (Ellis et al. 2008). This information is most effectively conveyed using the morphotype sheet designed by Erika Gonzalez and Amy Morey. Fifty- three morphotypes are described here, each with its own morphotype sheet. A Bighorn Basin exemplar was chosen for each species or morphotype, and figures B1 through B97 are photographs of these exemplars taken by Amy Morey.

152 Species Name or Informal Morphotype Plant Group Sites Exemplar Most Recent Description Synonyms Figure Morphotype Nickname Number Eucommia serrata, SC, LL, Browniea serrata - Cornales, Nyssaceae PW0204-208 Manchester and Hickey 2007 Dicotylophyllum 1 DS anomalum SC, LL, SW9819-2, Cercidiphyllum genetrix - Cercidiphyllaceae DP, DS, Hickey 1977 2,3 EDC0506-137 EC, CP

SC,LL,D Davidia antiqua - Cornales, Nyssaceae EDC0706-44 Manchester 2002 4 P,DS,CP Dicot sp. SC1 SC1 SC - Wilf et al. 2006 - Dicot sp. SC2 SC2 SC - Wilf et al. 2006 - Juglandaceae sp. - Juglandaceae SC - Wilf et al. 2006 - SC, LL,

153 PW0204-182, Platanus raynoldsi - Platanaceae DP, DS, Brown 1962 5,6 SW9819-33 CP Aesculus hickeyi - Sapindaceae LL, EC PW0204-130 Manchester 2001 7 ?Cercidiphyllaceae, "Ampelopsis" acerifolia - LL, CP PW0204-85 Hickey 1977 8 ?Vitaceae Beringiaphyllum cupanioides - Cornales, Nyssaceae LL - Manchester et al. 1999 - "Celtis" peracuminata - Celtidaceae LL - Brown 1962 - LL, CP, Chaetoptelea microphylla - Ulmaceae EDC0603-84 Hickey 1977 9 MC15 Dicot sp. LL1 LL1 LL - Wilf et al. 2006 - "Ficus" artocarpoides - LL - Brown 1962 -

Lauraceae sp. LLL1 LLL1 Lauraceae LL - Wilf et al. 2006 -

Lauraceae sp. LLL2 LLL2 Lauraceae LL - Wilf et al. 2006 - Persites argutus - Lauraceae LL - Hickey 1977 - LL, DP, Menispermites Zizyphoides flabella - Trochodendraceae DS, EC, EDC0507-66 Crane et al. 1991 parvareolatus, 10 CP Cocculus flabella Species Name or Informal Morphotype Plant Group Sites Exemplar Most Recent Description Synonyms Figure Morphotype Nickname Number "Asymmetric Leaf 0706_127" FU742 DP EDC0706-127 Currano thesis 11 DP, EC, Averrhoites affinis - ?Sapindaceae EDC0706-57 to 62 Hickey 1977 12 CP "DP Betulaceous Leaf" FU741 Betulaceae DP EDC0706-84 Currano thesis 13 SW9819-58A,B; terminal and lateral "Bucket" FU745 ?Sapindaceae DP, DS EDC0506-134, Currano thesis 14-17 leaflets SW994HH "Christmas Tree Leaf" FU739 DP EDC0706-139 Currano thesis 18 "DP Cordate 7 Primaries" FU738 DP EDC0706-105 Currano thesis 19,20 EDC0506-46, terminal and lateral "Entire Leaf B" FU749 DP, DS Currano thesis 21,22 EDC0506-145 leaflets "Entire Thick Petiole" FU737 DP EDC0706-156 Currano thesis 23 EDC0706 non- 154 "Glandular Big Tooth" FU736 DP Currano thesis 24 census "Hairy Leaf" FU735 DP EDC0706-179 Currano thesis 25,26 "Juglandaceae sp. 2" FU740 Juglandaceae DP, CP EDC0706-177 Currano thesis "Vinea basinensis" 27 DP, DS, Macginitiea gracilis - Platanaceae SW907. 224-3 Wolfe and Wehr 1987 Platanus nobilis 28 CP, PN "DP Palmate 5 Primaries" FU734 DP EDC0706-109 Currano thesis 29 EDC0706 non- "Witch's Hat" FU733 DP Currano thesis 30 census EDC0706-100, Ternstroemites aureavallis - Theaceae DP, DS Hickey 1977 31,32 SW9819-13 SW9819-98, "DS Betulaceous Leaf" FU744 Betulaceae DS Currano thesis 33,34 EDC0506-111 "Entire Leaf D" FU748 DS EDC0506-102 Currano thesis 35 "Football Tooth" FU743 DS EDC0506-191 Currano thesis 36 "DS Legume" FU750 DS EDC0506-78-82 Currano thesis 37,38 "Paleocene Crabby" FU746 DS SW994 WW Currano thesis 39 "DS Unique Hairy Leaf" FU747 DS SW9818-9 Currano thesis 40,41 "LNL" WW001 Fabaceae HB SW0503-402 Lovelock 2006 - "NML" WW002 Fabaceae HB SW0601-194 Lovelock 2006 - Species Name or Informal Morphotype Plant Group Sites Exemplar Most Recent Description Synonyms Figure Morphotype Nickname Number "Triprime" WW003 HB SW0503-143 Lovelock 2006 - "Slim" WW004 HB SW0601 V Lovelock 2006 - "Leaf Mat" WW005 HB SW0503-562 Lovelock 2006 - "Hartley" WW006 HB SW0601-90 Lovelock 2006 - Machaerium sp. WW007 Fabaceae HB, PN SW0503-140,141 Lovelock 2006 Dalbergia sp. - HB, CP, Dicot XXIII of Wing Populus wyomingiana WW008 Salicaceae PN, SW0601-2 MacGinitie 1974 42 (1981) MC15 "Jay" WW009 HB SW0503-533 Lovelock 2006 - cf Salix WW010 HB SW0503-189 Lovelock 2006 - "Plain Phat" WW011 HB SW0503-91 Lovelock 2006 - "Hero" WW012 HB SW0503-520 Lovelock 2006 - "Oppy" WW013 HB SW0503-501 Lovelock 2006 - 155 cf Rhus WW014 Anacardiaceae HB SW0601-214 Lovelock 2006 - "Grouchy" WW015 HB SW0601-181 Lovelock 2006 - cf "Artocarpus " lessigiana WW016 HB SW0503-263 Lovelock 2006 - "Big Craspy" WW017 HB SW0503-1162 Lovelock 2006 - "Whoops" WW018 HB SW0503-260 Lovelock 2006 - "Bristle Tip" WW019 HB SW0503-47 Lovelock 2006 - "Mimsi" WW020 HB SW0503-39 Lovelock 2006 - "NOT Cercidiphyllum" WW021 HB SW0503-224 Lovelock 2006 - "Tiny Toothy" WW022 HB SW0503-96 Lovelock 2006 - cf. Phoebe WW023 Lauraceae HB SW0601-73 Lovelock 2006 - "String Vein" WW024 HB SW0503-264 Lovelock 2006 -

"Egads" WW025 HB SW0503-554 Lovelock 2006 -

"Supra" WW027 HB SW0601-38 Lovelock 2006 - EC, CP, Wing thesis Alnus sp. WW029 Betulaceae Wing 1981 43 MC15 morphotype Acer silberlingi - Aceraceae CP EDC0701-87 Currano thesis 44 "Catryla schankleri" WW030 Betulaceae CP USNM 324498 Wing 1981 45 Hamamelidaceae sp. "Churchillia crenata" WW031 Hamamelidaceae CP, EC USNM 37588 IV Currano thesis 46,47 1 Species Name or Informal Morphotype Plant Group Sites Exemplar Most Recent Description Synonyms Figure Morphotype Nickname Number "Close Secondaries" WW032 CP EDC0701-27 Currano thesis 48 "Dicot XV" WW033 CP LB-37 Currano thesis 49 "Dicot XX" WW034 CP LB-38 Currano thesis 50 CP, EDC0603-68, "Dicot XXV" WW035 Currano thesis 51-53 MC15 EDC0603-47 CP, "Dombeya " novi-mundi - Malvaceae EDC0603-60 Hickey 1977 54 MC15 EDC0701-123, "Fuqua" WW036 Lauraceae CP Currano thesis 55,56 EDC0701-5 "Snaggle Tooth" WW037 CP EDC0701-39 Currano thesis 57-59 "PN Betulaceous Leaf" WW038 Betulaceae PN EDC0602-126 Currano thesis 60 "PN Cordate Base, 5 WW039 PN EDC0602-159 Currano thesis 61 Primaries" "Legume 2" WW040 Fabaceae PN SW907 Currano thesis 62,63 156 "Pinnate, Ovate WW041 Fabaceae PN SW905. 224-2 Currano thesis 64 Brochidodromous Leaf" "PN Pinnately Lobed Toothed WW043 PN EDC0602-118 Currano thesis 65 Leaf" Platanus guillelmae - Platanaceae PN EDC0602-78 Wing 1981 66 "Small Skinny Legume" WW042 Fabaceae PN EDC0602-135-142 Currano thesis 67,68 "PN UNID 0602-60" WW044 PN EDC0602-60 Currano thesis 69 "PN UNID 8610-3" WW045 PN SW905 Currano thesis 70 "PN UNID 879-3" WW046 PN SW879. 405-4 Currano thesis 71 EDC0602-130, "PN UNID 905-5" WW047 PN Currano thesis 72,73 SW905*

"MC15 0605-1" WW048 MC15 EDC0605-1 Currano thesis 74

"MC15 0606-120" WW049 MC15 EDC0606-120 Currano thesis 75 "Acute Basal Secondaries" WW050 MC15 EDC0606-13 Currano thesis 76 EDC0606-20, Aleurites fremontensis - Euphorbiaceae MC15 MacGinitie 1974 77,78 EDC0603-141 EDC0607-12, Dicot XXXI of Wing Allophylus flexifolia - Sapindaceae MC15 MacGinitie 1969 79,80 EDC0609-69 (1998) Species Name or Informal Morphotype Plant Group Sites Exemplar Most Recent Description Synonyms Figure Morphotype Nickname Number "Apocynaceae sp. 1" WW051 Apocynaceae MC15 EDC0604-15 Wing 1981 81 Cornus hyperborea - Cornaceae MC15 EDC0606-77 Hickey 1977 82 "Dicot III" WW052 ?Magnoliaceae MC15 CQ3 Currano thesis 83 EDC0604-12, "Dicot XI" WW053 MC15 Currano thesis 84 EDC0606-99 "Lauraceae M1" WW054 Lauraceae MC15 USNM 324466 Currano thesis Dicot X 85 "Lauraceae M2" WW055 Lauraceae MC15 CQ (SW fossil) Currano thesis 86 Luehea newberryana - Malvaceae MC15 EDC0606-96 Currano thesis 87 "Margie" WW056 MC15 EDC0606-85 Currano thesis 88 "Not Dombeya 1" WW057 ?Malvaceae MC15 EDC0603-128 Currano thesis 89 "MC15 Palmate Toothed Leaf" WW058 MC15 EDC0609-19 Currano thesis 90 "Pinnate Lauraceous Leaf" WW059 Lauraceae MC15 EDC0603-97 Currano thesis 91

157 "MC15 Pinnately Lobed Leaf" WW060 MC15 EDC0609-29 Currano thesis 92

Platycarya castaneopsis - Juglandaceae MC15 EDC0604-10 Wing and Hickey 1984 Popea castaneopsis 93,94 "Resin Dots" WW061 Lauraceae MC15 EDC0603-113 Currano thesis Dicot XXXVI 95,96 "Toothed Brochidodromous" WW062 MC15 EDC0603-61 Currano thesis 97 MORPHOTYPEFU742 NAME "Asymmetric leaf 0706-127"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.DP EXEMPLAR EDC0706-127 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Entire, asymmetrical leaf that is pinnate, has a strong fimbrial vein, and opposite percurrent tertiaries. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE:

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:~2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Basal insertion asymmetrical MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework: Not Preserved MINOR-2o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Not Preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

158 MORPHOTYPEFU741 NAME "DP Betulaceous Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY BetulaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-84 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Compound non-glandular teeth, compound agrophics, uniform and abundant craspedodromous secondaries. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:2:1 to 3:2 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Slightly asymmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex or rounded APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 3 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/conv PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Increasing proximally

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Reticulate TYPE OF F.E.V. BRANCHING:

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 5 to 10 TEETH GLANDULARITY: None

TOOTH SHAPE: cv/st, cv/rt TOOTH SPACING: Regular

PRINCIPAL VEIN: Proximal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

159 MORPHOTYPEFU 745 NAME "Bucket" - Lateral Leaflet

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY AceraceaeORGAN TYPE Leaf EXEMPLAR LOC.SW9819, SW994 EXEMPLAR 9819-58; 994 HHOTHERS LOC. EDC0506

DIAGNOSTIC FEATURES OF MORPHOTYPE Irregularly spaced, large spherulate teeth fed by a secondary vein or a branch off of the secondary. Sinuous opposite percurrent tertiaries that are alternate in places. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Odd-pinnate

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Pinnately Compound Once PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Width and Insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Straight to Convex APEX SHAPE:Straight/Acuminate Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Crowded basal secondaries AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: Perpendicular to midvein LENGTH: < 50% subjacent secondary Basiflexed, not perpendicular to INTER-2 o INTER-2 o distal course: subjacent secondary FREQUENCY: >1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sinuous PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 2 to 4 TEETH GLANDULARITY: Spherulate

TOOTH SHAPE: cv/cv,st/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES:

160 MORPHOTYPEFU 745 NAME "Bucket" - Terminal Leaflet

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY AceraceaeORGAN TYPE Leaf EXEMPLAR LOC.SW9819, EDC0506 EXEMPLAR 9819-58, 0506-134OTHERS LOC. EDC0706

DIAGNOSTIC FEATURES OF MORPHOTYPE Some leaflets have 3 lobes, others just 2 more pronounced teeth. Lateral primaries depart supra-basally and there are generally 2 pairs of secondaries below this departure. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Odd-pinnate

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Pinnately Compound Once PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic to Obovate PETIOLE GLANDS:.

BLADE RATIO L:W:2:1 to 1:1 PETIOLE X-SECTION:

LOBATION:Palmately lobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight to Convex APEX SHAPE:Straight/Acuminate Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Odd-lobed acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Crowded basal secondaries AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: Perpendicular to midvein LENGTH: < 50% subjacent secondary Basiflexed, not perpendicular to INTER-2 o INTER-2 o distal course: subjacent secondary FREQUENCY: >1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sinuous PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 2 to 4 TEETH GLANDULARITY: Spherulate

TOOTH SHAPE: cv/cv,st/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

161 MORPHOTYPEFU739 NAME "Christmas Tree Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-139 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Distinctive dentate margin with large teeth whose primary vein enters proximally. Brochidodromous. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate fi simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:7:5 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Dentate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded? APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 2? Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Perpendicular to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Not preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Not preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2 to 3 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/st,fl/st,fl/fl TOOTH SPACING: Regular

PRINCIPAL VEIN: Proximal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

162 MORPHOTYPEFU738 NAME "DP Cordate, 7 Primaries"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-105 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Cordate base and 7 primary veins. Only base found.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll? PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate? PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Not Preserved MARGIN TYPE Untoothed

BASE ASYMMETRY:Basal width asymmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Cordate APEX SHAPE:Not preserved Special Margin Features: Erose BASE ANGLE:Wide obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 7 Interior 2 o:

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not preserved

MAJOR 2 o SPACING: Not preserved AGROPHIC VEINS: Simple, at least INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Mixed opp/alt percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

163 MORPHOTYPEFU 749 NAME "Entire Leaf B" - Lateral Leaflet

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0506 EXEMPLAR EDC0506-145OTHERS LOC. SW9819, SW994, EDC0706

DIAGNOSTIC FEATURES OF MORPHOTYPE Crowded basal secondaries, with the lowest pair at a high angle. Slightly inflated petiole. Prominent fimbrial vein. Grouped with Entire Leaf B - Terminal Leaflet because of venation. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Compound PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Mesophyll PETIOLE BASE: Pulvinulate?

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:> 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:width and insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Convex APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucampto brochi distal MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Alternate percurrent PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Mixed INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Irregular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

164 MORPHOTYPEFU 749 NAME "Entire Leaf B" - Terminal Leaflet

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0506 EXEMPLAR EDC0506-46OTHERS LOC. SW9819, SW994, EDC0706

DIAGNOSTIC FEATURES OF MORPHOTYPE Crowded basal secondaries, with the lowest pair at a high angle. Slightly inflated petiole. Prominent fimbrial vein. Grouped with Entire Leaf B - Lateral Leaflet because of venation. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Compound PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Mesophyll PETIOLE BASE: Pulvinulate?

BLADE SHAPE:Ovate PETIOLE GLANDS:. None

BLADE RATIO L:W:< 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Basal insertion asymmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucampto brochi distal MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Alternate percurrent PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Mixed INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Irregular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

165 MORPHOTYPEFU737 NAME "Entire, Thick Petiole"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-156 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Only bases found; untoothed pinnate leaf with a thick petiole and primary vein.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Not Preserved PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:probably unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Width MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Convex APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: ? Uniform

MAJOR 2 o SPACING: Not Preserved AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not Preserved INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

166 MORPHOTYPEFU736 NAME "Glandular Big Tooth"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706NC OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Differs from DP Betulaceae because it has no agrophics, it is semicraspedodromous, and its teeth are larger and more glandular. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:6:3.5 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded APEX SHAPE:Straight Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1-Jan Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Decreasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: n.p

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 4 to 5 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: st/cc, fl/cc TOOTH SPACING: Regular

PRINCIPAL VEIN: Distal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Straight or concave PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

167 MORPHOTYPEFU735 NAME "Hairy Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-179 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Unique specimen; either 2 compound leaflets that didn't separate fully or a bi-lobed leaf. Each side of base has different shape. Distinctive hairs on the leaf. Description here assumes the compound leaflet hypothesis. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Even-pinnate?

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Sessile

LEAF ORGANIZATION:Pinnately Compound? PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE:

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:5:2 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:width and insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:convex/decurrent APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 2 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Not Preserved PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2-3 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Not Preserved SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Pubescent

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: simple hairs

168 MORPHOTYPEFU740 NAME Juglandaceae sp. 2

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY JuglandaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-177OTHERS LOC. LB

DIAGNOSTIC FEATURES OF MORPHOTYPE Tertiaries are more strongly impressed than in Aesculus hickeyi.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Odd-pinnate

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Pinnately Compound PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE:

BLADE SHAPE:Oblong PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Width and insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:rounded/cordate APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Variable o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: decr. Exmed & incr. prox.

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Looped F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 4 to 6 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv,rt/cv,rt/st TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Runing from sinus PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

169 MORPHOTYPEFU734 NAME "DP Palmate 5 Primaries Leaf"

1

GENERAL MAJOR GROUP DIC INFERED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706-109 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Untoothed, actinodromous leaf with 5 primary veins

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:~2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Basal actinodromous No BASAL VEINS: 5 Interior 2 o: ?

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Abruptly increasing proximally AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/sin PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Alternate percurrent VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

170 MORPHOTYPEFU733 NAME "Witch's Hat"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0706 EXEMPLAR EDC0706NC OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Large teeth that are cv/cv

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Not Preserved MARGIN TYPE Serrate

BASE ASYMMETRY:?Basal insertion asymmetrical MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Not Preserved APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Pinnate No BASAL VEINS: ? Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous or semi-crasp MINOR-2 o Course: Crasp. or semi-crasp.

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING:

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS:

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: TEETH GLANDULARITY: None

TOOTH SHAPE: cv/cv TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

171 MORPHOTYPEFU 744 NAME "DS Betulaceous Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY BetulaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0506, SW9819 EXEMPLAR 9819-98, 0506-111OTHERS LOC. SW994

DIAGNOSTIC FEATURES OF MORPHOTYPE 2 distinct orders of teeth; the primary order is fed by a secondary vein. Cordate base with crowded basal secondaries and generally 7 basal veins Opposite percurrent, closely spaced tertiaries MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Macrophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate to elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:4:3, 7:4 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Cordate APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Wide obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 5 or 7 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Parallel to intercostal 3º EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Mixed percurrent VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Irregular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Simple

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 5 to 7 TEETH GLANDULARITY: None

TOOTH SHAPE: cv/cv,fl/cv,fl/fl TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Convex PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

172 MORPHOTYPEFU 748 NAME "Entire Leaf D"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY Lauralean?ORGAN TYPE Leaf EXEMPLAR LOC.EDC0506 EXEMPLAR EDC0506-102 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Long, skinny leaf with a thick petiole and prominent fimbrial vein. Also there is a vein of fine gage that runs along the margin just inside of the fimbrial vein MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:>2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Decurrent APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 3 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

173 MORPHOTYPEFU 743 NAME "Football Tooth"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0506 EXEMPLAR EDC0506-191 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Cv/cv teeth with the most prominent vein running to the sinus, rather than the tooth apex. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Oblong? PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Asymetrical

BASE SHAPE:Not Preserved APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Not Preserved APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Pinnate No BASAL VEINS: ? Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Not Preserved INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not preserved INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Acute to midvein EXTERIOR 3 o COURSE: Variable o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2 to 3 TEETH GLANDULARITY: None

TOOTH SHAPE: cv/cv,fl/cv TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Convex PRINCIPAL VEIN TERM.: Marginal, at sinus

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

174 MORPHOTYPEFU 750 NAME "DS Legume"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY FabaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0506 EXEMPLAR EDC0506-78-82OTHERS LOC. SW9819, SW994

DIAGNOSTIC FEATURES OF MORPHOTYPE Pulvinulate petiolule, strong fimbrial vein, thick primary vein. Venation is generally poorly organized and difficult to see. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Alternate

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Pinnately Compound Once PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Pulvinulate

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:5:2 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Basal width asymmetrical MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Rounded APEX SHAPE:Straight Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: < 50% subjacent secondary Basiflexed, not perpendicular INTER-2 o INTER-2 o distal course: to subjacent secondary FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sin/chev PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Mixed INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC: VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

175 MORPHOTYPEFU 746 NAME "Paleocene Crabby"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.SW994 EXEMPLAR SW994 WWOTHERS LOC. EDC0506, SW9819

DIAGNOSTIC FEATURES OF MORPHOTYPE Primaries depart supra-basally: 3 primaries diverge from a single point, and then after at least 5 mm, the lateral primaries branch, giving a total of 5 primary veins. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:~5:4 PETIOLE X-SECTION:

LOBATION:Palmately lobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Concave-convex APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Odd-lobed acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Present

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 5 Interior 2 o: Present

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Eucamptodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Mixed opp/alt percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Increasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Laminar

CUTICLE/MESOPHYLL FEATURES: Not Preserved

176 MORPHOTYPEFU747 NAME "DS Unique Hairy Leaf 9"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.SW9819 EXEMPLAR SW9819-9 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Many, closely-spaced hairs. Eucamptodromous secondaries, rounded base, strongly impressed opposite percurrent tertiaries MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll? PETIOLE BASE: Not Preserved

BLADE SHAPE:Not Preserved PETIOLE GLANDS:.

BLADE RATIO L:W:Not Preserved PETIOLE X-SECTION:

LOBATION:Not Preserved MARGIN TYPE Untoothed

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Rounded APEX SHAPE:Not Preserved Special Margin Features: Erose BASE ANGLE:Obtuse APEX ANGLE: Not Preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Basal decurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: Marginal secondary

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Absent o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Pubescent

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: simple hairs

177 MORPHOTYPE NAME Acer silberlingi

1

GENERAL MAJOR GROUP DIC INFERED FAMILY AceraceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0701 EXEMPLAR EDC0701-87 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Palmately lobed leaf with glandular, serrate teeth.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:. Not Preserved

BLADE RATIO L:W:4:3 PETIOLE X-SECTION: Not Preserved

LOBATION:Palmately lobed MARGIN TYPE Serrate

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Cordate APEX SHAPE:Straight? Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Odd-lobed acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Palmate No BASAL VEINS: ? Interior 2 o: Present

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent? PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE:Parallel to subjacebt 2º EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 5 to 7 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cc TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

178 MORPHOTYPEWW031 NAME "Churchillia crenata"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY HamamelidaceaeORGAN TYPE Leaf EXEMPLAR LOC.SW826 EXEMPLAR USNM 37588 IVOTHERS LOC. CP, EC

DIAGNOSTIC FEATURES OF MORPHOTYPE Teeth are fed by either a major or minor secondary, which extends beyond the lamina and ends in a mucronate gland. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate to elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:2 to 4:3 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Round/Cord/Dec APEX SHAPE:Straight Special Margin Features: BASE ANGLE:Acute to Obtus APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sinuous PERIMARGINAL VEINS: Intramarginal secondary

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Mixed percurrent VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 1 to 3 TEETH GLANDULARITY: Mucronate

TOOTH SHAPE: st/cc, cv/cc TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Straight or concave PRINCIPAL VEIN TERM.: Spinose

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

179 MORPHOTYPEWW032 NAME "Close secondaries"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0701 EXEMPLAR EDC0701-27 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Similar in shape to Dicot XX, but venation is better organized and the secondaries are more closely spaced. Base also appears more convex. Only fragments. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Oblong PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Convex APEX SHAPE:Not preserved Special Margin Features: Revolute BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Pinnate No BASAL VEINS: ? Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not preserved INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Absent o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Decreasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

180 MORPHOTYPEWW033 NAME "Dicot XV"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.LB EXEMPLAR LB-37OTHERS LOC. EDC0701

DIAGNOSTIC FEATURES OF MORPHOTYPE Only fragments preserved, but base is distinct from anything else.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE:

BLADE SHAPE:Not Preserved PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Cordate APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Wide obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Basal actinodromous No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course: Semicraspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not preserved

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - conv/sin PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Not preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2 TEETH GLANDULARITY: None

TOOTH SHAPE: st/st TOOTH SPACING: Not Preserved

PRINCIPAL VEIN: Proximal SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Submarginal

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

181 MORPHOTYPEWW034 NAME "Dicot XX"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.LB EXEMPLAR LB-38OTHERS LOC. EDC0701

DIAGNOSTIC FEATURES OF MORPHOTYPE Asymmetric, skinny leaf (likely leaflet). Venation is quite disorganized.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic to obovate PETIOLE GLANDS:.

BLADE RATIO L:W:4:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Basal width asymmetrical MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Decurrent APEX SHAPE:Acuminate Special Margin Features: Revolute BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% subjacent secondary INTER-2 o INTER-2 o distal course: Perpendicular to major 2º FREQUENCY: ~1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/sin PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Mixed INTER-3 o ANGLE TO 1 o: Variable

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Absent o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: dichotomizing

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Simple

AREOLATION: Poorly developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

182 MORPHOTYPEWW035 NAME "Dicot XXV"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0603 EXEMPLAR 0603-47, 0603-68OTHERS LOC. CP, MC15

DIAGNOSTIC FEATURES OF MORPHOTYPE Base is narrowly cordate; irregularly spaced glandular teeth. Often has cuticle. Rugose surface texture and laminar glands. Large areoles MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic to Oblong PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Crenate

BASE ASYMMETRY:Basal width asymmetrical MEDIAL SYMMETRY:

BASE SHAPE:Cordate APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/conv PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Obtuse to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Consistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Irregular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Simple

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 1 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Absent PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Rugose

SURFICIAL GLANDS: Laminar

CUTICLE/MESOPHYLL FEATURES: trichomes

183 MORPHOTYPEWW036 NAME "Fuqua"

1

GENERAL MAJOR GROUP DIC INFERED FAMILY LauraceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0701 EXEMPLAR 123 & 5OTHERS LOC. LB, SW0131

DIAGNOSTIC FEATURES OF MORPHOTYPE Laminar glands, thick primary vein, fimbrial vein, and eucamptodromous secondaries are typical Lauraceous characteristics. Differs from Phoebe mckinneyi in that it does not have a pair of pronounced, acute basal secondaries. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Mesophyll PETIOLE BASE:

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:~2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/sin PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Perpendicular to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Consistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Reticulate TYPE OF F.E.V. BRANCHING: dichotomizing

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Laminar

CUTICLE/MESOPHYLL FEATURES: Not Preserved

184 MORPHOTYPEWW037 NAME Snaggle Tooth

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0701 EXEMPLAR EDC0701-39OTHERS LOC. LB

DIAGNOSTIC FEATURES OF MORPHOTYPE Irregularly spaced, crenate teeth. Very closely spaced and sinuous opposite percurrent tertiaries, with regular reticulate 4th and 5th order veins and extremely small, paxillate areoles. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:2 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Crenate

BASE ASYMMETRY:Basal insertion asymmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded APEX SHAPE:Straight Special Margin Features: Sinuous BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Basal decurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sinuous PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse/perpendic. to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Increasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly unbranched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING:

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Paxillate LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: < 1 TEETH GLANDULARITY: None

TOOTH SHAPE: cv/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Proximal SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Not org. with principal PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

185 MORPHOTYPEWW038 NAME "Unid906-1"; PN Betulaceous Leaf

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY BetulaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0602 EXEMPLAR EDC0602-126OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE Crowded basal secondaries, with the basal-most pair at a very high angle relative to the others. Teeth are fl/fl or fl/cv, which is a distinguishing feature from the Daiye Spa Betulaceous leaf MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:5:3 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Cordate APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Wide obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 5-Mar Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Abruptly increasing toward base

MAJOR 2 o SPACING: Crowded basal secondaries AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Absent o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Incr. exmed. & prox.

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Mixed percurrent VEINLETS -F/E/V/s: Mostly unbranched

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING:

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 3 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: fl/fl, fl/cv TOOTH SPACING: Regular

PRINCIPAL VEIN: Present SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Convex PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

186 MORPHOTYPEWW039 NAME "Cordate Base, 5 Primaries"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0602 EXEMPLAR EDC0602-159 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Cordate base and 5 primary veins all diverging from a single point. It differs from Wing's Dicot XIV in that there are secondaries closer to the base, the secondaries loop farther from the margin, and there is festooning. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.:

BLADE SIZE:Mesophyll PETIOLE BASE:

BLADE SHAPE: PETIOLE GLANDS:.

BLADE RATIO L:W: PETIOLE X-SECTION:

LOBATION:? Unlobed MARGIN TYPE Untoothed

BASE SYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Cordate APEX SHAPENot preserved Special Margin Features: Revolute BASE ANGLE:Wide obtuse APEX ANGLENot preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Basal actinodromous No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Not Preserved AGROPHIC VEINS: Not Preserved INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Obtuse to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Basally concectric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Mixed percurrent VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: n.p

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

187 MORPHOTYPEWW040 NAME "Legume 2"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY FabaceaeORGAN TYPE Leaf EXEMPLAR LOC.SW907 EXEMPLAR *OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE Legume; pinnate with thick primary vein and others difficult to see. Commonly has a lot of very charracteristic margin feeding. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Nanophyll to Microphyll PETIOLE BASE: Regular

BLADE SHAPE:Oblong PETIOLE GLANDS:. None

BLADE RATIO L:W:3:1 to 2.2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE

BASE ASYMMETRY:width and insertion MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Rounded APEX SHAPE:Convex Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: Spinose

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% of subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Irregular reticulate PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Freely ramifyng VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC: TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: Special APEX SHAPE:

TOOTH SHAPE: TOOTH SPACING: TEETH GLANDULARITY:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

188 "Pinnate Ovate Brochidodromous WW041 MORPHOTYPE NAME Leaf" 1

GENERAL MAJOR GROUP DIC INFERRED FAMILY FabaceaeORGAN TYPE Leaf EXEMPLAR LOC.SW905 EXEMPLAR SW905. 224-2OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE Ovate clearly brochidodromous leaf, whereas Legume 2 is more oblong and less clearly brochidodromous. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Regular

BLADE SHAPE:Ovate PETIOLE GLANDS:. None

BLADE RATIO L:W:2.5:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Convex Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% of subjacent secondary INTER-2 o INTER-2 o distal course: Parallel to major 2º FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:poorly preserved, not perc. PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: branched

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Looped F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Poorly developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: Special APEX SHAPE:

TOOTH SHAPE: TOOTH SPACING: TEETH GLANDULARITY:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

189 MORPHOTYPEWW043 NAME "PN Pinnately Lobed Toothed Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0602 EXEMPLAR EDC0602-118 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Pinnately lobed and toothed leaf

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE:

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:3:2 PETIOLE X-SECTION:

LOBATION:Pinnately lobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight (cuneate)? APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1-Jan Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Smoothly decreasing toward base

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Simple, at least INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 3 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/st TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

190 MORPHOTYPEWW042 NAME "Small, Skinny Legume"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY FabaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0602 EXEMPLAR EDC0602-135-142OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE The small size and high length to width ratio separate this from the other PN legumes. The apex has a more pronounced spinose tip than Legume 2. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Compound

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Nanophyll, microphyll PETIOLE BASE: Pulvinulate

BLADE SHAPE:Elliptic PETIOLE GLANDS:. None

BLADE RATIO L:W:5:1 to 3:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:width and insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Rounded APEX SHAPEAcute Special Margin Features: Revolute BASE ANGLE:Acute APEX ANGLEStraight to convex Terminal apex features: Spinose

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN o course: Parallel to major 2° LENGTH: > 50% of subjacent 2 INTER-2 o INTER-2 o distal course: Parallel to major 2º FREQUENCY: Not preserved well enough

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Not Preserved PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

191 MORPHOTYPEWW044 NAME "PN Unid 0602-60"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0602 EXEMPLAR EDC0602-60 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Only one base found. Teeth are different from everything else at PN. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Not Preserved PETIOLE GLANDS:.

BLADE RATIO L:W:Not Preserved PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Width & Insertion MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Decurrent APEX SHAPE:Not preserved Special Margin Features: Not Preserved BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Pinnate No BASAL VEINS: ? Interior 2 o: ?

MAJOR 2 o Framework:Not Preserved MINOR-2 o Course: Not Preserved

MAJOR 2 o Attachment:Not Preserved MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Not Preserved AGROPHIC VEINS: Not Preserved INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Not Preserved PERIMARGINAL VEINS: Not Preserved

EPIMEDIAL 3 o:Not Preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 1 TEETH GLANDULARITY: Not Preserved

TOOTH SHAPE: cv/st, cv/cv TOOTH SPACING: Not Preserved

PRINCIPAL VEIN: Not Preserved SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Not Preserved

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

192 MORPHOTYPEWW045 NAME "PN Unid 8610-3"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.SW905 EXEMPLAR *OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE Entire with 3 primary veins that are acrodromous. No secondary veins in the basal half of the leaf. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:11:5, 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex to rounded APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Basal actinodromous No BASAL VEINS: 3 Interior 2 o: Present

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Abruptly increasing proximally AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Mixed opp/alt percurrent INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE:Acute to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Basally concentric

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Dichotomizing

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: Special APEX SHAPE:

TOOTH SHAPE: TOOTH SPACING: TEETH GLANDULARITY:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

193 MORPHOTYPEWW046 NAME "PN Unid 879-3"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.SW879 EXEMPLAR SW879. 405-4\OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE 2 primary veins

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:at least 8:3 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Not Preserved APEX SHAPE:Convex Special Margin Features: Revolute BASE ANGLE:acute? APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Palmate No BASAL VEINS: Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Perpendicular to midvein LENGTH: < 50% of subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Simple

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

194 MORPHOTYPEWW047 NAME "PN Unid 905-5"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0602, SW905 EXEMPLAR EDC0602-130, SW905* OTHERS LOC. PN

DIAGNOSTIC FEATURES OF MORPHOTYPE Asymmetrical leaf (most likely leaflet) with a thick petiole and primary vein. Eucamptodromous to brochidodromous secondaries. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:at least 3:1 PETIOLE X-SECTION:

LOBATION: MARGIN TYPE Untoothed

BASE ASYMMETRY:width, insertion on some MEDIAL SYMMETRY: Asymmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Straight Special Margin Features: None BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucampto brochi distal MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: < 50% subjacent secondary INTER-2 o INTER-2 o distal course: Perpendicular to major 2º FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - str/sin PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Terminating at the margin o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Decreasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Present

5o VEIN FABRIC:Reticulate TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

195 MORPHOTYPEWW048 NAME "MC15 0605-1"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0605 EXEMPLAR EDC0605-1 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Mangled leaf, and only one found. But teeth are spinose with mucronate glands at the tip. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE: PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic? PETIOLE GLANDS:.

BLADE RATIO L:W:~2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Dentate

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Convex APEX SHAPE:Not Preserved Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Not Preserved INTER-2 o proximal INTER-2 o VEIN course: Not Preserved LENGTH: Not Preserved INTER-2 o INTER-2 o distal course: Not Preserved FREQUENCY: Not Preserved

TERTIARY VEIN FEATURES o INTERCOSTAL 3 : Not PreservedPERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Not Preserved INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES o 4 VEIN FABRIC: Not PreservedVEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2 TEETH GLANDULARITY: Mucronate

TOOTH SHAPE: cv/cv TOOTH SPACING: Not Preserved

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Spinose

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Laminar

CUTICLE/MESOPHYLL FEATURES: Not Preserved

196 MORPHOTYPEWW049 NAME "MC15 0606-120"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0606 EXEMPLAR EDC0606-120 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Only one found; crenate leaf with 3 primaries that are palinactinodromous. Venation is quite disorganized - low rank leaf. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Oblong PETIOLE GLANDS:.

BLADE RATIO L:W:5:3 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Crenate

BASE ASYMMETRY:Width MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex APEX SHAPE:Not Preserved Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Not Preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 3 Interior 2 o: Absent

MAJOR 2 o Framework:Semicraspedodromous MINOR-2 o Course: Semicraspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Irregular reticulate PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Poorly developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 or 2 No TEETH/cm: 2 to 4 TEETH GLANDULARITY: Spherulate

TOOTH SHAPE: cv/cv, cv'fl TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

197 MORPHOTYPEWW050 NAME "Acute Basal Secondaries"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0606 EXEMPLAR EDC0606-13OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE One pair of acute basal secondaries that runs along the margin. Cryptic teeth. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex APEX SHAPE:Not Preserved Special Margin Features: Erose BASE ANGLE:Acute APEX ANGLE: Not Preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 3 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: One pair acute basal secondaries

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: < 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Irregular reticulate PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC: TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Looped F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 1 to 2 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv,cv/cc TOOTH SPACING: Irregular

PRINCIPAL VEIN: Not Preserved SINUS SHAPE: Rounded ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Not Preserved

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

198 MORPHOTYPEWW052 NAME "Dicot III"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.CQ3 EXEMPLAR CQ3OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Very thick cuticle with stellate trichomes visible under the compound scope. Thick primary vein and eucamptodromous secondaries. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic to Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:5:2 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight to convex APEX SHAPE:Straight Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Decreasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Opposite percurrent VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING: dendritic

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Pubescent

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: trichomes

199 MORPHOTYPEWW053 NAME "Dicot XI"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0604, EDC0606 EXEMPLAR 0604-12, 0606-99OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Festooned brochidodromous, entire leaf with reticulate higher order venation

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Present

MAJOR 2 o Framework:Mixed framework MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Smoothly decreasing toward base

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: < 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Regular reticulate PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly twice or more branched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

200 MORPHOTYPEWW054 NAME "Lauraceae M1"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY LauraceaeORGAN TYPE Leaf EXEMPLAR LOC.USNM324466 EXEMPLAR OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Palinactinodromous leaf with regular, opposite percurrent tertiaries between the 3 primary veins. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic/ovate PETIOLE GLANDS:.

BLADE RATIO L:W:2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Concave-convex APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute or Obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 1 to 3 Interior 2 o: Present

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: One pair acute basal secondaries

MAJOR 2 o SPACING: Abruptly increasing proximally AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Acute to midvein

ADMEDIAL COURSE:Acute to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Consistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Mixed percurrent VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Freely ramifying TYPE OF F.E.V. BRANCHING: dichotomizing

MARGINAL VENATION:Looped F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

201 MORPHOTYPEWW055 NAME "Lauraceae M2"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY LauraceaeORGAN TYPE Leaf EXEMPLAR LOC.CQ EXEMPLAR unnumberedOTHERS LOC. EDC0606

DIAGNOSTIC FEATURES OF MORPHOTYPE Entire leaf with 3 thick primary veins and pair of acute basal secondaries. Venation is very disorganized and does not have the regular, opposite percurrent percurrent tertiaries between the primaries that Lauraceae M1 has. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:~2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Concave APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous No BASAL VEINS: 5 Interior 2 o: Present

MAJOR 2 o Framework:Eucamptodromous/Brochidodromous MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Irregular reticulate PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Freely ramifyng VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC: TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

202 MORPHOTYPE NAME Luehea newberryi

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY TiliaceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0606 EXEMPLAR EDC0606-90OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Very closely spaced straight opposite percurrent tertiaries and small, closely-spaced teeth distinguish from Populus wyomingiana. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate to elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Crenate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Not Preserved APEX SHAPE:Acuminate Special Margin Features: BASE ANGLE:Not Preserved APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Actinodromous or Palinactinodromous No BASAL VEINS: ? Interior 2 o:

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Semicraspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Decreasing proximally AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: < 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - straight PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Variable o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Consistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly unbranched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING:

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 3 to 5 TEETH GLANDULARITY: Spherulate

TOOTH SHAPE: st/cv,cv/cv,cc/cv TOOTH SPACING: Regular

PRINCIPAL VEIN: Proximal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

203 MORPHOTYPEWW056 NAME "Margie"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0606 EXEMPLAR EDC0606-85 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Strong fimbrial vein. Major difference from Cornus is that tertiaries appear to extend farther up the leaf. Tertiaries are also more convex than on Cornus. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate to Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:? PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Concave APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 3 Interior 2 o: Absent

MAJOR 2 o Framework:Festooned semicraspedodromous MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: One pair acute basal secondaries

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - con/str PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Perpendicular to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Variable o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Consistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Opposite percurrent VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

204 MORPHOTYPEWW057 NAME "Not Dombeya 1"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0603 EXEMPLAR EDC0603-128 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Palmate leaf that looks similar to Dombeya, but the venation is not as well organized. It does not have the small, square areoles, and it also has naked basal veins MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:~1:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Cordate APEX SHAPE:Convex Special Margin Features: BASE ANGLE:Wide obtuse APEX ANGLE: Obtuse Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Present

PRIMARY VENATION:Basal actinodromous No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Smoothly increasing toward base

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - convex PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Variable EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Increasing exmedially

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Not Preserved VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved AREOLATION:Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 5 to 6 TEETH GLANDULARITY: Spherulate

TOOTH SHAPE: st/st or st/cc TOOTH SPACING:

PRINCIPAL VEIN: Proximal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Not Preserved PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

205 MORPHOTYPEWW058 NAME "MC15 Palmate Toothed Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0609 EXEMPLAR EDC0609-16 OTHERS LOC.

DIAGNOSTIC FEATURES OF MORPHOTYPE Only one specimen, and it is poorly preserved. Palmately lobed leaf with glandular teeth. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Ovate PETIOLE GLANDS:.

BLADE RATIO L:W:~1:1 PETIOLE X-SECTION:

LOBATION:Palmately lobed MARGIN TYPE Dentate

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Concave-convex APEX SHAPE:Not preserved Special Margin Features: Revolute? BASE ANGLE:Obtuse APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Palinactinodromous? No BASAL VEINS: 5 Interior 2 o: Absent

MAJOR 2 o Framework:Craspedodromous? MINOR-2 o Course: Not Preserved

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Not Preserved AGROPHIC VEINS: Compound INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Mixed opp/alt percurrent INTER-3 o ANGLE TO 1 o: Perpendicular to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Not Preserved o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Irregular reticulate TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Not Preserved F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Moderately developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 1 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv TOOTH SPACING: Regular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Runing from sinus PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

206 MORPHOTYPEWW059 NAME "Pinnate Lauraceous Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY LauraceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0603 EXEMPLAR EDC0603-97OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Pinnate Lauraceous leaf with a thick pair of secondaries that are more acute than the others and several cm above the base. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Notophyll to Mesophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Straight (cuneate) APEX SHAPE:Not preserved Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Not preserved Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Present

MAJOR 2 o Framework:Eucamptodromous MINOR-2 o Course: Simple brochidodromous

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Irregular AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Opposite percurrent - sinuous PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Variable

ADMEDIAL COURSE:Acute to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Inconsistent

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Opposite percurrent VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Not Preserved LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Not Preserved

SURFICIAL GLANDS: Not Preserved

CUTICLE/MESOPHYLL FEATURES: Not Preserved

207 MORPHOTYPEWW060 NAME "MC15 Pinnately Lobed Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0609 EXEMPLAR EDC0609-29OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Pinnately lobed leaf, with teeth from 15 Mile Creek. Only one fragmentary specimen. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Not Preserved LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Not Preserved

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Not Preserved

BLADE SIZE:Not Preserved PETIOLE BASE: Not Preserved

BLADE SHAPE:Not Preserved PETIOLE GLANDS:.

BLADE RATIO L:W:Not Preserved PETIOLE X-SECTION:

LOBATION:Pinnately lobed MARGIN TYPE Serrate

BASE ASYMMETRY:Not Preserved MEDIAL SYMMETRY: Not Preserved

BASE SHAPE:Not Preserved APEX SHAPE:Convex Special Margin Features: BASE ANGLE:Not Preserved APEX ANGLE: Odd-lobed acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Not Preserved

PRIMARY VENATION:Pinnate? No BASAL VEINS: NP Interior 2 o: NP

MAJOR 2 o Framework:Craspedodromous MINOR-2 o Course: Craspedodromous

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Not Preserved

MAJOR 2 o SPACING: Not Preserved AGROPHIC VEINS: Not Preserved INTER-2 o proximal INTER-2 o VEIN course: LENGTH: INTER-2 o INTER-2 o distal course: FREQUENCY:

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Not Preserved PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Not Preserved

ADMEDIAL COURSE:Variable EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Basiflexed INTERCOSTAL 3 VARIABILITY: Not Preserved

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Irregular reticulate VEINLETS -F/E/V/s: Not Preserved

5o VEIN FABRIC:Not Preserved TYPE OF F.E.V. BRANCHING: Not Preserved

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Not Preserved

AREOLATION: Poorly developed? LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 2 No TEETH/cm: 3 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cv/cv TOOTH SPACING: Irregular

PRINCIPAL VEIN: Medial SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Straight or concave PRINCIPAL VEIN TERM.: Marginal, at apex

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

208 MORPHOTYPEWW061 NAME "Resin Dots" (Dicot XXXVI)

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY LauraceaeORGAN TYPE Leaf EXEMPLAR LOC.EDC0603 EXEMPLAR EDC0603-113OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Resin glands clearly visible all over lamina. Symmetrical, pinnate leaf.

MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate LEAFLET ORGANIZATION:

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT:

LEAF ORGANIZATION:Simple PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 to 2:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Untoothed

BASE ASYMMETRY:Symmetrical MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex/Straight APEX SHAPE:Straight Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: None

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Simple brochidodrompus MINOR-2 o Course:

MAJOR 2 o Attachment:Decurrent MAJOR 2 o VEIN ANGLE: Uniform

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Simple INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Mixed opp/alt percurrent PERIMARGINAL VEINS: Fimbrial vein

EPIMEDIAL 3 o:Opposite percurrent INTER-3 o ANGLE TO 1 o: Obtuse to midvein

ADMEDIAL COURSE:Perpendicular to midvein EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: Parallel to intercostal 3º INTERCOSTAL 3 VARIABILITY: Decr exmed, incr prox

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Opposite percurrent VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC:Regular reticulate TYPE OF F.E.V. BRANCHING: dichotomizing

MARGINAL VENATION:Absent F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: No TEETH/cm: TEETH GLANDULARITY:

TOOTH SHAPE: TOOTH SPACING:

PRINCIPAL VEIN: SINUS SHAPE: ACCESSORY VEIN COURSE: PRINCIPAL VEIN TERM.:

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Pitted

SURFICIAL GLANDS: Laminar

CUTICLE/MESOPHYLL FEATURES: Not Preserved

209 MORPHOTYPEWW062 NAME "Toothed Brochidodromous Leaf"

1

GENERAL MAJOR GROUP DIC INFERRED FAMILY ORGAN TYPE Leaf EXEMPLAR LOC.EDC0603 EXEMPLAR EDC0603-61OTHERS LOC. 15 Mile Creek

DIAGNOSTIC FEATURES OF MORPHOTYPE Festooned brochidodromous leaf with small, spinose teeth. Regular, reticulate venation. MQI:

LEAF ATTACHMENT, ORGANIZATION, SIZE, SHAPE AND PETIOLE FEATURES

LEAF ATTACHMENT:Petiolate if simple LEAFLET ORGANIZATION: Not Preserved

LEAF ARRANGEMENT:Not Preserved LEAFLET ATTACHMENT: Petiolulate if compound

LEAF ORGANIZATION:Not Preserved PETIOLE ATTACHMENT.: Marginal

BLADE SIZE:Microphyll to Notophyll PETIOLE BASE: Not Preserved

BLADE SHAPE:Elliptic PETIOLE GLANDS:.

BLADE RATIO L:W:3:1 PETIOLE X-SECTION:

LOBATION:Unlobed MARGIN TYPE Serrate

BASE ASYMMETRY:Width MEDIAL SYMMETRY: Symmetrical

BASE SHAPE:Convex, concave APEX SHAPE:Straight? Special Margin Features: BASE ANGLE:Acute APEX ANGLE: Acute Terminal apex features: Not Preserved

PRIMARY & SECONDARY VEIN FEATURES NAKED BASAL VEINS: Absent

PRIMARY VENATION:Pinnate No BASAL VEINS: 1 Interior 2 o: Absent

MAJOR 2 o Framework:Festooned brochidodromus MINOR-2 o Course:

MAJOR 2 o Attachment:Excurrent MAJOR 2 o VEIN ANGLE: Inconsistent

MAJOR 2 o SPACING: Regular AGROPHIC VEINS: Absent INTER-2 o proximal INTER-2 o VEIN course: Parallel to major 2° LENGTH: > 50% subjacent secondary INTER-2 o INTER-2 o distal course: Reticulating FREQUENCY: <1 per intercostal area

TERTIARY VEIN FEATURES

INTERCOSTAL 3 o:Regular reticulate PERIMARGINAL VEINS: None

EPIMEDIAL 3 o:Reticulate INTER-3 o ANGLE TO 1 o:

ADMEDIAL COURSE: EXTERIOR 3 o COURSE: Looped o EXMEDIAL COURSE: INTERCOSTAL 3 VARIABILITY:

FOURTH & HIGHER ORDER VEIN FEATURES

4o VEIN FABRIC:Regular reticulate VEINLETS -F/E/V/s: Mostly once branched

5o VEIN FABRIC: TYPE OF F.E.V. BRANCHING: dichotomizing

MARGINAL VENATION:Incomplete loops F.E.V.s TERMINATIONS: Simple

AREOLATION: Well developed LEAF RANK:

TOOTH FEATURES

ORDERS OF TEETH: 1 No TEETH/cm: 2 to 4 TEETH GLANDULARITY: Non-specific glandular

TOOTH SHAPE: cc/cc TOOTH SPACING: Regular

PRINCIPAL VEIN: Proximal SINUS SHAPE: Angular ACCESSORY VEIN COURSE:Absent PRINCIPAL VEIN TERM.: Spinose

SURFACE & CUTICLE FEATURES FOSSIL COMPRESSION TEXTURE: Smooth

SURFICIAL GLANDS: None

CUTICLE/MESOPHYLL FEATURES: Not Preserved

210 Figure B1. Browniea serrata PW0204-208 (Lur’d Leaves)

Figure B2. Cercidiphyllum genetrix SW9819-2 (Daiye Spa)

211 Figure B3. Cercidiphyllum genetrix EDC0506-137 (Daiye Spa)

Figure B4. Davidia antiqua EDC0706-44 (Dead Platypus)

212 Figure B5. Platanus raynoldsi PW0204-182 (Lur’d Leaves)

Figure B6. Platanus raynoldsi SW9819-33 (Daiye Spa)

213 Figure B7. Aesculus hickeyi PW0204-130 (Lur’d Leaves)

Figure B8. “Ampelopsis” acerifolia PW0204-85 (Lur’d Leaves)

214 Figure B9. Chaetoptelea microphylla EDC0603-84 (15 Mile Creek)

Figure B10. Zizyphoides flabella EDC0507-66 (not a primary thesis site)

215 Figure B11. Dicot sp. FU742, “Asymmetric Leaf 0706-127” EDC0706-127 (Dead Platypus)

Figure B12. Averrhoites affinis EDC0706-57 to 62 (Dead Platypus)

216 Figure B13. Betulaceae sp. FU741, “DP Betulaceous Leaf” EDC0706-84 (Dead Platypus)

Figure B14. Dicot sp. FU745, “Bucket” SW9819-58A,B (Daiye Spa)

217 Figure B15. Dicot sp. FU745, “Bucket”- lateral leaflet SW994HH (Daiye Spa)

Figure B16. Dicot sp. FU745, “Bucket”- teeth SW994HH (Daiye Spa)

218 Figure B17. Dicot sp. FU745, “Bucket”- terminal leaflet EDC0506-134 (Daiye Spa)

Figure B18. Dicot sp. FU739, “Christmas Tree Leaf” EDC0706-139 (Dead Platypus)

219 Figure B19. Dicot sp. FU738, “DP Cordate 7 Primaries” EDC0706-105 (Dead Platypus)

Figure B20. Dicot sp. FU738, “DP Cordate 7 Primaries” EDC0706-105 (Dead Platypus)

220 Figure B21. Dicot sp. FU749, “Entire Leaf B” EDC0506-145 (Daiye Spa)

Figure B22. Dicot sp. FU749, “Entire Leaf B” EDC0506-46 (Daiye Spa)

221 Figure B23. Dicot sp. FU737, “Entire Thick Petiole” EDC0706-156 (Dead Platypus)

Figure B24. Dicot sp. FU736, “Glandular Big Tooth” EDC0706 non-census (Dead Platypus)

222 Figure B25. “Hairy Leaf”, EDC0706-179

Figure B26. Dicot sp. FU735, “Hairy Leaf” EDC0706-179 (Dead Platypus)

223 Figure B27. Juglandaceae sp. FU740, “Juglandaceae sp. 2” EDC0706-177 (Dead Platypus)

Figure B28. Macginitiea gracilis SW907. 224-3 (PN)

224 Figure B29. Dicot sp. FU734, “DP Palmate 5 Primaries” EDC0706-109 (Dead Platypus)

Figure B30. Dicot sp. FU733, “Witch’s Hat” EDC0706 non-census (Dead Platypus)

225 Figure 31. Ternstroemites aureavallis SW9819-13 (Daiye Spa)

Figure 32. Ternstroemites aureavallis - teeth EDC0706-100 (Dead Platypus)

226 Figure B33. Betulaceae sp. FU744, “DS Betulaceous Leaf” SW9819-98 (Daiye Spa)

Figure B34. Betulaceae sp. FU744, “DS Betulaceous Leaf” EDC0506-111 (Daiye Spa)

227 Figure B35. Dicot sp. FU748, “Entire Leaf D” EDC0506-102 (Daiye Spa)

Figure B36. Dicot sp. FU743, “Football Tooth” EDC0506-191 (Daiye Spa)

228 Figure B37. Fabaceae sp. FU750, “DS Legume” EDC0506-78 to 82 (Daiye Spa)

Figure B38. Fabaceae sp. FU750, “DS Legume” EDC0506-82 (Daiye Spa)

229 Figure B39. Dicot sp. FU746, “Paleocene Crabby” SW994-WW (Daiye Spa)

Figure B40. Dicot sp. FU747, “DS Unique Hairy Leaf” SW9819-9 (Daiye Spa)

230 Figure B41. Dicot sp. FU747, “DS Unique Hairy Leaf” - hairs SW9819-9 (Daiye Spa)

Figure B42. Dicot sp. WW008, “Populus” wyomingiana SW9819-16 (Daiye Spa)

231 Figure B43. Betulaceae sp. WW029, Alnus sp. Wing thesis morphotype (not a thesis site)

Figure B44. Acer silberlingi EDC0701-87 (Cool Period)

232 Figure B45. Betulaceae sp. WW030, “Catryla schankleri” USNM 324498 (not a thesis site)

Figure B46. Hamamelidaceae sp. WW031, “Churchilla crenata” USNM 37588 IV (not a thesis site)

233 Figure B47. Hamamelidaceae sp. WW031, “Churchilla crenata” - teeth USNM 37588 IV (not a thesis site)

Figure B48. Dicot sp. WW032, “Close Secondaries” EDC0701-27 (Cool Period)

234 Figure B49. Dicot sp. WW033, “Dicot XV” LB-37 (Cool Period)

Figure B50. Dicot sp. WW034, “Dicot XX” LB-38 (Cool Period)

235 Figure B51. Dicot sp. WW035, “Dicot XXV” EDC0603-47 (15 Mile Creek)

Figure B52. Dicot sp. WW035, “Dicot XXV” EDC0603-68 (15 Mile Creek)

236 Figure B53. Dicot sp. WW035, “Dicot XXV” - teeth EDC0603-68 (15 Mile Creek)

Figure B54. “Dombeya” novi-mundi EDC0603-60 (15 Mile Creek)

237 Figure B55. Lauraceae sp. WW036, “Fuqua” EDC0701-123 (Cool Period)

Figure B56. Lauraceae sp. WW036, “Fuqua” EDC0701-5 (Cool Period)

238 Figure B57. “Snaggle Tooth”, EDC0701-39

Figure B58. “Snaggle Tooth”- tooth, EDC0701-39

239 Figure B59. Dicot sp.WW037, “Snaggle Tooth” - aerolation EDC0701-39 (Cool Period)

Figure B60. Betulaceae sp. WW038, “PN Betulaceous Leaf” EDC0602-126 (PN)

240 Figure B61. Dicot sp. WW039, “PN Cordate Base, 5 Primaries” EDC0602-159 (PN)

Figure B62. Fabaceae sp. WW040, “Legume 2” SW907 (PN)

241 Figure B63. Fabaceae sp. WW040, “Legume 2” SW907 (PN)

Figure B64. Fabaceae sp. WW041, “Pinnate, Ovate Brochidodromous Leaf” SW905.224-2 (PN)

242 Figure B65. Dicot sp. WW043, “PN Pinnately Lobed Toothed Leaf” EDC0602-118 (PN)

Figure B66. Platanus guillelmae EDC0602-78 (PN)

243 Figure B67. Fabaceae sp. WW042, “Small Skinny Legume” EDC0602-135 to 142 (PN)

Figure B68. Fabaceae sp. WW042, “Small Skinny Legume” EDC0602-135 (PN)

244 Figure B69. Dicot sp. WW044, “PN UNID 0602-60” EDC0602-60 (PN)

Figure B70. Dicot sp. WW045, “PN UNID 8610-3” SW905 (PN)

245 Figure B71. Dicot sp. WW046, “PN UNID 879-3” SW879. 405-4 (PN)

Figure B72. Dicot sp. WW047, “PN UNID 905-5” EDC0602-130 (PN)

246 Figure B73. Dicot sp. WW047, “PN UNID 905-5” SW905-5 (PN)

Figure B74. Dicot sp. WW048, “MC15 0605-1” EDC0605-1 (15 Mile Creek)

247 Figure B75. Dicot sp. WW049, “MC15 0606-120” EDC0606-120 (15 Mile Creek)

Figure B76. Dicot sp. WW050, “Acute Basal Secondaries” EDC0606-13 (15 Mile Creek)

248 Figure B77. Aleurites fremontensis EDC0606-20 (15 Mile Creek)

Figure B78. Aleurites fremontensis EDC0603-141 (15 Mile Creek)

249 Figure B79. Allophylus flexifolia EDC0609-69 (15 Mile Creek)

Figure B80. Allophylus flexifolia EDC0607-12 (15 Mile Creek)

250 Figure B81. Apocynaceae sp. WW051, “Apocynaceae sp. 2” EDC0604-15 (15 Mile Creek)

Figure B82. Cornus hyperborea EDC0606-77 (15 Mile Creek)

251 Figure B83. Dicot sp. WW052, “Dicot III” CQ3 (15 Mile Creek)

Figure B84. Dicot sp. WW053, “Dicot XI” EDC0606-99 (15 Mile Creek)

252 Figure B85. Lauraceae sp. WW054, “Lauraceae M1” USNM 324466 (15 Mile Creek)

Figure B86. Lauraceae sp. WW055, “Lauraceae M2” CQ (SW fossil, 15 Mile Creek)

253 Figure B87. Luehea newberryana EDC0606-96 (15 Mile Creek)

Figure B88. Dicot sp. WW056, “Margie” EDC0606-85 (15 Mile Creek)

254 Figure B89. Dicot sp. WW057, “Not Dombeya 1” EDC0603-128 (15 Mile Creek)

Figure B90. Dicot sp. WW058, “MC15 palmate toothed leaf” EDC0609-19 (15 Mile Creek)

255 Figure B91. Lauraceae sp. WW059, “MC15 Pinnate Lauraceous Leaf” EDC0603-97 (15 Mile Creek)

Figure B92. Dicot sp. WW060, “MC15 Pinnately Lobed Leaf” EDC0609-29 (15 Mile Creek)

256 Figure B93. Platycarya castaneopsis EDC0604-10 (15 Mile Creek)

Figure B94. Platycarya castaneopsis EDC0604-10 (15 Mile Creek)

257 Figure B95. Lauraceae sp. WW061, “Resin Dots” EDC0603-113 (15 Mile Creek)

Figure B96. Lauraceae sp. WW061, “Resin Dots” - resin glands EDC0603-113 (15 Mile Creek)

258 Figure B97. Dicot sp. WW062, “Toothed Brochidodromous” EDC0603-61 (15 Mile Creek)

259 APPENDIX C: NEW DAMAGE TYPES

The new damage types from the Bighorn Basin are described here. Host specificity is assigned based on studies of modern insect feeding. A DT with a host specificity of 1 refers to generalized damage, 2 to intermediate specificity damage, and 3 to specialized damage. Generalized damage is made by insects that consume many taxonomically unrelated plant species (polyphagy). Intermediate specificity damage is made by insects that consume a group of phylogenetically related taxa (oligophagy). Specialized damage is made by insects that consume a single plant species or more than one related species (monophagy). Specialized damage is recognized by similarity to extant specialized feeders, by morphologically stereotyped damage patterns, and by restricted occurrences confined to particular host-plant species or tissue types in either fossil or extant host taxa (Labandeira et al. 2002b, Labandeira et al. 2007).

DT 125 Functional feeding group: Gall Host specialization: 3 Host plant: Dicot sp. WW006, Machaerium sp., Fabaceae sp. WW002, Dicot sp. WW004 Locality: USNM 42384 (Hubble Bubble) Specimen: USNM 530970 Figure: C1

Description: Large, variably shaped polylobate galls that are 0.5 to 8.0 mm in longest dimension and occur between major veins. Galls are of constant thickness, appear flat, and have a marginal rim.

DT 151 Functional feeding group: Mine Host specialization: 3 Host plant: Luehea newberryana Locality: USNM 42400 and 42403 (15 Mile Creek) Specimen: EDC0606-116 Figure: C2, Photograph by A. Rulis

Description: A small mine (1.5 cm long) whose trajectory follows the primary and secondary venation. Course is serpentine to loosely curvilinear, with a moderate increase in width, and ending in a round terminal chamber that is at least twice the width of the mine. The margins are approximately linear. The mine has a tightly packed sinusoidal frass trail (sometimes appearing massive and packed) that occupies the central third of the mine, and there is sometimes a ball of frass at the terminus.

260 DT152 Functional feeding group: Mine Host specialization: 3 Host plant: Luehea newberryana Locality: USNM 42403 (15 Mile Creek) Specimen: EDC0606-96 Figure: C3, Photograph by A. Rulis

Description: A linear mine (~2.2 cm long) with a wide oviposition site. The mine increases in width to approximately three times its initial width and becomes blotch-like. One margin is straight and the other is lobate. Frass is lacking, except just before the terminus, where it occurs in a cluster of massive, stringy pellets.

DT153 Functional feeding group: Gall Host specialization: 3 Host plant: Platycarya castaneopsis Locality: USNM 42405 (15 Mile Creek) Specimen: EDC0609-74 Figure: C4

Description: A globose gall, typically hemispherical or occasionally ellipsoidal, rarely flattened, that is 1.0 to 2.5 mm in diameter. It has a concentric texture of thick, woody (charcoalified) tissue, and a central chamber is barely evident in some specimens.

DT154 Functional feeding group: Hole feeding Host specialization: 1 Host plant: Platycarya castaneopsis, Populus wyomingiana Locality: USNM 42402 (15 Mile Creek), USNM 37560 (PN) Specimen: EDC0605-9 Figure: C5

Description: A large blotch ~14 by 10 mm of necrotic tissue with peripheral holes (rarely slots) that are 0.5 to 1.0 mm in diameter. The outer margin of the blotch is surrounded by a weakly developed reaction front.

DT163 Functional feeding group: Gall Host specialization: 3 Host plant: Populus wyomingiana Locality: USNM 37560 (PN) Specimen: EDC0602-158 Figure: C7,8; photographs by A. Rulis

Description: A very circular, thick gall that is 1 to 2.5 mm in diameter and occurs throughout the leaf. It has a very thick rim containing concentric structures and a central region separated from the rim by a less thickened area. The central region probably represents a single, spheroidal chamber.

261 DT164 Functional feeding group: Mine Host specialization: 3 Host plant: “Dombeya” novi-mundi Locality: USNM 42409 (Cool Period, 311 m carbonaceous shale) Specimen: EDC0704-21, EDC0704-45 Insect group: Beetle Figure: C9,10; photographs by A. Rulis

Description: A large, robust mine (0.75 to 2.25 mm wide). The course winds sinusoidally. The mine has a thick outer rim and a distinct frass trail that extends to the mine border. Frass is characterized in earlier instars by randomly arranged, elongate, cylindrical coprolites (L:W > 5:1) and changes to larger, thicker lenticular coprolites in latter instars.

DT165 Functional feeding group: Piercing and sucking Host specialization: 3 Host plant: Dicot sp. WW037 Locality: USNM 37654 (Cool Period, LB site) Specimen: EDC0701-68 Figure: C6; photograph by A. Rulis

Description: Broadly ellipsoidal surface marks that occur on areas between major veins. The L:W ratio ranges from 3:2 to 4:3, and lengths range from 1.7 to 9 mm. The marks have a pronounced outer reaction rim, that is often thickly carbonized, and the interior is skeletonized. An anterior beak is preserved on some specimens.

262 5 mm Figure C1. DT 125, USNM 530970 (Machaerium sp., Hubble Bubble)

5 mm

Figure C2. DT 151, EDC0606-116 (Luehea newberryana, 15 Mile Creek)

263 5 mm Figure C3. DT 152, EDC0606-96 (Luehea newberryana, 15 Mile Creek)

5 mm

Figure C4. DT 153, EDC0609-74 (Platycarya castaneopsis, 15 Mile Creek)

264 5 mm

Figure C5. DT 154, EDC0605-9 (Platycarya castaneopsis, 15 Mile Creek)

5 mm

Figure C6. DT 165, EDC0701-68 (Dicot sp. WW037, Cool Period)

265 5 mm Figure C7. DT 163, EDC0602-158 (Populus wyomingiana, PN)

1 mm

Figure C8. DT 163, EDC0602-158 (Populus wyomingiana, PN)

266 5 mm Figure C9. DT 164, EDC0704-21 (”Dombeya” novi-mundi, Cool Period)

5 mm

Figure C10. DT 164, EDC0704-45 (”Dombeya” novi-mundi, Cool Period)

267 APPENDIX D:

FLORAL AND INSECT DAMAGE COMPOSITION AT EACH SITE

At each site, I list the plant morphotypes present, the number of leaves of each morphotype, its damage frequency, and the DTs that occur on each morphotype.

268 SKELETON COAST

Leaves # DTs % Damage Damage Types 1,2,3,4,5,8,12,14,15,16,17,18,22, Cercidiphyllum genetrix 531 15 28.2 41,56 Browniea serrata 181 9 48.1 1,2,3,4,5,7,8,16,29 Platanus raynoldsi 57 7 33.3 1,2,3,5,12,16,29 Dicot sp. SC1 49 9 44.9 1,2,3,4,5,12,15,16,24 Davidia antiqua 13 9 69.2 1,2,3,4,7,11,12,15,16 Juglandaceae sp. 8 3 25 2,12,14 Dicot sp. SC2 1 1 100 14 1,2,3,4,5,7,8,11,12,14,15,16,17, TOTAL 840 19 34.5 18,22,24,29,41,56

269 LUR'D LEAVES

Leaves # DTs % Damage Damage Types 1,2,3,4,5,8,9,12,13,14,15, Persites argutus 763 14 9.4 46,50,80 Zizyphoides flabella 206 10 9.7 1,2,3,5,12,16,17,46,54,56 "Ampelopsis " acerifolia 139 10 23.7 1,2,3,4,5,12,15,16,46,54 1,2,3,4,5,7,8,12,16,17,24, Browniea serrata 81 17 48.1 33,34,41,46,50,80 Platanus raynoldsi 50 7 28 1,2,3,14,16,29,79 Cercidiphyllum genetrix 34 6 20.6 1,2,3,12,16,17 Davidia antiqua 29 5 31.0 1,2,4,29,78 Ficus artocarpoides 22 5 20.8 1,2,4,8,81 "Celtis " peracuminata 20 2 10 1,2 Aesculus hickeyi 10 4 30 1,2,5,15 Chaetoptelea microphylla 40 0 Lauraceae sp. LLL2 3 0 0 cf. Beringiaphyllum cupanioides 10 0 Dicot sp. LL1 1 1 100 5 Lauraceae sp. LLL1 1 0 0 1,2,3,4,5,7,8,9,12,13,14, TOTAL 1364 27 15.0 15,16,17,24,29,33,34,41, 46,50,54,56,78,79,80,81

270 DEAD PLATYPUS

Leaves # DTs % Damage Damage Types 1,2,3,4,5,7,8,12,13,14,15,16,19,24, Zizyphoides flabella 257 20 39.3 25,30,32,33,34,44 1,2,3,4,5,7,8,12,13,14,15,20,25,30, Averrhoites affinis 179 17 49.2 32,43,46 1,2,3,4,5,8,12,13,15,16,24,25,30,38, Betulaceae sp. FU741 142 15 50.7 46 Macginitiea gracilis 135 13 35.6 1,2,3,4,5,7,12,15,16,32,46,56,61 Platanus raynoldsi 119 9 28.6 2,3,4,5,7,8,12,13,16 Cercidiphyllum genetrix 76 12 35.5 1,2,3,4,5,9,12,15,16,29,32,46 Davidia antiqua 64 13 51.6 1,2,3,4,5,7,12,13,14,32,33,46 Juglandaceae sp. FU740 24 7 29.2 2,4,12,13,16,34,46 Ternstroemites aureavallis 6 6 100 1,2,4,12,13,46 Dicot sp. FU749 3 4 66.7 2,7,12,32 Dicot sp. FU735 2 0 0 Dicot sp. FU737 2 0 0 Dicot sp. FU733 1 0 0 Dicot sp. FU734 1 2 100 1,2 Dicot sp. FU736 1 0 0 Dicot sp. FU738 1 2 100 2,3 Dicot sp. FU739 1 0 0 Dicot sp. FU742 1 0 0 Dicot sp. FU745 1 2 100 7,12 1,2,3,4,5,7,8,9,12,13,14,15,16,19, TOTAL 1016 28 41.4 20,24,25,29,30,32,33,34,38,43,44, 46,56,61

271 DAIYE SPA

Leaves # DTs % Damage Damage Types 1,2,3,4,5,7,8,12,13,14,15,16,17, Macginitiea gracilis 250 22 27.2 21,34,38,40,46,50,57,61,78 1,2,3,4,5,7,8,12,15,16,17,29,32, Cercidiphyllum genetrix 139 18 39.6 33,34,46,57,81 1,2,3,4,5,7,12,13,14,15,17,29,32, Fabaceae sp. FU750 139 19 43.2 33,34,35,40,78,81 1,2,3,4,5,8,12,13,15,16,17,24,32, Platanus raynoldsi 133 20 25.6 34,35,42,57,78,80 1,2,3,4,5,7,8,9,12,13,14,15,17,32, Betulaceae sp. FU744 54 18 55.6 34,46,57,78 Dicot sp. FU745 46 11 43.5 1,2,3,4,5,7,8,12,15,34,57 Dicot sp. FU749 32 12 62.5 1,2,3,4,5,7,8,12,32,34,46,57 Zizyphoides flabella 13 6 46.2 2,12,16,32,33,34 Dicot sp. FU746 11 8 81.8 1,2,5,8,12,32,46 Ternstroemites aureavallis 10 9 80 1,2,3,4,8,12,15,17,20 Davidia antiqua 56 60 1,2,3,8,12,32 Dicot sp. FU743 4 4 50 2,4,12,34 Dicot sp. FU748 3 3 100 1,10,12 Browniea serrata 20 0 Populus wyomingiana 10 0 Dicot sp. FU747 1 1 100 2 1,2,3,4,5,7,8,9,10,12,13,14,15,16, TOTAL 843 35 37.8 17,19,20,21,24,29,32,33,34,35, 38,40,42,46,50,57,61,78,80,81

272 HUBBLE BUBBLE

% Leaves # DTs Damage Damage Types 1,2,3,4,7,8,12,13,14,15,17,27,29,32,33, Fabaceae sp. WW001 480 20 44.6 34,46,80,81,82 1,2,3,4,7,8,12,13,14,15,16,17,21,27,29, Machaerium sp. 154 23 52.6 30,32,33,36,46,57,79,125 1,2,3,4,5,8,12,14,15,16,17,27,29,32,34, Dicot sp. WW004 89 21 65.2 43,46,50,57,92,125 1,2,3,4,5,7,8,12,15,17,20,29,30,32,34, Dicot sp. WW006 82 19 75.6 35,40,46,125, 1,2,3,4,5,7,8,12,14,15,16,17,27,29,32, Dicot sp. WW005 65 21 93.8 33,37,40,46,57,78 1,2,3,4,5,7,8,12,13,14,15,16,17,29,32, Populus wyomingiana 40 20 70 33,37,46,55,78 Fabaceae sp. WW002 20 12 85 1,2,8,12,13,14,17,29,33,36,46,125 Dicot sp. WW011 10 10 80 1,2,3,4,8,12,13,20,29,46 Dicot sp. WW003 9 16 77.8 1,2,3,4,5,8,12,14,27,29,32,34,36,37,46,55 Dicot sp. WW010 7 6 85.7 1,2,8,12,27,57 Dicot sp. WW015 6 6 50 1,2,12,13,29,32, Dicot sp. WW009 6 8 100 1,2,3,4,5,12,13,46 Dicot sp. WW012 5 10 100 1,2,3,4,5,12,20,29,32,46 cf. Rhus 51280 1,2,3,11,12,13,14,15,27,29,32,36 Dicot sp. WW013 4 2 25 13,46 Dicot sp. WW016 2 8 100 1,2,3,7,8,17,32,46 Dicot sp. WW018 2 3 100 1,2,12 Dicot sp. WW019 2 2 50 1,3 Lauraceae sp. WW023 1 3 100 8,29,46 Dicot sp. WW017 1 1 100 29 Dicot sp. WW020 1 0 0 Dicot sp. WW021 1 1 100 1 Dicot sp. WW022 1 0 0 Dicot sp. WW024 1 1 100 14 Dicot sp. WW025 1 0 0 1,2,3,4,5,7,8,11,12,13,14,15,16,17,20,21, TOTAL 515 38 57.3 27,29,30,32,33,34,35,36,37,40,43,46,50, 55,57,78,79,80,81,82,92,125

273 ELK CREEK

EDC0501 Leaves # DTs % Damage Damage Types Alnus sp. 45 8 31.1 1,2,3,4,12,17,57,79 Averrhoites affinis 8 3 37.5 1,2,46 Zizyphoides flabella 20 0 0 Cercidiphyllum genetrix 10 0 0 TOTAL 56 9 30.4 1,2,3,4,12,17,46,57,79

EDC0502 Leaves # DTs % Damage Damage Types Averrhoites affinis 119 14 68.1 1,2,3,4,5,8,9,12,13,15,16,17,29,46 Alnus sp. 1 1 100 3 Cercidiphyllum genetrix 10 0 Hamamelidaceae sp. WW031 1 1 100 79 1,2,3,4,5,8,9,12,13,15,16,17,29, TOTAL 122 15 68.0 46,79

EDC0503 Leaves # DTs % Damage Damage Types 1,2,3,4,5,8,12,13,14,15,16,19,27, Averrhoites affinis 237 16 32.1 46,57,79 Alnus sp. 43 13 48.8 1,2,3,4,5,7,8,12,15,16,17,29,57 Aeschylus hickeyi 50 0 1,2,3,4,5,7,8,12,13,14,15,16,17, TOTAL 285 19 34.0 19,27,29,46,57,79

EDC0504 Leaves # DTs % Damage Damage Types 1,2,3,4,5,7,12,13,14,15,16,17,19, Averrhoites affinis 220 21 29.5 20,22,25,27,40,44,46,57 Alnus sp. 13 4 15.4 2,5,8,57 1,2,3,4,5,7,8,12,13,14,15,16,17, TOTAL 233 22 28.8 19,20,22,25,27,40,44,46,57

EDC0505 Leaves # DTs % Damage Damage Types 1,2,3,4,5,8,12,13,14,15,16,19,27, Averrhoites affinis 236 19 22.0 36,40,46,57,58,104 Alnus sp. 76 6 22.4 1,2,4,8,17,57 1,2,3,4,5,8,12,13,14,15,16,17,19, TOTAL 76 20 90.8 27,36,40,46,57,58,104

274 COOL PERIOD

DC1 Leaves # DTs % damage Damage Types Averrhoites affinis 2 1 50 3 "Dombeya " novi-mundi 20 0 0 TOTAL 4 1 25 3

LB Leaves # DTs % damage Damage Types Dicot sp. WW034 16 2 18.8 12,16 Cercidiphyllum genetrix 12 6 58.3 1,3,12,16,24,46 Juglandaceae sp. FU740 10 3 30 5,15,25 Betulaceae sp. WW030 9 4 22.2 1,2,3,5 Lauraceae sp. WW036 2 1 50 2 Macginitiea gracilis 10 0 Platanus raynoldsi 1 1 100 3 Dicot sp. WW033 1 1 100 2 Dicot sp. WW037 1 3 100 1,4,46 TOTAL 53 11 35.8 1,2,3,4,5,12,15,16,24,25,46

EDC0701 Leaves # DTs % Damage Damage Types "Ampelopsis" acerifolia 75 12 36 1,2,3,4,5,7,8,12,16,25,46,56 Dicot sp. WW037 54 7 33.3 1,2,3,12,32,46,165 Lauraceae sp. WW036 33 9 33.3 1,2,3,12,13,15,16,25,32 Dicot sp. WW034 17 6 47.1 2,3,8,12,13,16 Hamamelidaceae sp. WW031 11 5 36.4 2,3,5,16,32 Aesculus hickeyi 5 2 40 6,46 Dicot sp. WW032 20 0 Acer silberlingi 10 0 Juglandaceae sp. FU740 10 0 Dicot sp. WW033 1 1 100 12 1,2,3,4,5,7,8,12,13,15,16,25,32,46, TOTAL 200 16 35.5 56,165

EDC0702 Leaves # DTs % Damage Damage Types Alnus sp. 6 5 100 2,12,15,30,32 Zizyphoides flabella 5 1 20 16 Betulaceae sp. WW030 3 5 66.7 2,4,5,12,16 "Dombeya " novi-mundi 10 0 0 Populus wyomingiana 10 0 0 Hamamelidaceae sp. WW031 1 1 100 32 TOTAL 17 8 58.8 2,4,5,12,15,16,30,32

275 EDC0703 Leaves # DTs % Damage Damage Types Averrhoites affinis 13 5 53.8 2,5,12,13,22 Zizyphoides flabella 1 1 100 13 TOTAL 14 5 57.1 2,5,12,13,22 EDC0704 Leaves # DTs % Damage Damage Types "Dombeya " novi-mundi 90 11 41.1 1,2,3,4,5,7,12,13,46,63,164 Averrhoites affinis 45 7 22.2 1,2,5,7,12,13,46 Alnus sp. 1 3 100 2,5,63 TOTAL 136 11 35.3 1,2,3,4,5,7,12,13,46,63,164

EDC0705 Leaves # DTs % Damage Damage Types Averrhoites affinis 68 6 67.6 1,2,3,4,12,16 TOTAL 68 6 67.7 1,2,3,4,12,16

276 PN

Leaves # DTs % Damage Damage Types 1,2,3,4,5,7,8,12,13,14,15,16,19,20,27,2 Macginitiea gracilis 437 24 52.4 9,34,44,46,49 Fabaceae sp. WW040 155 11 56.8 1,2,3,5,12,13,14,16,27,32,46 Machaerium sp. 42 9 45.2 1,2,3,12,14,15,16,27,46 Platanus guillelmae 19 8 42.1 1,2,3,4,5,12,13,16 Fabaceae sp. WW042 16 3 37.5 2,12,32 Populus wyomingiana 10 9 60 1,2,3,5,7,20,32,154,163 Dicot sp. WW047 4 3 50 4,16,80 Betulaceae sp. WW038 3 2 66.7 2,5 Dicot sp. WW041 2 1 50 3 Dicot sp. WW039 1 0 0 Dicot sp. WW043 1 1 100 29 Dicot sp. WW044 1 0 0 Dicot sp. WW045 1 0 0 Dicot sp. WW046 1 0 0 1,2,3,4,5,7,8,12,13,14,15,16,19,20,27,2 PN TOTAL 693 28 52.2 9,32,34,44,46,49,56,57,61,63,80, 154,163

277 15 MILE CREEK

EDC0603 Taxa Leaves # DTs % Damage Damage Types 1,2,3,4,5,8,12,14,15,16,19,20,29, Alnus sp. 250 27 70.8 32,34,36,40,41,42,46,57,61,78,79, 81,91,103 Platycarya castaneopsis 66 12 42.4 1,2,3,4,7,12,15,16,17,27,29,46

"Dombeya " novi-mundi 61 14 55.7 1,2,3,4,5,8,12,16,25,29,32,40,46,57 Populus wyomingiana 59 11 37.3 1,2,3,12,16,20,29,40,46,57,90 Lauraceae sp. WW061 15 12 80 1,2,3,4,12,16,30,32,33,34,46,82 Dicot sp. WW052 11 6 54.5 2,12,13,16,29,61 Aleurites fremontensis 6 7 83.3 1,2,3,12,14,29,46 Dicot sp. WW053 5 2 60 3,12 Chaetoptelea microphylla 41 25 46 Lauraceae sp. WW059 3 1 33.3 13 Dicot sp. WW035 3 4 100 12,17,29,46 Apocynaceae sp. WW051 2 2 50 1,3 Lauraceae sp. WW054 2 2 50 5,40 Allophylus flexifolia 1 1 100 40 Cornus hyperborea 1 2 100 5,46 Luehea newberryana 1 1 100 151 Dicot sp. WW057 1 3 100 1,3,5 Dicot sp. WW062 1 2 100 3,32 1,2,3,4,5,7,8,12,13,14,15,16,17,19, TOTAL 492 35 60.8 20,25,29,30,32,33,34,36,40,41,42, 46,57,61,78,79,81,82,91,103,151

EDC0604 Taxa Leaves # DTs % Damage Damage Types Platycarya castaneopsis 48 10 56.3 1,2,3,4,12,15,16,19,46,57 Dicot sp. WW052 19 5 42.1 1,2,3,12,16 "Dombeya " novi-mundi 17 7 64.7 1,2,3,4,16,57,61 Alnus sp. 15 10 46.7 1,2,5,12,13,16,32,41,46,57 Apocynaceae sp. WW051 2 4 50 1,3,5,46 Chaetoptelea microphylla 1 1 100 38 Populus wyomingiana 1 1 100 1 Lauraceae sp. WW054 1 1 100 34 Lauraceae sp. WW061 1 2 100 2,16 Dicot sp. WW053 1 0 0 1,2,3,4,5,12,13,15,16,19,32,41,46, TOTAL 106 15 54.7 57,61

278 EDC0605 Taxa Leaves # DTs % Damage Damage Types Platycarya castaneopsis 58 12 55.2 1,2,3,4,5,8,12,16,29,38,46,154 Alnus sp. 17 8 88.2 1,2,3,7,12,15,16,19 Dicot sp. WW052 13 2 23.1 2,12 "Dombeya " novi-mundi 10 6 60 1,2,3,15,16,45 Lauraceae sp. WW061 2 4 100 2,12,15,46 Dicot sp. WW048 1 3 100 2,3,38 1,2,3,4,5,7,8,12,15,16,19,29,38,46, TOTAL 101 15 58.4 154

EDC0606 Taxa Leaves # DTs % Damage Damage Types 1,2,3,4,5,7,8,12,13,14,15,16,19,27,2 Alnus sp. 233 24 63.1 9,32,40,41,44,46,57,62,69,78 Platycarya castaneopsis 81 13 51.9 1,2,3,4,5,12,13,14,15,16,27,29,46 1,2,3,5,11,12,14,16,27,29,32,33,34,3 54 15 48.1 Populus wyomingiana 6,46 "Dombeya " novi-mundi 31 7 54.8 1,2,3,4,12,16,46 Allophylus flexifolia 20 12 75 1,2,3,5,7,8,12,16,30,46,62,80 Aleurites fremontensis 14 10 85.7 1,2,3,5,8,12,25,29,46,57 Dicot sp. WW052 8 7 50 2,3,12,13,15,16,61 Dicot sp. WW053 8 11 87.5 1,2,3,5,12,13,16,17,29,32,34 Luehea newberryana 4 7 100 1,2,3,12,32,151,152 Dicot sp. WW035 4 3 75 2,16,29 Cornus hyperborea 3 3 66.7 1,2,57 Lauraceae sp. WW054 3 3 33.3 12,16,32 Lauraceae sp. WW061 3 2 66.7 12,46 Dicot sp. WW056 3 4 66.7 1,2,3,7 Apocynaceae sp. WW051 2 2 100 2,16 Dicot sp. WW050 2 0 0 Lauraceae sp. WW055 1 1 100 13 Dicot sp. WW049 1 1 100.0 12 1,2,3,4,5,7,8,11,12,13,14,15,16,17, TOTAL 475 33 60.4 19,25,27,29,30,32,33,34,36,40,41, 44,46,57,61,62,69,78,80

EDC0607 Taxa Leaves # DTs % Damage Damage Types "Dombeya " novi-mundi 38 11 63.2 1,2,3,4,5,7,8,12,15,16,65 Alnus sp. 29 9 62.1 1,2,3,4,12,16,41,46,61 Platycarya castaneopsis 15 5 60 2,3,12,13,16 Dicot sp. WW052 13 4 30.8 3,5,12,16 Allophylus flexifolia 2 2 100 5,80 Apocynaceae sp. WW051 2 1 50 16 Populus wyomingiana 2 2 100 2,12 Dicot sp. WW035 1 0 0 1,2,3,4,5,7,8,12,13,15,16,41,46,61, TOTAL 102 16 58.8 65,80

279 EDC0609 Taxa Leaves # DTs % Damage Damage Types 1,2,3,5,8,12,15,16,19,20,27,29,34, 170 17 44.7 Platycarya castaneopsis 40,62,118,153 1,2,3,4,5,7,8,12,13,14,16,27,29,33,3 Alnus sp. 130 18 64.6 8,40,46,57 "Dombeya " novi-mundi 86 13 52.3 1,2,3,4,5,7,8,12,15,16,19,41,57 Dicot sp. WW052 41 8 58.5 1,2,3,5,12,16,24,34 Lauraceae sp. WW061 41 10 58.5 1,2,3,5,12,16,27,30,57,78 Allophylus flexifolia 7 6 57.1 1,16,30,40,46,80 Populus wyomingiana 55 80 1,2,5,12,16 Lauraceae sp. WW054 4 2 50 34,57 Aleurites fremontensis 2 2 100 1,80 Dicot sp. WW035 2 0 0 Dicot sp. WW062 2 1 50 3 Luehea newberryana 1 2 100 1,3 Lauraceae sp. WW059 1 1 100 24 Dicot sp. WW058 1 1 100 3

Dicot sp. WW060 1 1 100 3

1,2,3,4,5,7,8,12,13,15,16,19,20,24, TOTAL 494 29 54.7 27,29,30,33,34,38,40,41,46,57,62, 78,80,118,153

EDC0610 Taxa Leaves # DTs % Damage Damage Types "Dombeya " novi-mundi 22 10 45.5 1,2,3,4,5,12,13,16,46,57 Alnus sp. 17 7 47.1 2,3,7,12,15,40,57 Populus wyomingiana 60 0 Platycarya castaneopsis 3 2 33.3 2,3 Dicot sp. WW052 2 1 50 2 Aleurites fremontensis 1 1 100 12 TOTAL 51 13 41.2 1,2,3,4,5,7,12,13,15,16,40,46,57

280 APPENDIX E: SELECTED R CODES USED IN THIS STUDY

These programs work on an excel spreadsheet where each row is an individual leaf (or other plant part), the first column is the specimen number, the second column is the species (header must be ID), and the third column is size. The rest of the columns are the damage types (here I go up to 155, so as more DTs are created, the row numbers will need to be changed. Each cell is the number of occurrences of the given DT on the given leaf.

To read in the data matrix from an excel spreadsheet. Save the data as a text file. There cannot be any spaces or empty cells. This is my example from Dead Platypus, a late Paleocene site in the Bighorn Basin. The name can be changed for other sites.

DP <- read.table("DP.txt", header=T) DP.dt <- DP[,c(2,4:158)] #makes matrix with species and insect damage information d.DP <- DP[,c(4:158)] #makes matrix with insect damage data only attach(DP.dt) species <- levels(ID) species <- as.character(species)

To make a matrix with the number of occurrences of each damage type on each species. occ.sp.DP <- matrix(NA, nrow=length(species), ncol=ncol(d.DP)) #makes an empty matrix rownames(occ.sp.DP) <- species colnames(occ.sp.DP) <- colnames(d.DP) for (i in 1:nrow(occ.sp.DP)) { Xsub <- DP.dt[ID==species[i],] colsums <- colSums(Xsub[,2:156]) occ.sp.DP[i,] <- colsums } write.txt(occ.sp.DP, "occ_sp_DP.txt", sep = “\t”) #output file is a tab delimited text file.

To make a descriptive matrix with the number of leaves, damage diversity, and % damaged of each host at a site. descr.DP <- matrix(NA, nrow=length(species), ncol=3) rownames(descr.DP) <- levels(ID)

281 colnames(descr.DP) <- c("leaves", "diversity", "% damage") descr.DP[,2] <- specnumber(occ.sp.DP) #damage diversity for (i in 1:nrow(occ.sp.DP)) { Xsub <- DP.dt[ID==species[i],] rowsums <-rowSums(Xsub[,2:156]) #beginning with this line is % damaged b <- as.numeric(rowsums>0) freq <- sum(b)/nrow(Xsub) descr.DP[i,3] <- freq descr.DP[i,1] <- nrow(Xsub) # number of leaves of each host } write.table(descr.DP, "descr_15mc.txt", sep="\t") #Output file is a tab delimited text file.

To find the number of DTs and total damage frequency on the bulk flora. dam.div <- sum(as.numeric(colSums(DP[,4:158])>0)) # number of DTs dam.freq <- sum(as.numeric(rowSums(DP[,4:158])>0))/nrow(DP) # percent of leaves damaged

To find the percentage of leaves of each species with a given damage type. perc.dam.DP <- matrix(NA, nrow=length(species),ncol=ncol(d.DP)) rownames(perc.dam.DP) <- species colnames(perc.dam.DP) <- colnames(d.DP) for (i in 1:nrow(perc.dam.DP)) { Xsub <- DP.dt[ID==species[i],] freq <- specnumber(Xsub[,2:156], MARGIN=2) perc <- freq/nrow(Xsub) perc.dam.DP[i,] <- perc } write.table(perc.dam.DP, "perc_dam_DP.txt", sep="\t") #Output file is a tab delimited text file.

To resample damage diversity on the bulk floras by number of leaves (DTL). Input the desired step size for resampling (e.g. 100 leaves) at “ss,” below. The output file is a matrix with total DTL, specialized DTL, and mine DTL, plus the standard deviation on the resamples at all the sample sizes (e.g. 100, 200, ... 1000). This is a slow routine and can take days for large datasets. The lists of specialized and mine DTs used here only goes up to DT 155.

#Specialized damage types: 6,8:10,15,18:23,24:28,32:53,55:57,59:66,68:71,75,79,80,82:99, #104,105,109:112,115:120,122,123,125:129,131:133,135,138,139,141,142,151:154,144

282 #Mine types #35:45,59,60,65,66,69,71,88:96,99,104,105,109,111,129,131,139,141,151,152

#Bulk resampling routine library(vegan) DP <- read.table("DP.txt", header=T) #read in data DP.m <- as.matrix(DP) # converts from a dataframe to a matrix data <- DP[,4:158] #makes a matrix of only insect damage data for each leaf

#Sets up matrices of the specialized (dt.spec) and mine (dt.mines) data on each leaf dt.spec <- data[,c(6,8:10,15,18:23,24:28,32:53,55:57,59:66,68:71,75,79,80,82:99,104,105,109:112,115:120,122,123,125: 129,131:133,135,138,139,141,142,151:154,144)] dt.mines <- data[,c(35:45,59,60,65,66,69,71,88:96,99,104,105,109,111,129,131,139,141,151,152)] nn <- nrow(dt.spec) # find the number of leaves in the matrix ss <- 50 #Input desired step size for the resampling routine here. rarefaction <- matrix(data=NA, nrow=nn/ss, ncol=7) #This is your final data matrix for the resampling. colnames(rarefaction) <- c("No. leaves", "Total diversity", "SD Total diversity", "Spec diversity", "SD spec diversity", "Mine diversity", "SD Mine diversity") rarefaction[,1] <- seq(ss,nn,ss) #makes the first column the # leaves sampled interval <- seq(ss,nn,ss) ni <- length(interval)

#Total DTL on the bulk flora for (m in 1:ni) { iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(data))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(data)) # set up a blank data matrix to be filled by the random subsample leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (i in 1:interval[m]){ a <- data[leaves[i],] b <- as.numeric(a) subsample[i,] <- b }

a <- colSums(subsample)

283 a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,2] <- mean(iterations) rarefaction[m,3] <- sd(iterations) }

#Specialized DTL on the bulk flora for (m in 1:ni) { iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(dt.spec))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(dt.spec)) # set up a blank data matrix to be filled by the random subsample leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (i in 1:interval[m]){ a <- dt.spec[leaves[i],] b <- as.numeric(a) subsample[i,] <- b }

a <- colSums(subsample) a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,4] <- mean(iterations) rarefaction[m,5] <- sd(iterations) }

#Mine DTL for (m in 1:ni) { iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(dt.mines))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(dt.mines)) # set up a blank data matrix to be filled by the random subsample

284 leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (i in 1:interval[m]){ a <- dt.mines[leaves[i],] b <- as.numeric(a) subsample[i,] <- b }

a <- colSums(subsample) a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,6] <- mean(iterations) rarefaction[m,7] <- sd(iterations) } write.table(rarefaction, "final_dp.txt", sep="\t")

# To resample damage diversity on the individual plant hosts by number of leaves (DTL). This routine is the same as the one given above, except it will take the data matrix for the bulk flora, split it into the individual plant species, and then resample damage on those species. The output is a list of matrices, one for each plant species, which can be individually written to text files, see example below. If there are any plant species with fewer individuals than your stepsize for the resampling, the program will fail. These species should be deleted before inputting the data into R. Again, this matrix can take a really long time to run. library(vegan) DP <- read.table("DP_species.txt", header=T) attach(DP) species <- levels(ID) species <- as.character(species) ss=10 #step size: input desired step size here. results <- list() #This sets up a list, which can be of matrices, so each matrix in this list should be the resampling information for a single taxon. for(i in species) { Xsub1 <- DP[ID==i,] Xsub <- Xsub1[,4:158]

285 dt.tot <- Xsub[,c(1:57,59:72,75:105,107:113,115:123,125:139,141:155)] dt.spec <- Xsub[,c(6,8:10,15,18:28,32:53,55:57,59:66,68:71,75,79,80,82:99,104,105,109:112,115:120,122,123,125:129,1 31:133,135,138,139,141,142,144,151:154)] dt.mines <- Xsub[,c(35:45,59,60,65,66,69,71,88:96,99,104,105,109,111,129,131,139,141,151,152)]

nn <- nrow(Xsub) # find the number of leaves in the matrix rarefaction <- matrix(data=NA, nrow=nn/ss, ncol=7) colnames(rarefaction) <- c("No. leaves", "Total diversity", "SD Total diversity", "Spec diversity", "SD spec diversity", "Mine diversity", "SD Mine diversity") rarefaction[,1] <- seq(ss,nn,ss) interval <- seq(ss,nn,ss) ni <- length(interval)

#Total DTL for (m in 1:ni) {

iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(dt.tot))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(dt.tot)) # set up a blank data matrix to be filled by the random subsample leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (k in 1:interval[m]){ a <- dt.tot[leaves[k],] b <- as.numeric(a) subsample[k,] <- b }

a <- colSums(subsample) a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,2] <- mean(iterations) rarefaction[m,3] <- sd(iterations) }

#Specialized DTL

286 for (m in 1:ni) {

iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(dt.spec))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(dt.spec)) # set up a blank data matrix to be filled by the random subsample leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (k in 1:interval[m]){ a <- dt.spec[leaves[k],] b <- as.numeric(a) subsample[k,] <- b }

a <- colSums(subsample) a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,4] <- mean(iterations) rarefaction[m,5] <- sd(iterations) } #Mine DTL for (m in 1:ni) {

iterations <- array(dim=5000) x <- array(1:nn) # make a list of the numbers of leaves to be pulled out in the subsampling a <- array(dim=ncol(dt.mines))

for (j in 1:5000){ subsample <- matrix(data=NA, nrow=interval[m], ncol=ncol(dt.mines)) # set up a blank data matrix to be filled by the random subsample leaves <- sample(x, interval[m], replace=F, prob=NULL) #choose a random subset of leaves for (k in 1:interval[m]){ a <- dt.mines[leaves[k],] b <- as.numeric(a) subsample[k,] <- b }

a <- colSums(subsample)

287 a <- matrix(data=a, nrow=1, ncol=length(a)) iterations[j] <- specnumber(a) }

rarefaction[m,6] <- mean(iterations) rarefaction[m,7] <- sd(iterations) }

results[[i]] <- rarefaction} write.table(results$Alnus, "Alnus.txt", sep="\t") #This is an example of the resampling results for one taxon written to a text file.

To perform DTO analyses on individual plant hosts in a flora. The purpose of this program is to take a data matrix of the number of damage occurrences of each damage type on each leaf, separate it by plant species, and then rarefy by damage type occurrence.

#Step 1: Make a matrix of the number of DTOs of each damage type on each species read.table(“DP.txt”, header=T) library(vegan) attach(DP) plant.host <- levels(ID) # makes a vector with the plant species nspecies <- nlevels(ID) # counts the number of plant species dto.host.DP <- matrix(0, nspecies, 155) # creates a matrix of 0s, with a row for each plant species and a column for each damage type. row.names(dto.host.DP) <- plant.host # makes the row names in the matrix the name of the plant host species <- as.character(plant.host) for (i in 1:length(species)){ # make a loop to search for each species dto.host.DP[i,] <- specnumber(DP[ID==species[i],c(4:158)], MARGIN=2) #add up all the damage occurrences for each species and put in the matrix }

# Step 2: Rarefy the damage occurrences. totals <- rowSums(dto.host.DP) #finds the number of damage occurrences on each species int <- seq(5, max(totals), by = 5) # makes a sampling sequence l <- length(int) rarefaction.host.DP <- matrix(data=NA, nrow=length(int), ncol=nrow(dto.host.DP)*2) colnames(rarefaction.host.DP) <- c(rownames(dto.host.DP), rownames(dto.host.DP)) rownames(rarefaction.host.DP) <- int

288 for(i in 1:l){ a <- rarefy(dto.host.DP, int[i], se=T) d <- 0.5*ncol(rarefaction.host.DP) e <- 0.5*ncol(rarefaction.host.DP)+1 f <- ncol(rarefaction.host.DP) rarefaction.host.DP[i,c(1:d)] <- a[1,] rarefaction.host.DP[i,c(e:f)] <- a[2,] }

#Specialized damage data <- dto.host.DP d.spec <- data[,c(6,8:10,15,18:23,24:28,32:53,55:57,59:66,68:71,75,79,80,82:99,104,105,109:112,115:120,122,123,125: 129,131:133,135,138,139,141,142,151:154,144)] tot.spec <- rowSums(d.spec) int.spec <- seq(5, max(tot.spec), by=5) l.spec <- length(int.spec) rar.dto.spec <- matrix(data=NA, nrow=l.spec, ncol=nrow(data)*2) colnames(rar.dto.spec) <- c(rownames(data), rownames(data)) rownames(rar.dto.spec) <- int.spec for(i in 1:l.spec){ a <- rarefy(d.spec, int.spec[i], se=T) d <- 0.5*ncol(rar.dto.spec) e <- 0.5*ncol(rar.dto.spec)+1 f <- ncol(rar.dto.spec) rar.dto.spec[i,c(1:d)] <- a[1,] rar.dto.spec[i,c(e:f)] <- a[2,] } write.table(rar.dto.spec, "rar_host_spec_DP.txt", sep="\t")

# Mines mines <- data[,c(35:45,59,60,65,66,69,71,88:96,99,104,105,109,111,129,131,139,141,151,152)] tot.mines <- rowSums(mines) int.mines <- seq(5, max(tot.mines), by=5) l.mines <- length(int.mines) rar.dto.mines <- matrix(data=NA, nrow=l.mines, ncol=nrow(data)*2) colnames(rar.dto.mines) <- c(rownames(data), rownames(data))

289 rownames(rar.dto.mines) <- int.mines for(i in 1:l.mines){ a <- rarefy(mines, int.mines[i], se=T) d <- 0.5*ncol(rar.dto.mines) e <- 0.5*ncol(rar.dto.mines)+1 f <- ncol(rar.dto.mines) rar.dto.mines[i,c(1:d)] <- a[1,] rar.dto.mines[i,c(e:f)] <- a[2,] } write.table(rar.dto.mines, "rar_host_mines_DP.txt", sep="\t")

290 APPENDIX F: COMPLETE BIGHORN BASIN INSECT DAMAGE DATASET

The following 160 pages list every leaf from the nine sites in the analysis. Please contact the author for an electronic version of the dataset. The census number, plant morphotype, leaf blade size, and observed DTs are given for each leaf. Specimens with census numbers were collected and are at the Smithsonian Institution, whereas those listed as “C” were tallied on the outcrop. Laminar size as defined by Webb (1959): lepto = leptophyll, nano = nanophyll, micro = microphyll, noto = notophyll, meso = mesophyll, macro = macrophyll, mega = megaphyll. Skeleton Coast and Lur’d Leaves were scored for the presence or absence of each damage type (Wilf, 2006 #549). For the other six floras, the number of occurrences of each DT was recorded and is given in parentheses after the DT. For example, 4(2) means there are two occurrences of DT 4 the leaf. Piercing and sucking was scored for presence / absence because of the abundance of occurrences of piercing and sucking scars on individual leaves.

291 Skeleton Coast

# Plant Species Size DT

5 Browniea serrata micro 0 7 Browniea serrata noto 0 10 Browniea serrata micro 01, 08 15 Browniea serrata micro 08 16 Browniea serrata noto 0 17 Browniea serrata noto 01 20 Browniea serrata micro 0 22 Browniea serrata noto 0 37 Browniea serrata micro 0 42 Browniea serrata noto 03 44 Browniea serrata noto 29 54 Browniea serrata meso 02,03 55 Browniea serrata meso 01,02,03,07 77 Browniea serrata meso 0 91 Browniea serrata noto 01,02,03 93 Browniea serrata noto 01 94 Browniea serrata noto 29 107 Browniea serrata noto 01,05 114 Browniea serrata meso 01,03 120 Browniea serrata noto 03,04,05 122 Browniea serrata noto 02 129 Browniea serrata micro 0 138 Browniea serrata noto 01,07 141 Browniea serrata meso 02,05 145 Browniea serrata micro 02,03 150 Browniea serrata micro 0 C Browniea serrata noto 01 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 01 C Browniea serrata noto 02,03 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 04 C Browniea serrata noto 02 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 02 C Browniea serrata meso 0 C Browniea serrata meso 04 C Browniea serrata micro 0 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata noto 03 C Browniea serrata meso 05 C Browniea serrata micro 02 C Browniea serrata noto 01 C Browniea serrata noto 0 C Browniea serrata noto 02 C Browniea serrata noto 0 C Browniea serrata noto 02 C Browniea serrata noto 0 C Browniea serrata meso 01 C Browniea serrata noto 02 C Browniea serrata noto 01

292 Skeleton Coast

C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata meso 01,03 C Browniea serrata noto 02,16 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata noto 01,02,03 C Browniea serrata noto 04 C Browniea serrata noto 03 C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata meso 0 C Browniea serrata meso 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 01 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata noto 03 C Browniea serrata meso 01,03 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 16 C Browniea serrata meso 08 C Browniea serrata ? 01,04 C Browniea serrata noto 01 C Browniea serrata meso 16 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata meso 02 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 08 C Browniea serrata noto 0 C Browniea serrata noto 01,03 C Browniea serrata meso 01 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 01 C Browniea serrata micro 16 C Browniea serrata micro 01 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 01,03 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 01 C Browniea serrata noto 02,03 C Browniea serrata noto 01,02,04

293 Skeleton Coast

C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata micro 03 C Browniea serrata noto 02,03 C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata noto 01 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 01 C Browniea serrata meso 01,02 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata ?0 C Browniea serrata noto 0 C Browniea serrata noto 01,03 C Browniea serrata meso 0 C Browniea serrata meso 01,02 C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata micro 01,02 C Browniea serrata meso 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 04 C Browniea serrata meso 01 C Browniea serrata noto 0 C Browniea serrata micro 0 C Browniea serrata meso 02 C Browniea serrata noto 01,02 C Browniea serrata noto 01,02 C Browniea serrata meso 01 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 02,16 C Browniea serrata noto 02 C Browniea serrata noto 04 C Browniea serrata meso 0 C Browniea serrata meso 03 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata meso 03 C Browniea serrata micro 01 C Browniea serrata noto 0 C Browniea serrata noto 03 C Browniea serrata noto 0 C Browniea serrata noto 01 C Browniea serrata noto 01 C Browniea serrata noto 02,05 C Browniea serrata noto 02 C Browniea serrata meso 04 C Browniea serrata noto 01,02,03 C Browniea serrata meso 01 C Browniea serrata noto 02 C Browniea serrata meso 03,04

294 Skeleton Coast

C Browniea serrata meso 0 C Browniea serrata noto 01 C Browniea serrata noto 0 C Browniea serrata meso 01 C Browniea serrata meso 0 C Browniea serrata meso 0 1 Cercidiphyllum genetrix micro 1 4 Cercidiphyllum genetrix noto 0 9 Cercidiphyllum genetrix noto 02 11 Cercidiphyllum genetrix micro 0 12 Cercidiphyllum genetrix micro 0 14 Cercidiphyllum genetrix micro 0 18 Cercidiphyllum genetrix noto 17 19 Cercidiphyllum genetrix noto 17 21 Cercidiphyllum genetrix noto 0 25 Cercidiphyllum genetrix noto 0 26 Cercidiphyllum genetrix micro 0 27 Cercidiphyllum genetrix micro 0 31 Cercidiphyllum genetrix noto 02,16 33 Cercidiphyllum genetrix micro 01 34 Cercidiphyllum genetrix noto 56 41 Cercidiphyllum genetrix noto 41 46 Cercidiphyllum genetrix micro 16, 56 48 Cercidiphyllum genetrix micro 0 57 Cercidiphyllum genetrix noto 16,56 58 Cercidiphyllum genetrix noto 0 60 Cercidiphyllum genetrix noto 56 70 Cercidiphyllum genetrix noto 16,56 71 Cercidiphyllum genetrix noto 01,02,04,56 78 Cercidiphyllum genetrix nano 0 79 Cercidiphyllum genetrix noto 0 81 Cercidiphyllum genetrix micro 0 83 Cercidiphyllum genetrix noto 16,17 85 Cercidiphyllum genetrix noto 0 86 Cercidiphyllum genetrix micro 03,14,15 95 Cercidiphyllum genetrix micro 02,03,16 96 Cercidiphyllum genetrix noto 29 101 Cercidiphyllum genetrix noto 0 103 Cercidiphyllum genetrix micro 0 108 Cercidiphyllum genetrix noto 0 109 Cercidiphyllum genetrix micro 16 116 Cercidiphyllum genetrix noto 02,03,08 117 Cercidiphyllum genetrix noto 0 118 Cercidiphyllum genetrix micro 0 121 Cercidiphyllum genetrix micro 16 125 Cercidiphyllum genetrix micro 0 126 Cercidiphyllum genetrix noto 0 127 Cercidiphyllum genetrix ?18 131 Cercidiphyllum genetrix micro 16,22 134 Cercidiphyllum genetrix micro 03,16 142 Cercidiphyllum genetrix micro 0 143 Cercidiphyllum genetrix micro 41 144 Cercidiphyllum genetrix micro 0 146 Cercidiphyllum genetrix noto 16 147 Cercidiphyllum genetrix nano 0 149 Cercidiphyllum genetrix noto 46 151 Cercidiphyllum genetrix noto 16,56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0

295 Skeleton Coast

C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 02,03 C Cercidiphyllum genetrix noto 03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 01,02 C Cercidiphyllum genetrix noto 01,02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 03 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02,03,15 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 14,56 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix noto 02,03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0

296 Skeleton Coast

C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 14,15 C Cercidiphyllum genetrix micro 05 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 01

297 Skeleton Coast

C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 01,02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 05 C Cercidiphyllum genetrix micro 03 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix meso 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix noto 03

298 Skeleton Coast

C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 02,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 02,16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 02,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 03,16 C Cercidiphyllum genetrix micro 12 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 02 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 03,08 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0

299 Skeleton Coast

C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 01,03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 03,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16,56 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix noto 0

300 Skeleton Coast

C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 04 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 05 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix meso 03 C Cercidiphyllum genetrix noto 12 C Cercidiphyllum genetrix micro 0

301 Skeleton Coast

C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix meso 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 02,08 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 56 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 56 C Cercidiphyllum genetrix micro 02,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 12,15 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 03 C Cercidiphyllum genetrix noto 02,16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02,04 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix noto 03 C Cercidiphyllum genetrix noto 0

302 Skeleton Coast

C Cercidiphyllum genetrix noto 04,16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix meso 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix meso 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix micro 12 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 12 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix meso 0 C Cercidiphyllum genetrix micro 01 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix meso 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 04 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 04 C Cercidiphyllum genetrix micro 0

303 Skeleton Coast

C Cercidiphyllum genetrix meso 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 6 Davidia antiqua noto 16 8 Davidia antiqua noto 11 28 Davidia antiqua noto 0 56 Davidia antiqua noto 01,02 61 Davidia antiqua noto 1 64 Davidia antiqua noto 01,02,03,12 68 Davidia antiqua ? 01,03 97 Davidia antiqua noto 01,03 99 Davidia antiqua noto 0 110 Davidia antiqua meso 0 111 Davidia antiqua noto 0 112 Davidia antiqua noto 01 115 Davidia antiqua noto 2,4,7,15 13 Juglandaceae sp. micro 0 24 Juglandaceae sp. micro 12, 14 35 Juglandaceae sp. micro 02,12 62 Juglandaceae sp. micro 0 98 Juglandaceae sp. micro 0 104 Juglandaceae sp. micro 0 105 Juglandaceae sp. micro 0 113 Juglandaceae sp. micro 0 3 Platanus raynoldsi noto 0 32 Platanus raynoldsi noto 0 40 Platanus raynoldsi meso 0 76 Platanus raynoldsi meso 1 92 Platanus raynoldsi meso 02,05,16 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 02,03 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 01 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 02,03 C Platanus raynoldsi meso 03 C Platanus raynoldsi meso 16 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 02 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 02 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 29 C Platanus raynoldsi noto 02 C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0

304 Skeleton Coast

C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 01,12 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 01 C Platanus raynoldsi meso 02 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 01 C Platanus raynoldsi noto 01,02 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 01 C Platanus raynoldsi noto 01 C Platanus raynoldsi noto 01 C Platanus raynoldsi noto 0 29 Dicot sp. SC1 noto 01,02,03 36 Dicot sp. SC1 noto 02,03 38 Dicot sp. SC1 noto 12,15 43 Dicot sp. SC1 meso 16 45 Dicot sp. SC1 noto 0 50 Dicot sp. SC1 noto 01 52 Dicot sp. SC1 micro 02 59 Dicot sp. SC1 meso 01,02 65 Dicot sp. SC1 noto 0 66 Dicot sp. SC1 micro 0 67 Dicot sp. SC1 ? 0 69 Dicot sp. SC1 micro 0 74 Dicot sp. SC1 noto 02,03 80 Dicot sp. SC1 noto 0 82 Dicot sp. SC1 noto 0 84 Dicot sp. SC1 micro 0 87 Dicot sp. SC1 meso 05 88 Dicot sp. SC1 meso 24 90 Dicot sp. SC1 noto 01 102 Dicot sp. SC1 micro 16 106 Dicot sp. SC1 micro 0 123 Dicot sp. SC1 noto 0 124 Dicot sp. SC1 meso 01 133 Dicot sp. SC1 noto 24 140 Dicot sp. SC1 micro 0 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 meso 0 C Dicot sp. SC1 micro 16 C Dicot sp. SC1 micro 01 C Dicot sp. SC1 noto 16 C Dicot sp. SC1 noto 01,16 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 micro 0

305 Skeleton Coast

C Dicot sp. SC1 noto 16 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 noto 04,12,16 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 micro 02,16 C Dicot sp. SC1 noto 03 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 noto 16 C Dicot sp. SC1 micro 0 C Dicot sp. SC1 noto 0 C Dicot sp. SC1 noto 0 39 Dicot sp. SC2 micro 14

306 Lur'd Leaves

# Plant Species Size DT

149 Aesculus hickeyi micro 0 156 Aesculus hickeyi ?15 159 Aesculus hickeyi micro 0 240 Aesculus hickeyi micro 0 243 Aesculus hickeyi micro 0 250 Aesculus hickeyi noto 0 263 Aesculus hickeyi noto 01,02 267 Aesculus hickeyi meso 05 275 Aesculus hickeyi noto 0 285 Aesculus hickeyi nano 0 17 "Ampelopsis " acerifolia meso 0 20 "Ampelopsis " acerifolia noto 02 58 "Ampelopsis " acerifolia noto 46 68 "Ampelopsis " acerifolia noto 0 76 "Ampelopsis " acerifolia micro 16 85 "Ampelopsis " acerifolia micro 0 108 "Ampelopsis " acerifolia noto 0 110 "Ampelopsis " acerifolia meso 0 112 "Ampelopsis " acerifolia noto 0 154 "Ampelopsis " acerifolia noto 0 193 "Ampelopsis " acerifolia micro 0 206 "Ampelopsis " acerifolia micro 0 212 "Ampelopsis " acerifolia micro 0 221 "Ampelopsis " acerifolia noto 0 223 "Ampelopsis " acerifolia noto 0 226 "Ampelopsis " acerifolia micro 0 237 "Ampelopsis " acerifolia nano 0 262 "Ampelopsis " acerifolia meso 0 273 "Ampelopsis " acerifolia noto 02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 03 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 12 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia meso 01 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 12,15 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0

307 Lur'd Leaves

C "Ampelopsis " acerifolia noto 01,02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 03 C "Ampelopsis " acerifolia meso 01,02 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 03 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 16 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia meso 16 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 04 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia meso 16 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 01 C "Ampelopsis " acerifolia noto 03 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 16 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0

308 Lur'd Leaves

C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 02 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 54 C "Ampelopsis " acerifolia noto 02,03 C "Ampelopsis " acerifolia noto 16 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 04,16 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia meso 02 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia meso 02 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia meso 05 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 02 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia meso 0 C "Ampelopsis " acerifolia noto 15 C "Ampelopsis " acerifolia micro 0 C "Ampelopsis " acerifolia noto 0 C "Ampelopsis " acerifolia noto 16 90 cf. Beringiaphyllum cupanioides meso 0 5 Browniea serrata meso 0 8 Browniea serrata noto 0 28 Browniea serrata meso 0 33 Browniea serrata meso 50,01,02 37 Browniea serrata micro 0 52 Browniea serrata micro 0 53 Browniea serrata micro 0 88 Browniea serrata micro 33,34 98 Browniea serrata meso 01,03 100 Browniea serrata noto 02, 33, 34, 80 117 Browniea serrata noto 0 118 Browniea serrata noto 16,24 127 Browniea serrata noto 41 134 Browniea serrata meso 02 142 Browniea serrata noto 0 148 Browniea serrata meso 02 151 Browniea serrata micro 02,03 169 Browniea serrata noto 04 207 Browniea serrata meso 01,03,05,07,08 208 Browniea serrata meso 41 211 Browniea serrata meso 0 227 Browniea serrata meso 0 251 Browniea serrata noto 02,03 265 Browniea serrata meso 08 C Browniea serrata meso 0

309 Lur'd Leaves

C Browniea serrata micro 0 C Browniea serrata meso 01,02,03 C Browniea serrata noto 02,03 C Browniea serrata noto 0 C Browniea serrata meso 01,02 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata meso 0 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata micro 03 C Browniea serrata meso 01,02,12 C Browniea serrata noto 0 C Browniea serrata noto 16 C Browniea serrata noto 02,03 C Browniea serrata meso 0 C Browniea serrata noto 0 C Browniea serrata micro 01 C Browniea serrata noto 02,04 C Browniea serrata noto 02,03 C Browniea serrata noto 0 C Browniea serrata noto 02 C Browniea serrata meso 0 C Browniea serrata meso 04 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 01 C Browniea serrata noto 01 C Browniea serrata micro 0 C Browniea serrata meso 46 C Browniea serrata noto 01 C Browniea serrata meso 01,46? C Browniea serrata meso 02 C Browniea serrata micro 01 C Browniea serrata noto 01,02,03,08 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata noto 01,03 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata noto 0 C Browniea serrata meso 03 C Browniea serrata noto 03 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata meso 04,05 C Browniea serrata noto 0 C Browniea serrata noto 17 C Browniea serrata noto 0 C Browniea serrata meso 0 C Browniea serrata micro 0 C Browniea serrata noto 0 C Browniea serrata noto 0 74 "Celtis " peracuminata noto 0 77 "Celtis " peracuminata micro 0 87 "Celtis " peracuminata micro 0

310 Lur'd Leaves

93 "Celtis " peracuminata noto 0 94 "Celtis " peracuminata noto 0 106 "Celtis " peracuminata noto 0 120 "Celtis " peracuminata micro 0 152 "Celtis " peracuminata micro 2 157 "Celtis " peracuminata noto 0 162 "Celtis " peracuminata micro 0 178 "Celtis " peracuminata micro 0 245 "Celtis " peracuminata micro 0 261 "Celtis " peracuminata noto 0 C "Celtis " peracuminata noto 0 C "Celtis " peracuminata noto 0 C "Celtis " peracuminata micro 0 C "Celtis " peracuminata micro 0 C "Celtis " peracuminata noto 01 C "Celtis " peracuminata noto 0 C "Celtis " peracuminata micro 0 57 Cercidiphyllum genetrix micro 0 80 Cercidiphyllum genetrix micro 12,17 95 Cercidiphyllum genetrix micro 0 209 Cercidiphyllum genetrix nano 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 02 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix noto 01 C Cercidiphyllum genetrix micro 02,03 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix noto 02 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 36 Chaetoptelea microphylla micro 0 121 Chaetoptelea microphylla micro 0 130 Chaetoptelea microphylla micro 0 171 Chaetoptelea microphylla micro 0 40 Davidia antiqua noto 0 179 Davidia antiqua noto 02,78 282 Davidia antiqua noto 78 287 Davidia antiqua meso 0

311 Lur'd Leaves

C Davidia antiqua noto 46? C Davidia antiqua noto 29 C Davidia antiqua meso 0 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua micro 0 C Davidia antiqua noto 01 C Davidia antiqua noto 01 C Davidia antiqua noto 0 C Davidia antiqua micro 0 C Davidia antiqua noto 0 C Davidia antiqua meso 01 C Davidia antiqua meso 0 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua meso 01,04 C Davidia antiqua noto 02 C Davidia antiqua noto 0 C Davidia antiqua meso 0 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua noto 04 C Davidia antiqua noto 0 C Davidia antiqua noto 0 45 "Ficus " artocarpoides noto 81 133 "Ficus " artocarpoides meso 0 164 "Ficus " artocarpoides micro 0 168 "Ficus " artocarpoides noto 0 177 "Ficus " artocarpoides micro 0 184 "Ficus " artocarpoides noto 0 192 "Ficus " artocarpoides fragmesont 0 195 "Ficus " artocarpoides micro 0 217 "Ficus " artocarpoides micro 0 229 "Ficus " artocarpoides 0 257 "Ficus " artocarpoides micro 0 270 "Ficus " artocarpoides meso 02 278 "Ficus " artocarpoides noto 02 286 "Ficus " artocarpoides noto 01,02,08 289 "Ficus " artocarpoides meso 0 C "Ficus " artocarpoides meso 01,02,04 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides micro 0 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides noto 0 C "Ficus " artocarpoides meso 0 191 Lauraceae sp. LLL1 micro 0 96 Lauraceae sp. LLL2 noto 0 167 Lauraceae sp. LLL2 noto 0 272 Lauraceae sp. LLL2 micro 0 2 Persites argutus micro 0 3 Persites argutus micro 0 4 Persites argutus micro 0 6 Persites argutus noto 0 7 Persites argutus noto 0 9 Persites argutus noto 0

312 Lur'd Leaves

10 Persites argutus micro 8 11 Persites argutus micro 0 12 Persites argutus micro 0 13 Persites argutus noto 0 14 Persites argutus noto 0 15 Persites argutus micro 0 16 Persites argutus micro 80 19 Persites argutus micro 46 25 Persites argutus noto 0 26 Persites argutus noto 02,03,13 27 Persites argutus micro 0 29 Persites argutus micro 0 32 Persites argutus meso 0 34 Persites argutus micro 0 39 Persites argutus noto 0 41 Persites argutus micro 0 44 Persites argutus noto 0 46 Persites argutus micro 0 47 Persites argutus micro 46 48 Persites argutus noto 0 49 Persites argutus noto 0 50 Persites argutus micro 0 60 Persites argutus micro 0 64 Persites argutus micro 0 65 Persites argutus noto 5 67 Persites argutus meso 0 72 Persites argutus micro 0 86 Persites argutus micro 4 92 Persites argutus noto 0 101 Persites argutus noto 0 102 Persites argutus noto 0 103 Persites argutus meso 0 104 Persites argutus noto 02,03 107 Persites argutus micro 0 113 Persites argutus micro 0 114 Persites argutus micro 0 115 Persites argutus noto 80 123 Persites argutus noto 0 124 Persites argutus noto 0 128 Persites argutus micro 0 129 Persites argutus micro 0 132 Persites argutus micro 01 135 Persites argutus noto 05 140 Persites argutus noto 02 143 Persites argutus micro 0 144 Persites argutus noto 0 145 Persites argutus noto 0 146 Persites argutus noto 0 147 Persites argutus micro 0 150 Persites argutus micro 03 166 Persites argutus noto 13 180 Persites argutus micro 09 186 Persites argutus micro 0 187 Persites argutus noto 01,08,50 200 Persites argutus noto 01,02 201 Persites argutus micro 0 202 Persites argutus micro 0 203 Persites argutus noto 0 210 Persites argutus micro 0

313 Lur'd Leaves

220 Persites argutus noto 0 222 Persites argutus meso 0 225 Persites argutus noto 0 232 Persites argutus micro 0 238 Persites argutus micro 0 241 Persites argutus noto 0 246 Persites argutus noto 46 247 Persites argutus noto 04 248 Persites argutus micro 0 249 Persites argutus micro 0 253 Persites argutus micro 0 254 Persites argutus micro 0 255 Persites argutus noto 0 256 Persites argutus micro 0 259 Persites argutus noto 0 274 Persites argutus noto 0 276 Persites argutus noto 0 277 Persites argutus micro 01,03,13,14 279 Persites argutus noto 0 280 Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 01,02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus mo 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 02 C Persites argutus noto 01,03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus meso 01,03 C Persites argutus micro 02,05 C Persites argutus micro 0

314 Lur'd Leaves

C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 01 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 01 C Persites argutus noto 05 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 01,02 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 14 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus meso 02,46? C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 02,03 C Persites argutus micro 13 C Persites argutus micro 04,13 C Persites argutus meso 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0

315 Lur'd Leaves

C Persites argutus noto 46? C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 02 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus noto 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus meso 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus micro 0

316 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 05 C Persites argutus noto 0 C Persites argutus micro 03 C Persites argutus micro 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 01,02,03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus nano 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0

317 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 02 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 05,15 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0

318 Lur'd Leaves

C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 01 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 01 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 01,04 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 05 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 02 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0

319 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 02 C Persites argutus micro 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0

320 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus nano 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0

321 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 01 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus meso 0 C Persites argutus micro 12,14 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 01,02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 12,15 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0

322 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 01 C Persites argutus noto 01 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 46? C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0

323 Lur'd Leaves

C Persites argutus micro 0 C Persites argutus noto 01,02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 01,02,03 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 02 C Persites argutus micro 02 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus meso 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0

324 Lur'd Leaves

C Persites argutus nano 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 02 C Persites argutus micro 12 C Persites argutus noto 0 C Persites argutus noto 04 C Persites argutus micro 0 C Persites argutus noto 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 C Persites argutus micro 0 35 Platanus raynoldsi 3 54 Platanus raynoldsi noto 0 66 Platanus raynoldsi macro 0 79 Platanus raynoldsi 14 81 Platanus raynoldsi meso 02 89 Platanus raynoldsi meso 0 99 Platanus raynoldsi micro 0 119 Platanus raynoldsi meso 0 125 Platanus raynoldsi meso 0 175 Platanus raynoldsi micro 0

325 Lur'd Leaves

182 Platanus raynoldsi noto 0 188 Platanus raynoldsi meso 0 194 Platanus raynoldsi meso 79 (new DT) 196 Platanus raynoldsi noto 0 199 Platanus raynoldsi meso 0 216 Platanus raynoldsi noto 0 244 Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 02 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 29 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 01 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 01 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 01,02 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 03 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 01 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 01,02,03 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 16 C Platanus raynoldsi meso 01,02 1 Zizyphoides flabella micro 03 18 Zizyphoides flabella noto 0 31 Zizyphoides flabella micro 0 43 Zizyphoides flabella noto 16 59 Zizyphoides flabella micro 0 61 Zizyphoides flabella nano 0 69 Zizyphoides flabella micro 0 73 Zizyphoides flabella micro 0 78 Zizyphoides flabella noto 0 84 Zizyphoides flabella micro 0 105 Zizyphoides flabella micro 0 109 Zizyphoides flabella micro 0 111 Zizyphoides flabella micro 0 116 Zizyphoides flabella micro 0 122 Zizyphoides flabella micro 0 136 Zizyphoides flabella micro 0 138 Zizyphoides flabella micro 0 158 Zizyphoides flabella micro 17,54 161 Zizyphoides flabella micro 0

326 Lur'd Leaves

170 Zizyphoides flabella micro 46 172 Zizyphoides flabella micro 0 173 Zizyphoides flabella micro 0 197 Zizyphoides flabella micro 12,56 204 Zizyphoides flabella micro 0 218 Zizyphoides flabella micro 0 224 Zizyphoides flabella micro 0 230 Zizyphoides flabella micro 0 242 Zizyphoides flabella noto 0 252 Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01,03 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 02,16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01,02,03,16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0

327 Lur'd Leaves

C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 01 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0

328 Lur'd Leaves

C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 46? C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 01,02 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 05,12 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0

329 Lur'd Leaves

C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0

330 Dead Platypus

# Plant Species Size DT

2 Averrhoites affinis micro 30(2) 19 Averrhoites affinis micro 8 21 Averrhoites affinis micro 12 25 Averrhoites affinis micro 3(2), 5, 12 26 Averrhoites affinis micro 12, 25(3) 30 Averrhoites affinis micro 1,4 31 Averrhoites affinis micro 0 32 Averrhoites affinis micro 1(23), 2(2), 7, 12 33 Averrhoites affinis micro 7, 14 34 Averrhoites affinis micro 12 37 Averrhoites affinis noto 7,12 38 Averrhoites affinis micro 0 39 Averrhoites affinis micro 1(4) 43 Averrhoites affinis micro 0 57 Averrhoites affinis micro 0 58 Averrhoites affinis micro 0 59 Averrhoites affinis micro 0 60 Averrhoites affinis micro 0 61 Averrhoites affinis nano 0 62 Averrhoites affinis nano 0 64 Averrhoites affinis micro 0 71 Averrhoites affinis micro 2(6), 12(2) 87 Averrhoites affinis micro 43(2), 2(5), 4(2) 93 Averrhoites affinis micro 0 97 Averrhoites affinis micro 12 98 Averrhoites affinis micro 0 101 Averrhoites affinis micro 25(3) 111 Averrhoites affinis noto 15 115 Averrhoites affinis micro 43 117 Averrhoites affinis micro 2 123 Averrhoites affinis micro 14 146 Averrhoites affinis micro 12(2) 150 Averrhoites affinis micro 0 151 Averrhoites affinis micro 30 152 Averrhoites affinis micro 4 157 Averrhoites affinis micro 2 158 Averrhoites affinis micro 2(2) 159 Averrhoites affinis micro 1(4), 2(3), 4(2), 43 160 Averrhoites affinis micro 0 161 Averrhoites affinis micro 43 162 Averrhoites affinis micro 3(4), 5, 43 164 Averrhoites affinis micro 43 165 Averrhoites affinis micro 20 166 Averrhoites affinis micro 0 167 Averrhoites affinis micro 1(10), 3, 12 169 Averrhoites affinis micro 4(4), 3(6) 171 Averrhoites affinis micro 14 172 Averrhoites affinis micro 0 178 Averrhoites affinis noto 3(2), 46 180 Averrhoites affinis micro 25 C Averrhoites affinis micro 3, 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2 C Averrhoites affinis micro 12

331 Dead Platypus

C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 32 C Averrhoites affinis micro 0 C Averrhoites affinis micro 1(12), 3(3) C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 32(8) C Averrhoites affinis micro 0 C Averrhoites affinis micro 32(5) C Averrhoites affinis micro 12(2) C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2(2) C Averrhoites affinis micro 0 C Averrhoites affinis micro 2(2) C Averrhoites affinis micro 32(6) C Averrhoites affinis micro 0 C Averrhoites affinis micro 12, 2 C Averrhoites affinis noto 0 C Averrhoites affinis noto 32(3) C Averrhoites affinis micro 15 C Averrhoites affinis noto 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 12 C Averrhoites affinis micro 2 C Averrhoites affinis micro 3 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2, 12(2), 32(5) C Averrhoites affinis micro 12 C Averrhoites affinis micro 32(8) C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis noto 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 32

332 Dead Platypus

C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis noto 5 C Averrhoites affinis micro 12, 32(5) C Averrhoites affinis micro 12, 3(2) C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 1(9) C Averrhoites affinis micro 13 C Averrhoites affinis micro 12(2) C Averrhoites affinis noto 7 C Averrhoites affinis micro 14(2) C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2 C Averrhoites affinis micro 14 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 3 C Averrhoites affinis micro 12 C Averrhoites affinis micro 1(6) C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 2(2), 3 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12(2) C Averrhoites affinis noto 2, 3(2) C Averrhoites affinis micro 7 C Averrhoites affinis micro 2 C Averrhoites affinis micro 13 C Averrhoites affinis micro 0 C Averrhoites affinis micro 32 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis noto 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 3 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12(2), 14 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 3(5), 7 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0 C Averrhoites affinis micro 12 C Averrhoites affinis micro 0

333 Dead Platypus

C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 0 C Averrhoites affinis micro 4, 12 6 Betulaceae sp. FU741 micro 2(2), 13 13 Betulaceae sp. FU741 noto 15, 16 14 Betulaceae sp. FU741 micro 3(3), 13 15 Betulaceae sp. FU741 noto 0 28 Betulaceae sp. FU741 micro 0 40 Betulaceae sp. FU741 micro 0 48 Betulaceae sp. FU741 meso 12, 30(2) 49 Betulaceae sp. FU741 noto 16(55) 53 Betulaceae sp. FU741 micro 16(12) 54 Betulaceae sp. FU741 noto 3(3), 16 55 Betulaceae sp. FU741 micro 46 63 Betulaceae sp. FU741 noto 8, 13, 25(2) 65 Betulaceae sp. FU741 micro 12 81 Betulaceae sp. FU741 noto 16(4) 84 Betulaceae sp. FU741 noto 16(16), 1(4) 85 Betulaceae sp. FU741 micro 1 104 Betulaceae sp. FU741 micro 0 112 Betulaceae sp. FU741 noto 0 128 Betulaceae sp. FU741 micro 0 129 Betulaceae sp. FU741 noto 16, 38 132 Betulaceae sp. FU741 noto 12 138 Betulaceae sp. FU741 noto 0 173 Betulaceae sp. FU741 noto 16(34) 176 Betulaceae sp. FU741 noto 46 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 1,3 C Betulaceae sp. FU741 micro 2(4),3 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 12, 24(6) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 24(24) C Betulaceae sp. FU741 micro 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 16 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 3(2) C Betulaceae sp. FU741 noto 2(3), 3, 12 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 noto 3, 5 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 24(2) C Betulaceae sp. FU741 micro 4 C Betulaceae sp. FU741 noto 2 C Betulaceae sp. FU741 noto 0

334 Dead Platypus

C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 2(2) C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 noto 3 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 5 C Betulaceae sp. FU741 noto 2(3), 24 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 4 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 1, 2(5) C Betulaceae sp. FU741 micro 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2 C Betulaceae sp. FU741 micro 3 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2(2) C Betulaceae sp. FU741 micro 24(5) C Betulaceae sp. FU741 micro 12 C Betulaceae sp. FU741 micro 2, 16 C Betulaceae sp. FU741 meso 2, 3 C Betulaceae sp. FU741 noto 4 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 16 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2, 3 C Betulaceae sp. FU741 micro 3 C Betulaceae sp. FU741 noto 3(3), 16(5) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2, 3 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 3 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 2, 3(2), 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 16 C Betulaceae sp. FU741 noto 2(6), 3(3) C Betulaceae sp. FU741 noto 2(2), 4(2) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2 C Betulaceae sp. FU741 micro 0

335 Dead Platypus

C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 2 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 3 C Betulaceae sp. FU741 noto 16(2) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 12 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 2(16), 3(3) C Betulaceae sp. FU741 micro 2(3) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 16(2) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 noto 5, 12, 13 C Betulaceae sp. FU741 micro 1, 16 C Betulaceae sp. FU741 micro 1 C Betulaceae sp. FU741 noto 4 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 12 C Betulaceae sp. FU741 noto 0 C Betulaceae sp. FU741 micro 2(2), 4(2) C Betulaceae sp. FU741 micro 0 C Betulaceae sp. FU741 micro 24(5) 4 Cercidiphyllum genetrix micro 46 7 Cercidiphyllum genetrix micro 16 9 Cercidiphyllum genetrix micro 29 88 Cercidiphyllum genetrix micro 0 103 Cercidiphyllum genetrix noto 0 114 Cercidiphyllum genetrix noto 12 134 Cercidiphyllum genetrix micro 0 140 Cercidiphyllum genetrix noto 2(2),5 153 Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 1(5) C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 3(3) C Cercidiphyllum genetrix micro 3(3) C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16(2) C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix nu 9 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0

336 Dead Platypus

C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 2 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 3(2) C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16(2) C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 0 C Cercidiphyllum genetrix noto 32 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 3(3), 5, 2(3) C Cercidiphyllum genetrix micro 3, 12, 16(3) C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 12 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 12 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 16(2) C Cercidiphyllum genetrix micro 16 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 4 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix nano 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 12, 15 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 2(3) C Cercidiphyllum genetrix micro 0 C Cercidiphyllum genetrix micro 1, 3 C Cercidiphyllum genetrix micro 0 3 Davidia antiqua noto 2 8 Davidia antiqua meso 2(2) 23 Davidia antiqua macro 0 24 Davidia antiqua macro 2(21), 3, 5 29 Davidia antiqua frag 0 42 Davidia antiqua noto 0 44 Davidia antiqua macro 2(10), 5, 12 50 Davidia antiqua noto 2(2), 12 90 Davidia antiqua meso 1(3) 91 Davidia antiqua noto 14 95 Davidia antiqua noto 12 102 Davidia antiqua meso 32,33,46 120 Davidia antiqua noto 7(2), 13 144 Davidia antiqua noto 2(4)

337 Dead Platypus

147 Davidia antiqua noto 0 149 Davidia antiqua micro 1(2) C Davidia antiqua meso 12, 7 C Davidia antiqua meso 2,4 C Davidia antiqua macro 2(4) C Davidia antiqua meso 3 C Davidia antiqua meso 0 C Davidia antiqua noto 0 C Davidia antiqua meso 2(2) C Davidia antiqua noto 0 C Davidia antiqua meso 5, 12, 15 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 2, 12 C Davidia antiqua meso 3 C Davidia antiqua noto 0 C Davidia antiqua meso 3, 5 C Davidia antiqua macro 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 12(2) C Davidia antiqua meso 0 C Davidia antiqua noto 2(9) C Davidia antiqua noto 2(6) C Davidia antiqua meso 0 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua meso 4 C Davidia antiqua meso 0 C Davidia antiqua micro 3, 12 C Davidia antiqua meso 0 C Davidia antiqua meso 12 C Davidia antiqua meso 12 C Davidia antiqua meso 0 C Davidia antiqua noto 12 C Davidia antiqua meso 2 C Davidia antiqua noto 0 C Davidia antiqua noto 1(3), 2 C Davidia antiqua noto 0 C Davidia antiqua noto 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 0 C Davidia antiqua meso 5(2) C Davidia antiqua meso 2, 12 C Davidia antiqua meso 0 C Davidia antiqua micro 0 12 Juglandaceae sp. FU740 micro 0 41 Juglandaceae sp. FU740 micro 12(2), 16 72 Juglandaceae sp. FU740 micro 0 73 Juglandaceae sp. FU740 micro 34(31) 74 Juglandaceae sp. FU740 micro 0 76 Juglandaceae sp. FU740 micro 12(3), 2(4) 86 Juglandaceae sp. FU740 micro 16 106 Juglandaceae sp. FU740 micro 0 119 Juglandaceae sp. FU740 micro 46

338 Dead Platypus

177 Juglandaceae sp. FU740 noto 12,13,16 1163 Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 2(2) C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 C Juglandaceae sp. FU740 micro 0 16 Macginitiea gracilis micro 0 35 Macginitiea gracilis noto 5(5), 3(5) 47 Macginitiea gracilis meso 56 56 Macginitiea gracilis noto 2(4), 5(3) 70 Macginitiea gracilis meso 0 77 Macginitiea gracilis meso 46 78 Macginitiea gracilis meso 0 80 Macginitiea gracilis meso 2, 12 130 Macginitiea gracilis macro 61(3) 135 Macginitiea gracilis micro 32(5) 148 Macginitiea gracilis meso 0 175 Macginitiea gracilis micro 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 3(2) C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 12 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 2(2) C Macginitiea gracilis noto 1(13) C Macginitiea gracilis meso 5(2) C Macginitiea gracilis noto 4 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis macro 2(5) C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 2 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 3(2) C Macginitiea gracilis meso 16 C Macginitiea gracilis meso 16 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0

339 Dead Platypus

C Macginitiea gracilis noto 2 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 2, 4 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 3 C Macginitiea gracilis meso 16 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 3(3) C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 2(19) C Macginitiea gracilis meso 3, 5 C Macginitiea gracilis meso 7(2) C Macginitiea gracilis noto 3(2) C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 2(2) C Macginitiea gracilis noto 2 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 12, 3 C Macginitiea gracilis meso 3, 5 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 2 C Macginitiea gracilis noto 2, 3 C Macginitiea gracilis meso 3(3), 12 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 2, 12 C Macginitiea gracilis micro 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 2(3), 3(3) C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis macro 0 C Macginitiea gracilis meso 2(3), 5(2) C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 2, 16 C Macginitiea gracilis noto 0 C Macginitiea gracilis macro 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis macro 5, 12, 15 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0

340 Dead Platypus

C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis macro 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis noto 12(2) C Macginitiea gracilis noto 0 C Macginitiea gracilis meso 2(2) C Macginitiea gracilis noto 3 C Macginitiea gracilis macro 5 C Macginitiea gracilis macro 3(2), 5 C Macginitiea gracilis meso 5 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 0 C Macginitiea gracilis noto 12 C Macginitiea gracilis meso 2(2) C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 3 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis meso 0 C Macginitiea gracilis macro 0 5 Platanus raynoldsi noto 2(2), 3, 12 68 Platanus raynoldsi micro 0 108 Platanus raynoldsi meso 12(2), 13 116 Platanus raynoldsi micro 2(4),3,5 118 Platanus raynoldsi meso 0 131 Platanus raynoldsi meso 0 136 Platanus raynoldsi meso 0 137 Platanus raynoldsi micro 13 145 Platanus raynoldsi noto 3 C Platanus raynoldsi meso 2(2) C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 2 C Platanus raynoldsi noto 3 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi macro 12 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0

341 Dead Platypus

C Platanus raynoldsi noto 2, 8 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 12 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 2 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 2(2), 16 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 12(2) C Platanus raynoldsi micro 12 C Platanus raynoldsi noto 16 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 2 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 4 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 2, 16 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 12(2) C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 12(2) C Platanus raynoldsi noto 2(5), 5(3) C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 12(2) C Platanus raynoldsi noto 12(2) C Platanus raynoldsi noto 2, 16 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 2

342 Dead Platypus

C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 3(4), 7 C Platanus raynoldsi meso 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 5(2), 12 C Platanus raynoldsi micro 3 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 2 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi meso 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 3(2) C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 2 C Platanus raynoldsi noto 3 C Platanus raynoldsi noto 0 C Platanus raynoldsi noto 0 C Platanus raynoldsi micro 0 C Platanus raynoldsi meso 2 C Platanus raynoldsi meso 0 67 Ternstroemites aureavallis micro 12, 46 100 Ternstroemites aureavallis micro 2 107 Ternstroemites aureavallis noto 2(20), 12 142 Ternstroemites aureavallis micro 1(3) 155 Ternstroemites aureavallis noto 4, 13 182 Ternstroemites aureavallis micro 46 10 Zizyphoides flabella micro 0 17 Zizyphoides flabella micro 1(3), 7, 12 22 Zizyphoides flabella micro 1(2), 16 45 Zizyphoides flabella micro 15, 16, 44 46 Zizyphoides flabella micro 32(4), 34(4) 51 Zizyphoides flabella micro 44 52 Zizyphoides flabella noto 0 69 Zizyphoides flabella micro 1(20), 16(4) 75 Zizyphoides flabella micro 32(2), 34(4), 25 79 Zizyphoides flabella micro 0 82 Zizyphoides flabella micro 14, 16(2) 92 Zizyphoides flabella micro 33(4), 34(3) 96 Zizyphoides flabella micro 12 99 Zizyphoides flabella micro 34 113 Zizyphoides flabella noto 19(2) 121 Zizyphoides flabella micro 3, 12, 44 122 Zizyphoides flabella micro 16 124 Zizyphoides flabella micro 30(10) 125 Zizyphoides flabella noto 25(7) 126 Zizyphoides flabella micro 16(3)

343 Dead Platypus

133 Zizyphoides flabella micro 13,16 141 Zizyphoides flabella micro 13 143 Zizyphoides flabella micro 30 154 Zizyphoides flabella micro 0 163 Zizyphoides flabella micro 32(9), 34(3) 181 Zizyphoides flabella micro 34(3) C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16(2) C Zizyphoides flabella micro 3,16 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 1(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 4,5 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 32 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 1(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2, 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella noto 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3(2), 8 C Zizyphoides flabella micro 16(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2(7) C Zizyphoides flabella micro 3(2), 16(2) C Zizyphoides flabella micro 0

344 Dead Platypus

C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 8 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3(4) C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16(3) C Zizyphoides flabella micro 5 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3 C Zizyphoides flabella micro 8 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 3(3) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3(3) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2(3), 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 13 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16(5), 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 12 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 24(17) C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 16(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 1(2), 3 C Zizyphoides flabella micro 0

345 Dead Platypus

C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 1 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 8 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2, 8 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12, 16(2) C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2(2), 3 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella noto 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16(3) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0

346 Dead Platypus

C Zizyphoides flabella micro 24(2) C Zizyphoides flabella noto 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 1(2) C Zizyphoides flabella micro 1 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2, 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2(3) C Zizyphoides flabella micro 4 C Zizyphoides flabella micro 1(2), 7 C Zizyphoides flabella micro 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro galls C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16(3) C Zizyphoides flabella micro 24 C Zizyphoides flabella micro 8 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 3(2), 12 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 12(2) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 2 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella nano 0 C Zizyphoides flabella micro 16 C Zizyphoides flabella micro 1(4) C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 0 C Zizyphoides flabella micro 1(2)

347 Dead Platypus

C Zizyphoides flabella micro 0 94 Dicot sp. FU733 frag 0 109 Dicot sp. FU734 noto 1(4), 2(4) 179A Dicot sp. FU735 micro 0 179B Dicot sp. FU735 micro 0 170 Dicot sp. FU736 micro 0 110 Dicot sp. FU737 micro 0 156 Dicot sp. FU737 micro 0 105 Dicot sp. FU738 micro 2(3), 3(2) 139 Dicot sp. FU739 micro 0 127 Dicot sp. FU742 micro 0 66 Dicot sp. FU745 noto 7(2), 12 20 Dicot sp. FU749 micro 32(8), 12(2), 7 36 Dicot sp. FU749 frag 2 174 Dicot sp. FU749 noto 0

348 Daiye Spa

Site # Plant Species Size DT

994 10 Betulaceae sp. FU744 macro 2,15(2) 994 17 Betulaceae sp. FU744 frag - meso 1,2,46 994 18 Betulaceae sp. FU744 micro 4 994 19 Betulaceae sp. FU744 micro 12(2) 994 20 Betulaceae sp. FU744 micro 12,13,14,15(2) 994 21 Betulaceae sp. FU744 micro 12 994 22 Betulaceae sp. FU744 frag - meso 0 994 23 Betulaceae sp. FU744 micro 32 994 24 Betulaceae sp. FU744 frag - meso 0 994 25 Betulaceae sp. FU744 frag 0 994 26 Betulaceae sp. FU744 meso 2,4(2) 994 27 Betulaceae sp. FU744 frag 0 994 28 Betulaceae sp. FU744 meso 1(2),2,12 994 E Betulaceae sp. FU744 meso 0 EDC0506 55 Betulaceae sp. FU744 meso 1(6),2(9),3 EDC0506 59 Betulaceae sp. FU744 meso 1(3),3,5,12,46,78 EDC0506 72 Betulaceae sp. FU744 noto 46 EDC0506 75 Betulaceae sp. FU744 meso 2,3,5,15 EDC0506 84 Betulaceae sp. FU744 meso 2(2),12(2) EDC0506 101 Betulaceae sp. FU744 meso 12 EDC0506 103 Betulaceae sp. FU744 noto 2 EDC0506 107 Betulaceae sp. FU744 meso 2,7(2) EDC0506 110 Betulaceae sp. FU744 meso 12 EDC0506 111 Betulaceae sp. FU744 meso 2(2),15,78 EDC0506 115 Betulaceae sp. FU744 frag 12,32 EDC0506 132 Betulaceae sp. FU744 meso 2,5(2),12 EDC0506 151 Betulaceae sp. FU744 meso 1,17(3) EDC0506 156 Betulaceae sp. FU744 noto 2(4),32,57 EDC0506 163 Betulaceae sp. FU744 frag 1(9),13,15 EDC0506 178 Betulaceae sp. FU744 noto 2(5),34(15) EDC0506 193 Betulaceae sp. FU744 meso 2(3),12(4),57(2),1(2),46 EDC0506 C Betulaceae sp. FU744 micro 0 EDC0506 C Betulaceae sp. FU744 noto 0 EDC0506 C Betulaceae sp. FU744 micro 0 EDC0506 C Betulaceae sp. FU744 meso 0 EDC0506 C Betulaceae sp. FU744 micro 0 EDC0506 C Betulaceae sp. FU744 meso 0 EDC0506 C Betulaceae sp. FU744 meso 0 EDC0506 C Betulaceae sp. FU744 noto 0 EDC0506 C Betulaceae sp. FU744 meso 2(30 EDC0506 C Betulaceae sp. FU744 micro 0 EDC0506 C Betulaceae sp. FU744 noto 0 EDC0506 C Betulaceae sp. FU744 micro 0 EDC0506 C Betulaceae sp. FU744 noto 0 SW9819 (EDC04) 5 Betulaceae sp. FU744 frag - noto 2,15 SW9819 (EDC04) 31 Betulaceae sp. FU744 frag 0 SW9819 (EDC04) 43 Betulaceae sp. FU744 frag 7,32(10) SW9819 (EDC04) 98 Betulaceae sp. FU744 meso 0 SW9819 (EDC04) 99 Betulaceae sp. FU744 meso 0 SW9819 (EDC04) 102 Betulaceae sp. FU744 noto 5(2) SW9819 (EDC04) C Betulaceae sp. FU744 noto 0 SW9819 (EDC04) C Betulaceae sp. FU744 meso 2,3 SW9819 (EDC04) C Betulaceae sp. FU744 noto 5 unlabeled C Betulaceae sp. FU744 meso 4(2),7,8(2),46,78 9819 K Browniea serrata micro 0 EDC0506 13 Browniea serrata meso 0 994 12 Cercidiphyllum genetrix noto 0

349 Daiye Spa

994 16 Cercidiphyllum genetrix micro 12 994 32 Cercidiphyllum genetrix noto 2(2) 994 33 Cercidiphyllum genetrix noto 1(9),7(2) 994 34 Cercidiphyllum genetrix noto 12 994 35 Cercidiphyllum genetrix noto 12 994 36 Cercidiphyllum genetrix meso 5 994 37 Cercidiphyllum genetrix micro 0 994 39 Cercidiphyllum genetrix noto 2,3,4 994 40 Cercidiphyllum genetrix micro 2 994 41 Cercidiphyllum genetrix micro 0 994 43 Cercidiphyllum genetrix micro 0 EDC0506 6 Cercidiphyllum genetrix micro 2(4),4,15 EDC0506 31 Cercidiphyllum genetrix micro 34 EDC0506 42 Cercidiphyllum genetrix micro 34(2) EDC0506 49 Cercidiphyllum genetrix noto 1,2,3,34 EDC0506 65 Cercidiphyllum genetrix micro 0 EDC0506 92 Cercidiphyllum genetrix micro 2,3(2),12,81 EDC0506 97 Cercidiphyllum genetrix micro 32(2) EDC0506 106 Cercidiphyllum genetrix micro 2 EDC0506 112 Cercidiphyllum genetrix micro 15 EDC0506 118 Cercidiphyllum genetrix noto 1(3) EDC0506 119 Cercidiphyllum genetrix micro 32 EDC0506 125 Cercidiphyllum genetrix noto 1(5) EDC0506 130 Cercidiphyllum genetrix micro 12,17(4),29(2) EDC0506 133 Cercidiphyllum genetrix meso 1,5,12(2),32 EDC0506 137 Cercidiphyllum genetrix noto 17 EDC0506 157 Cercidiphyllum genetrix noto 2(4),12(2),46 EDC0506 160 Cercidiphyllum genetrix micro 2(2),34 EDC0506 180 Cercidiphyllum genetrix noto 1,17,29(4) EDC0506 181 Cercidiphyllum genetrix micro 1(3),17(3) EDC0506 184 Cercidiphyllum genetrix micro 1(8),7 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 1(7) EDC0506 C Cercidiphyllum genetrix micro 1 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 1(9) EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 1(2) EDC0506 C Cercidiphyllum genetrix micro 2 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 2 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0

350 Daiye Spa

EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix nano 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix nano 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix noto 0 EDC0506 C Cercidiphyllum genetrix micro 2 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 EDC0506 C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) 1 Cercidiphyllum genetrix noto 5(2) SW9819 (EDC04) 2 Cercidiphyllum genetrix noto 1(4),8 SW9819 (EDC04) 3 Cercidiphyllum genetrix noto 2(3),4,32(25) SW9819 (EDC04) 4 Cercidiphyllum genetrix noto 2(3),17(3),32(2) SW9819 (EDC04) 10 Cercidiphyllum genetrix meso 32(10) SW9819 (EDC04) 18 Cercidiphyllum genetrix micro 33,34(2),46 SW9819 (EDC04) 20 Cercidiphyllum genetrix micro 1(4),8 SW9819 (EDC04) 21 Cercidiphyllum genetrix noto 0 SW9819 (EDC04) 24 Cercidiphyllum genetrix noto 34(3) SW9819 (EDC04) 26 Cercidiphyllum genetrix noto 4,12 SW9819 (EDC04) 32 Cercidiphyllum genetrix micro 0 SW9819 (EDC04) 38 Cercidiphyllum genetrix micro 5,32(12) SW9819 (EDC04) 52 Cercidiphyllum genetrix micro 2,12,32(6)

351 Daiye Spa

SW9819 (EDC04) 54 Cercidiphyllum genetrix micro 33,34(4) SW9819 (EDC04) 59 Cercidiphyllum genetrix micro 2(3) SW9819 (EDC04) 60 Cercidiphyllum genetrix micro 0 SW9819 (EDC04) 61 Cercidiphyllum genetrix micro 2(3) SW9819 (EDC04) 62 Cercidiphyllum genetrix micro 0 SW9819 (EDC04) 63 Cercidiphyllum genetrix micro 0 SW9819 (EDC04) 64 Cercidiphyllum genetrix micro 1(3),57 SW9819 (EDC04) 83 Cercidiphyllum genetrix micro 33(2) SW9819 (EDC04) 107 Cercidiphyllum genetrix meso 3,5,7,33(3) SW9819 (EDC04) C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) C Cercidiphyllum genetrix noto 2 SW9819 (EDC04) C Cercidiphyllum genetrix noto 0 SW9819 (EDC04) C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) C Cercidiphyllum genetrix nano 16 SW9819 (EDC04) C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) C Cercidiphyllum genetrix micro 0 SW9819 (EDC04) C Cercidiphyllum genetrix micro 1,5 SW9819 (EDC04) C Cercidiphyllum genetrix noto 0 SW9819 (EDC04) C Cercidiphyllum genetrix micro 3,17 EDC0506 21 Davidia antiqua noto 2,32(2) EDC0506 53 Davidia antiqua meso 0 EDC0506 189 Davidia antiqua noto 32(11),12 EDC0506 190 Davidia antiqua noto 3,8,1 SW9819 (EDC04) 47 Davidia antiqua noto 0 994 1 Fabaceae sp. FU750 micro 32(3) 994 2 Fabaceae sp. FU750 micro 2(2),17 994 31 Fabaceae sp. FU750 micro 1,2(2) 994 60 Fabaceae sp. FU750 micro 13,14(2) 9819 GGG Fabaceae sp. FU750 micro 4 EDC0506 14 Fabaceae sp. FU750 micro 2 EDC0506 22 Fabaceae sp. FU750 micro 1(6),3 EDC0506 27 Fabaceae sp. FU750 micro 2(2),4,12 EDC0506 28 Fabaceae sp. FU750 micro 0 EDC0506 29 Fabaceae sp. FU750 micro 3(2),5(3),12(4) EDC0506 40 Fabaceae sp. FU750 micro 12(2) EDC0506 44 Fabaceae sp. FU750 micro 17,12 EDC0506 45 Fabaceae sp. FU750 micro 13 EDC0506 47 Fabaceae sp. FU750 micro 4,12(2),14 EDC0506 50 Fabaceae sp. FU750 micro 4(2) EDC0506 51 Fabaceae sp. FU750 micro 12 EDC0506 52 Fabaceae sp. FU750 micro 4(2) EDC0506 61 Fabaceae sp. FU750 nano 2,17 EDC0506 68 Fabaceae sp. FU750 micro 34 EDC0506 69 Fabaceae sp. FU750 micro 4(2),12(3) EDC0506 70 Fabaceae sp. FU750 micro 2,12 EDC0506 74 Fabaceae sp. FU750 micro 12,15,29 EDC0506 77 Fabaceae sp. FU750 micro 8 EDC0506 78 Fabaceae sp. FU750 micro 17 EDC0506 79 Fabaceae sp. FU750 micro 12(2) EDC0506 80 Fabaceae sp. FU750 micro 0 EDC0506 81 Fabaceae sp. FU750 micro 2(5),12,15 EDC0506 82 Fabaceae sp. FU750 micro 12(2) EDC0506 85 Fabaceae sp. FU750 micro 2(2),12(2),13 EDC0506 87 Fabaceae sp. FU750 micro 1(2),2(2),12(3),17(c-sh,2) EDC0506 88 Fabaceae sp. FU750 frag 17,35 EDC0506 89 Fabaceae sp. FU750 micro 12(2) EDC0506 90 Fabaceae sp. FU750 micro 1,2,3,12(2),81 EDC0506 93 Fabaceae sp. FU750 micro 3(2),12

352 Daiye Spa

EDC0506 108 Fabaceae sp. FU750 micro 12,17(2) EDC0506 113 Fabaceae sp. FU750 micro 12(2),32(3) EDC0506 116 Fabaceae sp. FU750 micro 1,17 EDC0506 117 Fabaceae sp. FU750 micro 2,4,12(2) EDC0506 121 Fabaceae sp. FU750 micro 12 EDC0506 127 Fabaceae sp. FU750 micro 2,17(2) EDC0506 128 Fabaceae sp. FU750 micro 5 EDC0506 129 Fabaceae sp. FU750 micro 12(4) EDC0506 136 Fabaceae sp. FU750 micro 2(4),12,17 EDC0506 148 Fabaceae sp. FU750 micro 1(2),78 EDC0506 149 Fabaceae sp. FU750 micro 0 EDC0506 162 Fabaceae sp. FU750 micro 1,3(2),12(2) EDC0506 185 Fabaceae sp. FU750 noto 1(4),2(3),12,15,17(2),81(2) EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 1(2) EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 1(3) EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0

353 Daiye Spa

EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 2 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 1 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 noto 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 0 EDC0506 C Fabaceae sp. FU750 micro 4 EDC0506 C Fabaceae sp. FU750 micro 0 SW9819 (EDC04) 50 Fabaceae sp. FU750 micro 2,12 SW9819 (EDC04) 51 Fabaceae sp. FU750 micro 3(3) SW9819 (EDC04) 53 Fabaceae sp. FU750 micro 34(3) SW9819 (EDC04) 57 Fabaceae sp. FU750 micro 2 SW9819 (EDC04) 69 Fabaceae sp. FU750 micro 0 SW9819 (EDC04) 70 Fabaceae sp. FU750 micro 33 SW9819 (EDC04) 71 Fabaceae sp. FU750 micro 0 SW9819 (EDC04) 72 Fabaceae sp. FU750 micro 0 SW9819 (EDC04) 73 Fabaceae sp. FU750 micro 2,14 SW9819 (EDC04) 74 Fabaceae sp. FU750 micro 29 SW9819 (EDC04) 75 Fabaceae sp. FU750 micro 4,12,15 SW9819 (EDC04) 76 Fabaceae sp. FU750 micro 0 SW9819 (EDC04) 84 Fabaceae sp. FU750 micro 12 SW9819 (EDC04) 85 Fabaceae sp. FU750 micro 12(4) SW9819 (EDC04) 86 Fabaceae sp. FU750 nano 0 SW9819 (EDC04) 87 Fabaceae sp. FU750 micro 4(3),32,33 994 8 Macginitiea gracilis single lobe 12 994 9 Macginitiea gracilis macro 0 EDC0506 1 Macginitiea gracilis macro 2,4(2),7 EDC0506 2 Macginitiea gracilis macro 0 EDC0506 3 Macginitiea gracilis noto 1(6),2(2) EDC0506 5 Macginitiea gracilis meso 1(26),34 EDC0506 15 Macginitiea gracilis macro 2,61 EDC0506 17 Macginitiea gracilis meso 4 EDC0506 30 Macginitiea gracilis meso 2,12(2),16 EDC0506 32 Macginitiea gracilis meso 12 EDC0506 35 Macginitiea gracilis macro 0 EDC0506 36 Macginitiea gracilis frag - meso 40 EDC0506 37 Macginitiea gracilis frag - meso? 15

354 Daiye Spa

EDC0506 56 Macginitiea gracilis meso 38(3) EDC0506 64 Macginitiea gracilis meso 2(3),5(3),12 EDC0506 67 Macginitiea gracilis meso 1,4,5 EDC0506 99 Macginitiea gracilis macro 40 EDC0506 100 Macginitiea gracilis frag 12,17(2) EDC0506 114 Macginitiea gracilis meso 12 EDC0506 122 Macginitiea gracilis frag - noto 1(3),2(4),16 EDC0506 123 Macginitiea gracilis frag 2(4),12(2),15 EDC0506 135 Macginitiea gracilis meso 16(3) EDC0506 139 Macginitiea gracilis macro 2,3,4(2),5(4) EDC0506 140 Macginitiea gracilis noto 3,5,13 EDC0506 141 Macginitiea gracilis meso 5,7(2) EDC0506 142 Macginitiea gracilis meso 2(3) EDC0506 152 Macginitiea gracilis noto 2(4),21,50(41) EDC0506 159 Macginitiea gracilis meso 1(8),21 EDC0506 161 Macginitiea gracilis meso 0 EDC0506 164 Macginitiea gracilis meso 12,13 EDC0506 165 Macginitiea gracilis meso 3(4),5(2) EDC0506 172 Macginitiea gracilis meso 2 EDC0506 173 Macginitiea gracilis meso 2(5),4,5 EDC0506 175 Macginitiea gracilis meso 1,2(2) EDC0506 182 Macginitiea gracilis meso 5,12,15 EDC0506 183 Macginitiea gracilis macro 2,15 EDC0506 187 Macginitiea gracilis macro 40 EDC0506 192 Macginitiea gracilis meso 4(2),12,13 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 1 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 1

355 Daiye Spa

EDC0506 C Macginitiea gracilis noto 2 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis micro 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 1 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 2 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 2 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 1(6) EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 4 EDC0506 C Macginitiea gracilis micro 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis micro 0

356 Daiye Spa

EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 1(2) EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 2 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis micro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis macro 4 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 2 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis macro 0 EDC0506 C Macginitiea gracilis meso 4(2) EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 1(3),4(2) EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis macro 0

357 Daiye Spa

EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis noto 0 EDC0506 C Macginitiea gracilis meso 0 EDC0506 C Macginitiea gracilis meso 0 SW9819 (EDC04) 7 Macginitiea gracilis macro 4,8,46 SW9819 (EDC04) 17 Macginitiea gracilis meso 0 SW9819 (EDC04) 19 Macginitiea gracilis macro 2,4,14,16 SW9819 (EDC04) 29 Macginitiea gracilis meso 1,2,8 SW9819 (EDC04) 35 Macginitiea gracilis frag - meso? 5(2),2(12),16 SW9819 (EDC04) 39 Macginitiea gracilis micro 12 SW9819 (EDC04) 42 Macginitiea gracilis macro 7,12(4),15 SW9819 (EDC04) 44 Macginitiea gracilis frag 5(3),15,78 SW9819 (EDC04) 55 Macginitiea gracilis meso 12 SW9819 (EDC04) 56 Macginitiea gracilis micro 0 SW9819 (EDC04) 65 Macginitiea gracilis meso 0 SW9819 (EDC04) 67 Macginitiea gracilis micro 0 SW9819 (EDC04) 68 Macginitiea gracilis meso 0 SW9819 (EDC04) 79 Macginitiea gracilis noto 0 SW9819 (EDC04) 80 Macginitiea gracilis single lobe 0 SW9819 (EDC04) 81 Macginitiea gracilis frag 38 SW9819 (EDC04) 82 Macginitiea gracilis frag - noto 57 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis noto 1 SW9819 (EDC04) C Macginitiea gracilis micro 0 SW9819 (EDC04) C Macginitiea gracilis micro 2 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis noto 0 SW9819 (EDC04) C Macginitiea gracilis noto 0 SW9819 (EDC04) C Macginitiea gracilis meso 2 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis noto 3 SW9819 (EDC04) C Macginitiea gracilis noto 0 SW9819 (EDC04) C Macginitiea gracilis macro 8 SW9819 (EDC04) C Macginitiea gracilis meso 2,5 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis macro 2 SW9819 (EDC04) C Macginitiea gracilis noto 0 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis noto 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis macro 0 SW9819 (EDC04) C Macginitiea gracilis meso 2 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis macro 1 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 0 SW9819 (EDC04) C Macginitiea gracilis meso 1

358 Daiye Spa

SW9819 (EDC04) C Macginitiea gracilis meso 1 994 3 Platanus raynoldsi noto 0 994 4 Platanus raynoldsi noto 2(2) 994 5 Platanus raynoldsi noto 5 994 7 Platanus raynoldsi frag 32 994 29 Platanus raynoldsi noto 16,78 994 TT Platanus raynoldsi noto 0 EDC0506 4 Platanus raynoldsi meso 2,16 EDC0506 10 Platanus raynoldsi meso 16(6) EDC0506 12 Platanus raynoldsi frag 0 EDC0506 19 Platanus raynoldsi meso 17 EDC0506 23 Platanus raynoldsi meso 16(5) EDC0506 33 Platanus raynoldsi noto 0 EDC0506 34 Platanus raynoldsi noto 4(2) EDC0506 41 Platanus raynoldsi noto 13,24 EDC0506 54 Platanus raynoldsi meso 17(6) EDC0506 71 Platanus raynoldsi noto 2,5,17 EDC0506 98 Platanus raynoldsi noto 2(2),3,4 EDC0506 104 Platanus raynoldsi meso 2(7),12,17(2) EDC0506 105 Platanus raynoldsi micro 2,80(3) EDC0506 109 Platanus raynoldsi meso 4 EDC0506 143 Platanus raynoldsi meso 2(2),4,16 EDC0506 146 Platanus raynoldsi meso 2(2),17,19 EDC0506 153 Platanus raynoldsi meso 16 EDC0506 154 Platanus raynoldsi frag 0 EDC0506 155 Platanus raynoldsi noto 17(3) EDC0506 169 Platanus raynoldsi meso 1(2),2(3),4,78 EDC0506 176 Platanus raynoldsi meso 1(3),2,8,15,17(9) EDC0506 186 Platanus raynoldsi noto 17(7) EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi micro 1 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0

359 Daiye Spa

EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 1 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi meso 2 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi macro 4 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi macro 4(2) EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi micro 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi macro 0 EDC0506 C Platanus raynoldsi macro 0

360 Daiye Spa

EDC0506 C Platanus raynoldsi noto 0 EDC0506 C Platanus raynoldsi meso 0 SW9819 (EDC04) 22 Platanus raynoldsi noto 57 SW9819 (EDC04) 25 Platanus raynoldsi frag 42 SW9819 (EDC04) 33 Platanus raynoldsi noto 4 SW9819 (EDC04) 37 Platanus raynoldsi noto 35(2) SW9819 (EDC04) 88 Platanus raynoldsi noto 0 SW9819 (EDC04) 89 Platanus raynoldsi frag - meso 0 SW9819 (EDC04) 90 Platanus raynoldsi noto 17(2),34 SW9819 (EDC04) 92 Platanus raynoldsi noto 17(5) SW9819 (EDC04) C Platanus raynoldsi noto 1 SW9819 (EDC04) C Platanus raynoldsi noto 0 SW9819 (EDC04) C Platanus raynoldsi noto 0 SW9819 (EDC04) C Platanus raynoldsi meso 0 SW9819 (EDC04) C Platanus raynoldsi noto 0 SW9819 (EDC04) C Platanus raynoldsi micro 0 SW9819 (EDC04) 16 Populus wyomingiana meso 0 994 TT Ternstroemites aureavallis noto 0 9819 R Ternstroemites aureavallis frag 2(4) EDC0506 48 Ternstroemites aureavallis noto 1(15),2(2),12(2) EDC0506 58 Ternstroemites aureavallis noto 1(3),2(7) EDC0506 76 Ternstroemites aureavallis noto 1(2),2(4),3 EDC0506 131 Ternstroemites aureavallis noto 1(2),2(4),4,8,15(2) SW9819 (EDC04) 6 Ternstroemites aureavallis noto 1(30),2(2),8(7),20 SW9819 (EDC04) 8 Ternstroemites aureavallis noto 17 SW9819 (EDC04) 12 Ternstroemites aureavallis noto 0 SW9819 (EDC04) 13 Ternstroemites aureavallis noto 2(2) 994 38 Zizyphoides flabella noto 0 EDC0506 60 Zizyphoides flabella noto 2(2),33(7),34 EDC0506 83 Zizyphoides flabella micro 2(3),12 EDC0506 124 Zizyphoides flabella micro 16(6) EDC0506 144 Zizyphoides flabella micro 32 EDC0506 188 Zizyphoides flabella micro 0 EDC0506 C Zizyphoides flabella micro 0 EDC0506 C Zizyphoides flabella micro 0 EDC0506 C Zizyphoides flabella micro 0 EDC0506 C Zizyphoides flabella micro 0 SW9819 (EDC04) 27 Zizyphoides flabella micro 16 SW9819 (EDC04) C Zizyphoides flabella micro 0 SW9819 (EDC04) C Zizyphoides flabella micro 16 994 M Dicot sp. FU743 meso 15 9819 D Dicot sp. FU743 noto 8 EDC0506 138 Dicot sp. FU743 meso 2,4,34 EDC0506 191 Dicot sp. FU743 noto 12 994 6 Dicot sp. FU745 noto 0 994 11 Dicot sp. FU745 micro 12 994 44 Dicot sp. FU745 noto 0 994 45 Dicot sp. FU745 micro 3,7 994 46 Dicot sp. FU745 micro 3 994 47 Dicot sp. FU745 micro 0 994 48 Dicot sp. FU745 micro 0 994 49 Dicot sp. FU745 noto 1(2),2(3) 994 50 Dicot sp. FU745 micro 0 994 51 Dicot sp. FU745 noto 15 994 52 Dicot sp. FU745 nano 0 994 53 Dicot sp. FU745 noto 0 994 54 Dicot sp. FU745 micro 0 994 55 Dicot sp. FU745 noto 1(4),2(2) 994 56 Dicot sp. FU745 micro 0

361 Daiye Spa

994 57 Dicot sp. FU745 micro 1(5),2(4) 994 58 Dicot sp. FU745 micro 1(6),2,4,57 EDC0506 7 Dicot sp. FU745 noto 0 EDC0506 9 Dicot sp. FU745 micro 2(2),12(2) EDC0506 62 Dicot sp. FU745 micro 1(4),2 EDC0506 63 Dicot sp. FU745 micro 34 EDC0506 73 Dicot sp. FU745 micro 0 EDC0506 134 Dicot sp. FU745 noto 0 EDC0506 174 Dicot sp. FU745 micro 2 EDC0506 179 Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 noto 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 noto 1 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 EDC0506 C Dicot sp. FU745 micro 0 SW9819 (EDC04) 14 Dicot sp. FU745 noto 3 SW9819 (EDC04) 34 Dicot sp. FU745 micro 0 SW9819 (EDC04) 93 Dicot sp. FU745 micro 0 SW9819 (EDC04) 94 Dicot sp. FU745 noto 0 SW9819 (EDC04) 95 Dicot sp. FU745 meso 2(2),4,5,8 SW9819 (EDC04) 96 Dicot sp. FU745 noto 12 SW9819 (EDC04) 97 Dicot sp. FU745 noto 2,8,12 SW9819 (EDC04) 100 Dicot sp. FU745 micro 0 SW9819 (EDC04) 101 Dicot sp. FU745 noto 0 SW9819 (EDC04) 58A Dicot sp. FU745 noto 2 SW9819 (EDC04) 58B Dicot sp. FU745 noto 3 994 13 Dicot sp. FU746 meso 0 994 14 Dicot sp. FU746 noto 0 994 15 Dicot sp. FU746 frag - noto 0 994 42 Dicot sp. FU746 meso 1(50),2(4),5(5) EDC0506 26 Dicot sp. FU746 frag 1(50) EDC0506 66 Dicot sp. FU746 macro 1(40),2,32(66),46 EDC0506 94 Dicot sp. FU746 meso 1(50),32(11),46 EDC0506 147 Dicot sp. FU746 meso 46,2 EDC0506 150 Dicot sp. FU746 meso 1(50),2,8,46 EDC0506 194 Dicot sp. FU746 noto 12 SW9819 (EDC04) 40 Dicot sp. FU746 meso 1(50),8,46 SW9819 (EDC04) 9 Dicot sp. FU747 noto 2(5) 994 61 Dicot sp. FU748 noto 12 EDC0506 102 Dicot sp. FU748 noto 1(2) EDC0506 177 Dicot sp. FU748 micro 10(2) 994 30 Dicot sp. FU749 meso 32(3) 994 H Dicot sp. FU749 micro 7 994 MM Dicot sp. FU749 micro 0 994 NN Dicot sp. FU749 meso 0 994 Q Dicot sp. FU749 micro 2 9819 1 Dicot sp. FU749 micro 2(2),4,32(3),46 9819 O Dicot sp. FU749 noto 1 EDC0506 16 Dicot sp. FU749 meso 0 EDC0506 20 Dicot sp. FU749 noto 1(2),2(3),32(70) EDC0506 24 Dicot sp. FU749 meso 1(4),2(3) EDC0506 25 Dicot sp. FU749 noto 2,34(2) EDC0506 46 Dicot sp. FU749 noto 57 EDC0506 57 Dicot sp. FU749 noto 0

362 Daiye Spa

EDC0506 86 Dicot sp. FU749 noto 4 EDC0506 95 Dicot sp. FU749 micro 2 EDC0506 126 Dicot sp. FU749 meso 2 EDC0506 145 Dicot sp. FU749 meso 0 EDC0506 166 Dicot sp. FU749 frag - noto 5,32(3) EDC0506 171 Dicot sp. FU749 noto 0 EDC0506 C Dicot sp. FU749 meso 0 EDC0506 C Dicot sp. FU749 micro 0 EDC0506 C Dicot sp. FU749 meso 0 SW9819 (EDC04) 11 Dicot sp. FU749 noto 12(2) SW9819 (EDC04) 48 Dicot sp. FU749 meso 1(2),2(4),3(2) SW9819 (EDC04) 77 Dicot sp. FU749 noto 2(3) SW9819 (EDC04) 78 Dicot sp. FU749 noto 2,12(2) SW9819 (EDC04) 103 Dicot sp. FU749 meso 12 SW9819 (EDC04) 104 Dicot sp. FU749 meso 1,2(4),8(3) SW9819 (EDC04) 105 Dicot sp. FU749 noto 5 SW9819 (EDC04) 106 Dicot sp. FU749 frag 0 SW9819 (EDC04) 108 Dicot sp. FU749 micro 3,14,15,17,21 SW9819 (EDC04) C Dicot sp. FU749 micro 0

363 Hubble Bubble

# Plant Species Size DT

3 Fabaceae sp. WW001 nano 0 8 Fabaceae sp. WW001 nano 2,3,46 9 Fabaceae sp. WW001 nano 12 10 Fabaceae sp. WW001 nano 0 11 Fabaceae sp. WW001 lepto 12(2) 13 Fabaceae sp. WW001 nano 2,12 14 Fabaceae sp. WW001 nano 7,12(2),46 15 Fabaceae sp. WW001 nano 1,46 16 Fabaceae sp. WW001 nano 0 17 Fabaceae sp. WW001 nano 29(2) 18 Fabaceae sp. WW001 nano 12,29 19 Fabaceae sp. WW001 nano 29(2),33 24 Fabaceae sp. WW001 lepto 0 32 Fabaceae sp. WW001 nano 0 35 Fabaceae sp. WW001 nano 2 36 Fabaceae sp. WW001 nano 0 42 Fabaceae sp. WW001 micro 1(2),2(4),4,12,46 48 Fabaceae sp. WW001 nano 0 53 Fabaceae sp. WW001 nano 2(2) 63 Fabaceae sp. WW001 nano 12 66 Fabaceae sp. WW001 nano 34(2) 67 Fabaceae sp. WW001 nano 12,14,46 71 Fabaceae sp. WW001 nano 29(4),46 72 Fabaceae sp. WW001 nano 0 74 Fabaceae sp. WW001 nano 1 77 Fabaceae sp. WW001 nano 12,32,46 83 Fabaceae sp. WW001 nano 12,29(2),32,46 87 Fabaceae sp. WW001 nano 29 89 Fabaceae sp. WW001 nano 0 90 Fabaceae sp. WW001 nano 32(2),33,34,46 91 Fabaceae sp. WW001 nano 2 92 Fabaceae sp. WW001 nano 1,2 94 Fabaceae sp. WW001 nano 0 95 Fabaceae sp. WW001 nano 2(6),29 97 Fabaceae sp. WW001 nano 0 105 Fabaceae sp. WW001 nano 46 110 Fabaceae sp. WW001 nano 12 111 Fabaceae sp. WW001 nano 29(2) 120 Fabaceae sp. WW001 nano 0 121 Fabaceae sp. WW001 nano 1 122 Fabaceae sp. WW001 nano 82 123 Fabaceae sp. WW001 nano 2,33,46 125 Fabaceae sp. WW001 nano 29 152 Fabaceae sp. WW001 nano 2(3),12(2),13,32,46 167 Fabaceae sp. WW001 nano 0 168 Fabaceae sp. WW001 nano 12 169 Fabaceae sp. WW001 nano 0 171 Fabaceae sp. WW001 nano 1(4),2 183 Fabaceae sp. WW001 micro 12,34(5) 184 Fabaceae sp. WW001 nano 4,12,29(6) 185 Fabaceae sp. WW001 nano 13,27 187 Fabaceae sp. WW001 nano 32(3) 190 Fabaceae sp. WW001 nano 1(2),13,80(12) 195 Fabaceae sp. WW001 nano 1,2,32(8) 215 Fabaceae sp. WW001 nano 29,46 216 Fabaceae sp. WW001 nano 1(2) 217 Fabaceae sp. WW001 nano 12

364 Hubble Bubble

226 Fabaceae sp. WW001 nano 0 227 Fabaceae sp. WW001 nano 14 228 Fabaceae sp. WW001 nano 13,46 229 Fabaceae sp. WW001 lepto 0 230 Fabaceae sp. WW001 lepto 12 231 Fabaceae sp. WW001 nano 0 232 Fabaceae sp. WW001 nano 0 233 Fabaceae sp. WW001 nano 1(2),12,46 234 Fabaceae sp. WW001 nano 0 235 Fabaceae sp. WW001 nano 0 236 Fabaceae sp. WW001 nano 12 237 Fabaceae sp. WW001 micro 0 245 Fabaceae sp. WW001 nano 2 246 Fabaceae sp. WW001 nano 46 247 Fabaceae sp. WW001 nano 2 250 Fabaceae sp. WW001 nano 12,32(2),33 256 Fabaceae sp. WW001 nano 1(2),46 258 Fabaceae sp. WW001 lepto 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 1 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 1 258 Fabaceae sp. WW001 nano 1 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 12 258 Fabaceae sp. WW001 nano 46 258 Fabaceae sp. WW001 nano 1 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 12 258 Fabaceae sp. WW001 nano 2 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 46 258 Fabaceae sp. WW001 nano 2 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 0 258 Fabaceae sp. WW001 nano 1 258 Fabaceae sp. WW001 nano 1,2 258 Fabaceae sp. WW001 nano 2 258 Fabaceae sp. WW001 nano 0 261 Fabaceae sp. WW001 nano 0 262 Fabaceae sp. WW001 nano 0 284 Fabaceae sp. WW001 nano 81 288 Fabaceae sp. WW001 nano 1 289 Fabaceae sp. WW001 nano 29 302 Fabaceae sp. WW001 nano 17 303 Fabaceae sp. WW001 nano 1(2),46 312 Fabaceae sp. WW001 nano 12,29(11),33 313 Fabaceae sp. WW001 nano 2,12,80(13) 314 Fabaceae sp. WW001 nano 32(6),46 317 Fabaceae sp. WW001 nano 2 319 Fabaceae sp. WW001 nano 12 320 Fabaceae sp. WW001 nano 0 321 Fabaceae sp. WW001 nano 0 323 Fabaceae sp. WW001 nano 29

365 Hubble Bubble

324 Fabaceae sp. WW001 nano 0 326 Fabaceae sp. WW001 micro 0 329 Fabaceae sp. WW001 nano 29(2),46 331 Fabaceae sp. WW001 nano 2(2),32,46 332 Fabaceae sp. WW001 nano 8 336 Fabaceae sp. WW001 nano 33(4) 345 Fabaceae sp. WW001 nano 0 361 Fabaceae sp. WW001 nano 0 392 Fabaceae sp. WW001 nano 1,2(3) 394 Fabaceae sp. WW001 nano 2(2),13,14 396 Fabaceae sp. WW001 nano 80(11) 399 Fabaceae sp. WW001 nano 46 403 Fabaceae sp. WW001 nano 2,17(2),27 524 Fabaceae sp. WW001 nano 80(7) 525 Fabaceae sp. WW001 nano 46 532 Fabaceae sp. WW001 micro 1(11),12(2) 537 Fabaceae sp. WW001 nano 32(7),33 540 Fabaceae sp. WW001 nano 46,32(5),1(3) 541 Fabaceae sp. WW001 nano 46 545 Fabaceae sp. WW001 nano 46 548 Fabaceae sp. WW001 nano 12(2) 549 Fabaceae sp. WW001 nano 29,32,33 1352 Fabaceae sp. WW001 nano 2(4),12 402-1 Fabaceae sp. WW001 lepto 12,32 402-10 Fabaceae sp. WW001 nano 32 402-11 Fabaceae sp. WW001 nano 0 402-2 Fabaceae sp. WW001 nano 46 402-3 Fabaceae sp. WW001 nano 29(3) 402-4 Fabaceae sp. WW001 nano 2 402-5 Fabaceae sp. WW001 nano 46 402-6 Fabaceae sp. WW001 nano 0 402-7 Fabaceae sp. WW001 nano 2 402-8 Fabaceae sp. WW001 nano 0 402-9 Fabaceae sp. WW001 nano 0 527 a Fabaceae sp. WW001 nano 46 527 b Fabaceae sp. WW001 nano 1(6) 527 c Fabaceae sp. WW001 nano 46 527 d Fabaceae sp. WW001 nano 46 527 e Fabaceae sp. WW001 nano 1(4),46,80(4) 527 f Fabaceae sp. WW001 nano 12,33(2),46 527 g Fabaceae sp. WW001 nano 1(5),33 527 h Fabaceae sp. WW001 nano 46 527 i Fabaceae sp. WW001 nano 0 527 j Fabaceae sp. WW001 nano 3,46 527 k Fabaceae sp. WW001 nano 12,1(3),32,46 527 l Fabaceae sp. WW001 nano 0 527 m Fabaceae sp. WW001 nano 1 527 n Fabaceae sp. WW001 nano 1(3) 527 o Fabaceae sp. WW001 nano 1(2),33 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0

366 Hubble Bubble

C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2,15 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 micro 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 lepto 0

367 Hubble Bubble

C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 1(3) C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 micro 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(3) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 micro 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(3) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 3 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0

368 Hubble Bubble

C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 3 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(3) C Fabaceae sp. WW001 nano 1(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1,12,80 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12(2) C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 14 C Fabaceae sp. WW001 nano 1(2) C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2,12 C Fabaceae sp. WW001 nano 0

369 Hubble Bubble

C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 2(2),3 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(2) C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2,3,13 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 8 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(3) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1

370 Hubble Bubble

C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 8 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 2,12,13 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 14 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2(2) C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 14 C Fabaceae sp. WW001 nano 2 C Fabaceae sp. WW001 nano P&S C Fabaceae sp. WW001 nano 12(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(3),2(2),3 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 2(3),12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1 C Fabaceae sp. WW001 nano 2(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 1(5),2(4),12 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0

371 Hubble Bubble

C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 lepto 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 12(2) C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 C Fabaceae sp. WW001 nano 0 76 Fabaceae sp. WW002 micro 0 82 Fabaceae sp. WW002 micro 1(27),2,46 86 Fabaceae sp. WW002 micro 2,46 136 Fabaceae sp. WW002 micro 2,46 243 Fabaceae sp. WW002 micro 12,17 255 Fabaceae sp. WW002 micro 2(2),12(3),14 257 Fabaceae sp. WW002 micro 1(2),2(2),29(2) 316 Fabaceae sp. WW002 micro 1(7) 338 Fabaceae sp. WW002 micro 2,12,13,17(2),33(2),46,125 346 Fabaceae sp. WW002 micro 2(2) 378 Fabaceae sp. WW002 micro 2(3),46 387 Fabaceae sp. WW002 micro 12(4),36,46 395 Fabaceae sp. WW002 micro 0 397 Fabaceae sp. WW002 micro 2,29 410 Fabaceae sp. WW002 micro 2 411 Fabaceae sp. WW002 micro 1(2),125 412 Fabaceae sp. WW002 micro 1(10),2,8 413 Fabaceae sp. WW002 micro 0 414 Fabaceae sp. WW002 micro 1(5),13 539 Fabaceae sp. WW002 micro 1(4),12, 4 Machaerium sp. nano 1,2 27 Machaerium sp. micro 0 37 Machaerium sp. micro 14,17(3) 38 Machaerium sp. micro 15,16 41 Machaerium sp. micro 0 64 Machaerium sp. micro 1,12 75 Machaerium sp. micro 3 79 Machaerium sp. micro 1(2),12,16(2) 80 Machaerium sp. micro 1(3),2(2) 117 Machaerium sp. micro 0 127 Machaerium sp. micro 13,125 128 Machaerium sp. micro 4 131 Machaerium sp. micro 0 132 Machaerium sp. micro 29 140 Machaerium sp. micro 13,36 141 Machaerium sp. micro 46 145 Machaerium sp. micro 1,2,13,125 151 Machaerium sp. micro 29,46 153 Machaerium sp. micro 12(3) 160 Machaerium sp. micro 2,12 161 Machaerium sp. micro 1(2),46 162 Machaerium sp. micro 0 163 Machaerium sp. micro 0 174 Machaerium sp. nano 0 181 Machaerium sp. micro 12 182 Machaerium sp. micro 16(2),36(2) 186 Machaerium sp. micro 2,17(2) 188 Machaerium sp. micro 13, 29(5) 192 Machaerium sp. nano 15 193 Machaerium sp. micro 46

372 Hubble Bubble

210 Machaerium sp. micro 12 212 Machaerium sp. micro 46,125 218 Machaerium sp. micro 2,13 219 Machaerium sp. micro 12,15 222 Machaerium sp. micro 2(2),12(2) 238 Machaerium sp. micro 14 244 Machaerium sp. micro 29(2) 252 Machaerium sp. micro 2(2),21 266 Machaerium sp. micro 278 Machaerium sp. micro 1(14),13,14,125 283 Machaerium sp. micro 1,2(6),12,13,57(3) 299 Machaerium sp. micro 12,17(2),29,46 301 Machaerium sp. micro 29,79 309 Machaerium sp. micro 310 Machaerium sp. micro (19),32(2),33(2),125 311 Machaerium sp. micro 32(6) 315 Machaerium sp. micro 2,3,12,14,32 322 Machaerium sp. micro 2,46 339 Machaerium sp. micro 2,4 340 Machaerium sp. micro 0 404 Machaerium sp. micro 27,125 518 Machaerium sp. micro 32(15) 521 Machaerium sp. micro 30,29 522 Machaerium sp. micro 14,30 523 Machaerium sp. micro 13,46 526 Machaerium sp. micro 0 534 Machaerium sp. micro 1(4),2(3) 535 Machaerium sp. micro 0 536 Machaerium sp. micro 1 538 Machaerium sp. micro 7 542 Machaerium sp. micro 0 543 Machaerium sp. micro 1(2),12,27 544 Machaerium sp. micro 0 552 Machaerium sp. micro 12 565 Machaerium sp. micro 29 566 Machaerium sp. micro 0 567 Machaerium sp. micro 2,12 568 Machaerium sp. micro 0 570 Machaerium sp. micro 46 580 Machaerium sp. micro 29 581 Machaerium sp. micro 46 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 15 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 1 C Machaerium sp. micro 0

373 Hubble Bubble

C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 1 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 3 C Machaerium sp. micro 0 C Machaerium sp. micro 2 C Machaerium sp. micro 0 C Machaerium sp. micro 2 C Machaerium sp. micro 0 C Machaerium sp. micro 1(3),3 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 12 C Machaerium sp. micro 12 C Machaerium sp. micro 2 C Machaerium sp. micro 8 C Machaerium sp. micro 0 C Machaerium sp. micro 2(2) C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 2 C Machaerium sp. micro 1(3),2 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 2(3),12 C Machaerium sp. micro 1 C Machaerium sp. micro 0 C Machaerium sp. micro 1(2),2 C Machaerium sp. micro 2 C Machaerium sp. micro 29(6) C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 2 C Machaerium sp. micro 1 C Machaerium sp. noto 2 C Machaerium sp. micro 12 C Machaerium sp. micro 0

374 Hubble Bubble

C Machaerium sp. micro 2(2) C Machaerium sp. micro 0 C Machaerium sp. micro 0 C Machaerium sp. micro 1 C Machaerium sp. micro 0 C Machaerium sp. micro 2 134 Lauraceae sp. WW023 noto 8,29,46 7 Populus wyomingiana meso 2(2),17 84 Populus wyomingiana micro 3 116 Populus wyomingiana meso 1,2,15,29(2) 139 Populus wyomingiana meso 1,2 155 Populus wyomingiana meso 1(3),2(2),29 176 Populus wyomingiana noto 2(2),5,13,32(3),33(3) 177 Populus wyomingiana noto 1,2(2),4,5(2) 199 Populus wyomingiana noto 2(3),4,7(2),8(2) 208 Populus wyomingiana meso 2 213 Populus wyomingiana meso 3 251 Populus wyomingiana meso 1,2(4),4(4),5,8(2),12(2),55 265 Populus wyomingiana noto 1,2 270 Populus wyomingiana micro 0 271 Populus wyomingiana meso 1,2(12),3(4),46,78 277 Populus wyomingiana macro 1(3),2(3),4(4),5,78 293 Populus wyomingiana meso 2(6),4,29(5) 385 Populus wyomingiana meso 1(2),2,3(2),8,16 528 Populus wyomingiana noto 12,15,3 551 Populus wyomingiana macro 1(3),2(5),3(3),5,7,12,14(2),37 C Populus wyomingiana meso 29 C Populus wyomingiana meso 2 C Populus wyomingiana noto 0 C Populus wyomingiana noto 2 C Populus wyomingiana meso 2(2),4,8 C Populus wyomingiana noto 1 C Populus wyomingiana meso 0 C Populus wyomingiana noto 0 C Populus wyomingiana macro 0 C Populus wyomingiana micro 0 C Populus wyomingiana meso 1(3),2(3) C Populus wyomingiana noto 0 C Populus wyomingiana noto 5,8,12 C Populus wyomingiana noto 0 C Populus wyomingiana noto 1 C Populus wyomingiana noto 0 C Populus wyomingiana meso 2 C Populus wyomingiana noto 0 C Populus wyomingiana micro 0 C Populus wyomingiana micro 2(3),3(3) C Populus wyomingiana micro 0 130 cf Rhus micro 29(2),32,36 509 cf Rhus micro 0 510 cf Rhus micro 15 511 cf Rhus micro 2(2),1,3,27,13,12(3),14(6) 569 cf Rhus micro 11(3) 113 Dicot sp. WW003 noto 29(25) 143 Dicot sp. WW003 meso 1,2(2),8(3),12,32(2),46 146 Dicot sp. WW003 micro 2,27 149 Dicot sp. WW003 noto 34,36 220 Dicot sp. WW003 noto 0 348 Dicot sp. WW003 micro 0 398 Dicot sp. WW003 noto 2(4),37(9)

375 Hubble Bubble

408 Dicot sp. WW003 meso 1(3),2(11) 500 Dicot sp. WW003 meso 1,2(3),3(7),4(2),5,14,55 5 Dicot sp. WW004 micro 0 6 Dicot sp. WW004 micro 2 20 Dicot sp. WW004 micro 0 21 Dicot sp. WW004 micro 0 28 Dicot sp. WW004 micro 0 93 Dicot sp. WW004 noto 2(3),16,17 100 Dicot sp. WW004 noto 2(2),12,32(18),46 126 Dicot sp. WW004 micro 2(2),4,12(3),17 165 Dicot sp. WW004 micro 2,12(2),32 170 Dicot sp. WW004 micro 1,2 173 Dicot sp. WW004 noto 2(3),16 178 Dicot sp. WW004 micro 2,4,12,32 179 Dicot sp. WW004 noto 2(2),3 180 Dicot sp. WW004 noto 2(2),4,12,14 198 Dicot sp. WW004 micro 92 200 Dicot sp. WW004 noto 2(5),4(2) 201 Dicot sp. WW004 micro 1(5),2 202 Dicot sp. WW004 micro 12, 29 203 Dicot sp. WW004 micro 2,12 204 Dicot sp. WW004 noto 1,2(7),4 205 Dicot sp. WW004 micro 2,15 206 Dicot sp. WW004 micro 27 207 Dicot sp. WW004 noto 2,46 209 Dicot sp. WW004 meso 12 211 Dicot sp. WW004 noto 50(10) 223 Dicot sp. WW004 micro 12,15(2),125 248 Dicot sp. WW004 noto 1(5),2(5),125 272 Dicot sp. WW004 noto 1(2),2(8),4 273 Dicot sp. WW004 micro 2(10),43,125 276 Dicot sp. WW004 noto 1,2,5,12 280 Dicot sp. WW004 micro 2(16),32(2),34(4),46,29 292 Dicot sp. WW004 noto 12,15 296 Dicot sp. WW004 noto 16,125 297 Dicot sp. WW004 micro 3(3),16 330 Dicot sp. WW004 noto 43 335 Dicot sp. WW004 micro 1(3),2(3),12,17(2),57 337 Dicot sp. WW004 micro 1,2(7),4 347 Dicot sp. WW004 noto 0 386 Dicot sp. WW004 micro 1(9),2,3(2),12 407 Dicot sp. WW004 micro 2,12,27 409 Dicot sp. WW004 micro 2(5),8,12(4),16,27 512 Dicot sp. WW004 micro 50(5) 513 Dicot sp. WW004 micro 0 514 Dicot sp. WW004 noto 0 515 Dicot sp. WW004 noto 12 516 Dicot sp. WW004 noto 0 559 Dicot sp. WW004 noto 1(7),2(2) 571 Dicot sp. WW004 micro 34 1163 Dicot sp. WW004 micro 46 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 noto 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 2 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 meso 0 C Dicot sp. WW004 micro 2 C Dicot sp. WW004 micro 0

376 Hubble Bubble

C Dicot sp. WW004 micro 1(5) C Dicot sp. WW004 micro 2(3) C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 5 C Dicot sp. WW004 micro 1 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 1 C Dicot sp. WW004 noto 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 meso 1 C Dicot sp. WW004 noto 3 C Dicot sp. WW004 micro 1(4),2 C Dicot sp. WW004 noto 2 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 2,8 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 2 C Dicot sp. WW004 noto 5,12 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 micro 0 C Dicot sp. WW004 noto 4 C Dicot sp. WW004 noto 2(4),3 C Dicot sp. WW004 micro 2 C Dicot sp. WW004 micro 0 2 Dicot sp. WW005 noto 1(4),2,3,5,12,15,32,78 52 Dicot sp. WW005 noto 1(4),2(2),12,29 287 Dicot sp. WW005 meso 1,2(8),3,5,8,29(2),57 350 Dicot sp. WW005 meso 2(2),3,27(2) 351 Dicot sp. WW005 meso 3,12 352 Dicot sp. WW005 meso 1(6),2(2),46 353 Dicot sp. WW005 meso 1(6),2(4),3(2),4(6),5,15(2),57,78 354 Dicot sp. WW005 noto 4 355 Dicot sp. WW005 noto 1(7),3(8),5(5),57(4) 356 Dicot sp. WW005 meso 1(9),2(11),3,4(3),5(2),15,33 357 Dicot sp. WW005 meso 8 358 Dicot sp. WW005 meso 2(3) 359 Dicot sp. WW005 meso 2(2),12(2),29 360 Dicot sp. WW005 meso 1,2(2),3,5 362 Dicot sp. WW005 meso 1(10),2(6),17 363 Dicot sp. WW005 meso 1(2),2(2) 364 Dicot sp. WW005 noto 1(4),2 365 Dicot sp. WW005 meso 2(5),12 366 Dicot sp. WW005 meso 1,2(2),3(2),4(2),5(2),12(2),15 367 Dicot sp. WW005 meso 1(5),2(5),3(4),12 368 Dicot sp. WW005 meso 1(3),16 369 Dicot sp. WW005 meso 1(2),2(3),3(2),12(2),15 370 Dicot sp. WW005 meso 1,2,4(2),12,37 371 Dicot sp. WW005 meso 2(4),3(7),37(2) 372 Dicot sp. WW005 noto 2,5,14,15 374 Dicot sp. WW005 meso 1,27 375 Dicot sp. WW005 meso 1(4),2(6),4,5(2),7

377 Hubble Bubble

376 Dicot sp. WW005 meso 2,14 377 Dicot sp. WW005 meso 4 379 Dicot sp. WW005 meso 1,4(2),15,29 380 Dicot sp. WW005 meso 1(3),2(15),3,4 381 Dicot sp. WW005 meso 1(4),2(14),3,5,8,12(2) 382 Dicot sp. WW005 petiole 0 388 Dicot sp. WW005 meso 1(18),2(11),3(9),4(2),5(10),27,29 389 Dicot sp. WW005 meso 1,2(2) 390 Dicot sp. WW005 meso 1(2),7,37 391 Dicot sp. WW005 meso 2(2),14,27(2) 393 Dicot sp. WW005 meso 1(3),2(3),12,15 400 Dicot sp. WW005 meso 1(3),12(2) 401 Dicot sp. WW005 meso 1,2(2),3 406 Dicot sp. WW005 meso 1,2(4),4,12(2),57 519 Dicot sp. WW005 meso 1(7),2(5),3(3),4(3),5(2),57(2),12 561 Dicot sp. WW005 meso 1(10),3(8),5(4),15 562 Dicot sp. WW005 meso 1(33),2(26),3(24),4(4),5(2),7(5),8,12(3) 563 Dicot sp. WW005 noto 0 C Dicot sp. WW005 noto 4 C Dicot sp. WW005 meso 4 C Dicot sp. WW005 meso 3(2),4,14 C Dicot sp. WW005 meso 2,12 C Dicot sp. WW005 meso 2(3),3,12 C Dicot sp. WW005 meso 1,2(3) C Dicot sp. WW005 meso 1,3,4,8(2) C Dicot sp. WW005 meso 3,12 C Dicot sp. WW005 meso 2(2),4,12 C Dicot sp. WW005 meso 0 C Dicot sp. WW005 noto 2,8 C Dicot sp. WW005 meso 2,3,5(2) C Dicot sp. WW005 meso 2,4 C Dicot sp. WW005 meso 1,2(2),3(4) C Dicot sp. WW005 meso 1(2),2(3),5(3) C Dicot sp. WW005 meso 4,5(3) C Dicot sp. WW005 meso 2(3),4(2) C Dicot sp. WW005 meso 0 C Dicot sp. WW005 meso 12(2) C Dicot sp. WW005 meso 2 12 Dicot sp. WW006 micro 2(2),29(9) 25 Dicot sp. WW006 micro 29(10) 26 Dicot sp. WW006 micro 8,12,46 31 Dicot sp. WW006 micro 4,12 33 Dicot sp. WW006 noto 0 40 Dicot sp. WW006 noto 35(2) 43 Dicot sp. WW006 micro 1,46 44 Dicot sp. WW006 noto 0 46 Dicot sp. WW006 noto 2,8 49 Dicot sp. WW006 noto 2(2),4,15,40 51 Dicot sp. WW006 noto 2(2) 54 Dicot sp. WW006 meso 5 57 Dicot sp. WW006 meso 4 58 Dicot sp. WW006 meso 4 60 Dicot sp. WW006 noto 29(3),34 62 Dicot sp. WW006 meso 2,4(7),15 65 Dicot sp. WW006 noto 12 68 Dicot sp. WW006 micro 2,8 69 Dicot sp. WW006 noto 46 70 Dicot sp. WW006 meso 0 73 Dicot sp. WW006 meso 0

378 Hubble Bubble

85 Dicot sp. WW006 noto 0 88 Dicot sp. WW006 noto 8,12 99 Dicot sp. WW006 micro 1(7),2,3 102 Dicot sp. WW006 noto 1,5,29 103 Dicot sp. WW006 noto 8(2),15,29,35(3) 104 Dicot sp. WW006 meso 1(3),2,3,4(2),8,29(3),30 106 Dicot sp. WW006 noto 0 109 Dicot sp. WW006 noto 2(3),7(4),12(2),15 118 Dicot sp. WW006 noto 4,46 119 Dicot sp. WW006 micro 2,12 144 Dicot sp. WW006 meso 1(10),3(6),4(5),8,17(2) 147 Dicot sp. WW006 meso 12 148 Dicot sp. WW006 noto 0 166 Dicot sp. WW006 micro 32 175 Dicot sp. WW006 noto 4(4) 197 Dicot sp. WW006 meso 5,15,40(2),46 239 Dicot sp. WW006 micro 1(12),20 281 Dicot sp. WW006 noto 4(8),12,15,46 282 Dicot sp. WW006 micro 1(14),2,3(8),12,17 304 Dicot sp. WW006 micro 3,12 318 Dicot sp. WW006 noto 1 325 Dicot sp. WW006 noto 2,4(5) 327 Dicot sp. WW006 noto 29(5),46 333 Dicot sp. WW006 meso 4(9),12 504 Dicot sp. WW006 noto 34(6),46,125 505 Dicot sp. WW006 noto 0 506 Dicot sp. WW006 noto 34(4) 507 Dicot sp. WW006 meso 4(6),2,7,2 508 Dicot sp. WW006 noto 3(2),4(4),46 529 Dicot sp. WW006 meso 1(12),3(4),20(3) 530 Dicot sp. WW006 noto 32(4),34(4) 550 Dicot sp. WW006 noto 46 556 Dicot sp. WW006 noto 4,46 557 Dicot sp. WW006 noto 0 558 Dicot sp. WW006 meso 0 C Dicot sp. WW006 micro 0 C Dicot sp. WW006 micro 0 C Dicot sp. WW006 micro 0 C Dicot sp. WW006 micro 2 C Dicot sp. WW006 micro 0 C Dicot sp. WW006 meso 4(5) C Dicot sp. WW006 meso 0 C Dicot sp. WW006 meso 2,3,4 C Dicot sp. WW006 meso 2 C Dicot sp. WW006 meso 3 C Dicot sp. WW006 noto 8 C Dicot sp. WW006 micro 0 C Dicot sp. WW006 micro 15 C Dicot sp. WW006 noto 12(2) C Dicot sp. WW006 micro 2(6),3(2) C Dicot sp. WW006 noto 0 C Dicot sp. WW006 noto 2 C Dicot sp. WW006 micro 2(2),12 C Dicot sp. WW006 noto 0 C Dicot sp. WW006 noto 4(3) C Dicot sp. WW006 micro 0 C Dicot sp. WW006 micro 2,12 C Dicot sp. WW006 micro 2(2),12(2) C Dicot sp. WW006 micro 2

379 Hubble Bubble

C Dicot sp. WW006 noto 0 C Dicot sp. WW006 micro 12 50 Dicot sp. WW009 noto 46 98 Dicot sp. WW009 noto 2(8),3(2),5(3),12 124 Dicot sp. WW009 micro 2(2),12(2),13,59 142 Dicot sp. WW009 noto 2(3),5,12 286 Dicot sp. WW009 noto 1,3 533 Dicot sp. WW009 noto 2,3,4 29 Dicot sp. WW010 micro 12,57 114 Dicot sp. WW010 noto 0 189 Dicot sp. WW010 micro 1(2),27 194 Dicot sp. WW010 meso 1 341 Dicot sp. WW010 noto 2(2),12 C Dicot sp. WW010 micro 2(5),8 C Dicot sp. WW010 micro 2(9),8 1 Dicot sp. WW011 noto 1,3,4 45 Dicot sp. WW011 noto 1,2,8(2) 81 Dicot sp. WW011 micro 0 133 Dicot sp. WW011 meso 1 191 Dicot sp. WW011 micro 1,12,29 242 Dicot sp. WW011 micro 1(3),4(2),12(2),13 328 Dicot sp. WW011 noto 2(3),8,12(4) 342 Dicot sp. WW011 noto 1(2),8(2),20,46 343 Dicot sp. WW011 noto 0 405 Dicot sp. WW011 micro 1,2,12,46 135 Dicot sp. WW012 noto 1,2(4),3,4,5(2),29 137 Dicot sp. WW012 noto 5 225 Dicot sp. WW012 meso 1(33),2(39),3(8),4(2),5,20(12),46 254 Dicot sp. WW012 meso 2(4),3,4,5(3) 520 Dicot sp. WW012 meso 12,29,12,32 300 Dicot sp. WW013 - 0 501 Dicot sp. WW013 noto 0 502 Dicot sp. WW013 noto 13,46 503 Dicot sp. WW013 noto 0 61 Dicot sp. WW015 meso 1(3),12(2),13(2),29,32(4) 129 Dicot sp. WW015 meso 1,12,13 164 Dicot sp. WW015 noto 0 253 Dicot sp. WW015 meso 2(6) 259 Dicot sp. WW015 micro 0 517 Dicot sp. WW015 noto 0 78 Dicot sp. WW016 meso 2,3(2),7,8,17,32(11) 263 Dicot sp. WW016 meso 1,2,17,46 1162 Dicot sp. WW017 macro 29 221 Dicot sp. WW018 micro 2(4) 260 Dicot sp. WW018 micro 1(2),2,12 47 Dicot sp. WW019 micro 0 553 Dicot sp. WW019 micro 1,3(2),1(3) 39 Dicot sp. WW020 lepto 0 224 Dicot sp. WW021 meso 1(4) 96 Dicot sp. WW022 micro 0 264 Dicot sp. WW024 micro 14 554 Dicot sp. WW025 micro 0

380 Elk Creek

Site # Plant Species Size DT

0501 2 Alnus sp. micro 0 0501 4 Alnus sp. micro 0 0501 5 Alnus sp. micro 0 0501 6 Alnus sp. micro 1(2) 0501 9 Alnus sp. micro 1(3),2,4 0501 12 Alnus sp. micro 0 0501 13 Alnus sp. micro 0 0501 14 Alnus sp. micro 0 0501 16 Alnus sp. micro 2(2), 57 0501 17 Alnus sp. nano 2,12 0501 18 Alnus sp. micro 0 0501 19 Alnus sp. micro 79 0501 20 Alnus sp. micro 17(3) 0501 21 Alnus sp. micro 3 0501 22 Alnus sp. micro 1,17 0501 24 Alnus sp. micro 17 0501 25 Alnus sp. micro 0 0501 28 Alnus sp. micro 2,57 0501 30 Alnus sp. micro 0 0501 31 Alnus sp. micro 0 0501 32 Alnus sp. micro 2 0501 33 Alnus sp. micro 2,17,1,2 0501 34 Alnus sp. micro 0 0501 35 Alnus sp. micro 0 0501 36 Alnus sp. micro 0 0501 37 Alnus sp. micro 0 0501 38 Alnus sp. micro 0 0501 39 Alnus sp. micro 0 0501 43 Alnus sp. micro 12 0501 45 Alnus sp. micro 2(4), 57 0501 45 Alnus sp. noto 0 0501 46 Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. micro 0 0501 C Alnus sp. noto 0 0501 C Alnus sp. noto 0 0501 1 Averrhoites affinis frag 46 0501 3 Averrhoites affinis micro 2(2),46 0501 10 Averrhoites affinis micro 2(2) 0501 11 Averrhoites affinis micro 0 0501 23 Averrhoites affinis micro 1,2(2) 0501 26 Averrhoites affinis micro 0 0501 27 Averrhoites affinis micro 0 0501 C Averrhoites affinis micro 0 0501 8 Cercidiphyllum genetrix micro 0 0501 41 Zizyphoides flabella micro 0 0501 42 Zizyphoides flabella micro 0 0502 42 Alnus sp. micro 3

381 Elk Creek

0502 1 Averrhoites affinis micro 12 0502 2 Averrhoites affinis micro 0 0502 3 Averrhoites affinis micro 12,16 0502 4 Averrhoites affinis micro 0 0502 5 Averrhoites affinis micro 8,46 0502 6 Averrhoites affinis micro 0 0502 7 Averrhoites affinis micro 46 0502 8 Averrhoites affinis micro 0 0502 9 Averrhoites affinis micro 2(2) 0502 10 Averrhoites affinis nano 2,12,46 0502 11 Averrhoites affinis micro 2(2),3 0502 12 Averrhoites affinis micro 1(2),3,13 0502 13 Averrhoites affinis micro 46 0502 14 Averrhoites affinis micro 46 0502 15 Averrhoites affinis micro 46 0502 16 Averrhoites affinis micro 46 0502 17 Averrhoites affinis micro 1,12 0502 18 Averrhoites affinis micro 12,17 0502 19 Averrhoites affinis micro 46 0502 20 Averrhoites affinis micro 0 0502 21 Averrhoites affinis micro 0 0502 22 Averrhoites affinis micro 2,12(2),46 0502 24 Averrhoites affinis micro 0 0502 25 Averrhoites affinis noto 0 0502 26 Averrhoites affinis micro 46 0502 27 Averrhoites affinis micro 2(2),12,46 0502 28 Averrhoites affinis micro 0 0502 29 Averrhoites affinis micro 17 0502 30 Averrhoites affinis micro 46 0502 31 Averrhoites affinis noto 46 0502 32 Averrhoites affinis noto 29(2),46 0502 33 Averrhoites affinis noto 12,46 0502 34 Averrhoites affinis micro 3,4(2),12,46 0502 35 Averrhoites affinis micro 46 0502 36 Averrhoites affinis micro 0 0502 37 Averrhoites affinis micro 46 0502 38 Averrhoites affinis micro 46 0502 39 Averrhoites affinis micro 0 0502 40 Averrhoites affinis micro 46 0502 43 Averrhoites affinis micro 1,2(5),13 0502 44 Averrhoites affinis micro 46 0502 45 Averrhoites affinis micro 12,15,46 0502 46 Averrhoites affinis micro 46 0502 47 Averrhoites affinis micro 1(5),2,46 0502 48 Averrhoites affinis micro 46 0502 49 Averrhoites affinis micro 1(7),12,46 0502 50 Averrhoites affinis micro 46 0502 51 Averrhoites affinis micro 2,3(2),46 0502 52 Averrhoites affinis micro 1(4),2,3,46 0502 54 Averrhoites affinis micro 0 0502 55 Averrhoites affinis noto 2 0502 56 Averrhoites affinis micro 46 0502 57 Averrhoites affinis micro 2,3,12,46 0502 58 Averrhoites affinis micro 3,46 0502 59 Averrhoites affinis micro 1 0502 60 Averrhoites affinis micro 3,46 0502 61 Averrhoites affinis micro 0 0502 62 Averrhoites affinis micro 46 0502 63 Averrhoites affinis noto 46

382 Elk Creek

0502 64 Averrhoites affinis micro 2,46 0502 65 Averrhoites affinis micro 2 0502 66 Averrhoites affinis micro 12 0502 67 Averrhoites affinis micro 12,15 0502 68 Averrhoites affinis micro 0 0502 69 Averrhoites affinis micro 0 0502 70 Averrhoites affinis micro 46 0502 71 Averrhoites affinis micro 46 0502 72 Averrhoites affinis micro 46 0502 73 Averrhoites affinis micro 12(2),46 0502 74 Averrhoites affinis micro 0 0502 75 Averrhoites affinis micro 0 0502 76 Averrhoites affinis noto 0 0502 77 Averrhoites affinis micro 46 0502 78 Averrhoites affinis micro 46 0502 79 Averrhoites affinis micro 0 0502 80 Averrhoites affinis noto 0 0502 81 Averrhoites affinis micro 0 0502 83 Averrhoites affinis micro 1(8),2(9),3(3),8 0502 84 Averrhoites affinis noto 46 0502 85 Averrhoites affinis micro 12,46 0502 86 Averrhoites affinis micro 12 0502 87 Averrhoites affinis micro 46 0502 88 Averrhoites affinis micro 2,12,46 0502 89 Averrhoites affinis noto 12,46 0502 90 Averrhoites affinis micro 12 0502 91 Averrhoites affinis noto 1(4),46 0502 92 Averrhoites affinis micro 46 0502 93 Averrhoites affinis noto 0 0502 94 Averrhoites affinis micro 2(3),3 0502 95 Averrhoites affinis noto 2 0502 96 Averrhoites affinis micro 0 0502 97 Averrhoites affinis micro 12 0502 98 Averrhoites affinis micro 0 0502 99 Averrhoites affinis micro 46 0502 100 Averrhoites affinis noto 12 0502 101 Averrhoites affinis micro 0 0502 102 Averrhoites affinis noto 2,12,46 0502 103 Averrhoites affinis micro 46 0502 104 Averrhoites affinis micro 46 0502 105 Averrhoites affinis noto 0 0502 106 Averrhoites affinis noto 46 0502 107 Averrhoites affinis micro 4(2),12 0502 108 Averrhoites affinis micro 46 0502 110 Averrhoites affinis micro 2,8,12 0502 111 Averrhoites affinis micro 0 0502 112 Averrhoites affinis micro 46 0502 113 Averrhoites affinis nano 46 0502 114 Averrhoites affinis micro 0 0502 115 Averrhoites affinis micro 12 0502 116 Averrhoites affinis micro 12,46 0502 117 Averrhoites affinis micro 0 0502 118 Averrhoites affinis micro 5(3),12,46 0502 119 Averrhoites affinis micro 0 0502 120 Averrhoites affinis noto 12 0502 700 Averrhoites affinis micro 0 0502 C Averrhoites affinis micro 0 0502 C Averrhoites affinis micro 0 0502 C Averrhoites affinis micro 0

383 Elk Creek

0502 C Averrhoites affinis micro 0 0502 41 Cercidiphyllum genetrix micro 0 0502 82 Hamamelidaceae sp. WW031 micro 79 0503 10 Aeschylus hickeyi micro 0 0503 41 Aeschylus hickeyi noto 0 0503 0503B #6 Aeschylus hickeyi noto 0 0503 0503B #7 Aeschylus hickeyi noto 0 0503 0503B #9 Aeschylus hickeyi micro 0 0503 1 Alnus sp. nano 8(3) 0503 2 Alnus sp. noto 2,8 0503 3 Alnus sp. micro 12 0503 5 Alnus sp. noto 2,4,2(3),4, 0503 6 Alnus sp. micro 12 0503 7 Alnus sp. micro 57(2),2(5),8 0503 11 Alnus sp. micro 12(2),1(3),2(2),57(2) 0503 12 Alnus sp. noto 12,57(3) 0503 13 Alnus sp. micro 2(2),17 0503 14 Alnus sp. noto 7,15,7,5, 0503 15 Alnus sp. micro 7,17 0503 16 Alnus sp. noto 16, 0503 17 Alnus sp. noto 2,12,4,3,29(3) 0503 18 Alnus sp. micro 2 0503 20 Alnus sp. micro 2,3 0503 24 Alnus sp. micro 12, 57(2) 0503 32 Alnus sp. micro 0 0503 50 Alnus sp. micro 57(5),2,8,2(4) 0503 66 Alnus sp. micro 12(3) 0503 100 Alnus sp. micro 0 0503 101 Alnus sp. micro 1,8,57(2) 0503 0503A #6 Alnus sp. micro 2 0503 0503b #10 Alnus sp. noto 0 0503 0503B #11 Alnus sp. micro 2 0503 0503B #8 Alnus sp. noto 0 0503 0503D #5 Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. micro 0 0503 C Alnus sp. nano 0 0503 C Alnus sp. noto 0 0503 C Alnus sp. noto 0 0503 8 Averrhoites affinis micro 0 0503 9 Averrhoites affinis noto 2(2) 0503 19 Averrhoites affinis micro 0 0503 21 Averrhoites affinis noto 2 0503 22 Averrhoites affinis micro 12,13,2(4),16(4) 0503 23 Averrhoites affinis micro 0 0503 25 Averrhoites affinis micro 1(4); 46 0503 26 Averrhoites affinis frag 0

384 Elk Creek

0503 27 Averrhoites affinis noto 2 0503 28 Averrhoites affinis micro 12,46 0503 29 Averrhoites affinis micro 2(4),12,14,46 0503 30 Averrhoites affinis noto 2,4 0503 31 Averrhoites affinis noto 1,2 0503 33 Averrhoites affinis micro 0 0503 34 Averrhoites affinis noto 1(2),2,12 0503 35 Averrhoites affinis micro 2 0503 36 Averrhoites affinis micro 1(4),5,46 0503 37 Averrhoites affinis micro 12,79 0503 38 Averrhoites affinis noto 1 0503 39 Averrhoites affinis noto 1(2) 0503 40 Averrhoites affinis noto 2,4 0503 42 Averrhoites affinis noto 2,4 0503 43 Averrhoites affinis micro 16,46 0503 44 Averrhoites affinis micro 1(4),2,8 0503 45 Averrhoites affinis micro 1(4),12,15 0503 46 Averrhoites affinis micro 1,2(2),12,15,19 0503 47 Averrhoites affinis noto 1(4),5,12(4),15 0503 48 Averrhoites affinis noto 0 0503 49 Averrhoites affinis micro 1,12 0503 51 Averrhoites affinis micro 0 0503 52 Averrhoites affinis micro 0 0503 53 Averrhoites affinis micro 1(4),2 0503 54 Averrhoites affinis micro 46 0503 55 Averrhoites affinis micro 1(4),3 0503 56 Averrhoites affinis noto 46 0503 57 Averrhoites affinis noto 1(3) 0503 58 Averrhoites affinis micro 12,46 0503 59 Averrhoites affinis micro 46 0503 60 Averrhoites affinis micro 0 0503 61 Averrhoites affinis micro 0 0503 63 Averrhoites affinis micro 12,15 0503 64 Averrhoites affinis micro 12 0503 65 Averrhoites affinis micro 2(2),12 0503 67 Averrhoites affinis micro 15 0503 68 Averrhoites affinis micro 1,2(2) 0503 69 Averrhoites affinis micro 3(2),8(2),46 0503 70 Averrhoites affinis micro 0 0503 71 Averrhoites affinis micro 0 0503 72 Averrhoites affinis micro 2,46 0503 73 Averrhoites affinis micro 0 0503 74 Averrhoites affinis micro 12 0503 75 Averrhoites affinis micro 0 0503 76 Averrhoites affinis micro 46 0503 77 Averrhoites affinis micro 2,4 0503 78 Averrhoites affinis micro 2(2) 0503 79 Averrhoites affinis micro 0 0503 80 Averrhoites affinis micro 2,16 0503 81 Averrhoites affinis micro 12(2),14,46 0503 82 Averrhoites affinis micro 0 0503 83 Averrhoites affinis noto 27 0503 84 Averrhoites affinis micro 1(2),2,3 0503 85 Averrhoites affinis micro 2,12 0503 86 Averrhoites affinis micro 46 0503 87 Averrhoites affinis micro 12 0503 88 Averrhoites affinis micro 12 0503 89 Averrhoites affinis micro 2 0503 90 Averrhoites affinis micro 0

385 Elk Creek

0503 91 Averrhoites affinis micro 16(2),1,2,46 0503 92 Averrhoites affinis micro 46 0503 93 Averrhoites affinis micro 12(3) 0503 94 Averrhoites affinis micro 57 0503 95 Averrhoites affinis micro 1,2,46 0503 96 Averrhoites affinis micro 1,2,27 0503 97 Averrhoites affinis micro 15,46 0503 98 Averrhoites affinis micro 12(2) 0503 99 Averrhoites affinis micro 2,3 0503 102 Averrhoites affinis micro 2(2),12 0503 103 Averrhoites affinis micro 0 0503 0503A #1 Averrhoites affinis noto 2(3),46 0503 0503A #10 Averrhoites affinis noto 57(4) 0503 0503a #11 Averrhoites affinis micro 2,12 0503 0503a #12 Averrhoites affinis micro 0 0503 0503A #2 Averrhoites affinis micro 12 0503 0503A #3 Averrhoites affinis micro 2,3 0503 0503A #4 Averrhoites affinis micro 12 0503 0503A #5 Averrhoites affinis micro 0 0503 0503A #7 Averrhoites affinis noto 2(3),3,12(6),14 0503 0503A #8 Averrhoites affinis noto 2 0503 0503A #9 Averrhoites affinis micro 2 0503 0503B #1 Averrhoites affinis micro 57 0503 0503B #2 Averrhoites affinis micro 0 0503 0503B #3 Averrhoites affinis micro 0 0503 0503B #4 Averrhoites affinis micro 0 0503 0503b #5 Averrhoites affinis micro 0 0503 0503C #2 Averrhoites affinis micro 1,2,46 0503 0503C #3 Averrhoites affinis micro 1(20),12(3) 0503 0503C #4 Averrhoites affinis micro 2(8),12(3) 0503 0503D #1 Averrhoites affinis micro 0 0503 0503D #2 Averrhoites affinis micro 1(11), 46 0503 0503D #3 Averrhoites affinis micro 12 0503 0503D #4 Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0

386 Elk Creek

0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0

387 Elk Creek

0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis micro 0 0503 C Averrhoites affinis nano 0 0503 C Averrhoites affinis nano 0 0503 C Averrhoites affinis nano 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0503 C Averrhoites affinis noto 0 0504 24 Alnus sp. micro 8,2(5) 0504 40 Alnus sp. micro 0 0504 95 Alnus sp. micro 2(2),5,57(6) 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0

388 Elk Creek

0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. micro 0 0504 C Alnus sp. noto 0 0504 1 Averrhoites affinis micro 0 0504 2 Averrhoites affinis micro 4,16(2),46 0504 3 Averrhoites affinis micro 46 0504 4 Averrhoites affinis micro 0 0504 5 Averrhoites affinis micro 0 0504 6 Averrhoites affinis micro 46 0504 7 Averrhoites affinis micro 2,57(2),46 0504 8 Averrhoites affinis micro 0 0504 9 Averrhoites affinis micro 12(3) 0504 10 Averrhoites affinis micro 12, 30 0504 11 Averrhoites affinis micro 46 0504 12 Averrhoites affinis micro 0 0504 13 Averrhoites affinis micro 46 0504 14 Averrhoites affinis micro 0 0504 15 Averrhoites affinis micro 12,27 0504 16 Averrhoites affinis micro 12(2) 0504 17 Averrhoites affinis micro 46 0504 18 Averrhoites affinis micro 12(2),13,14 0504 19 Averrhoites affinis micro 0 0504 20 Averrhoites affinis noto 0 0504 21 Averrhoites affinis micro 0 0504 22 Averrhoites affinis micro 2 0504 23 Averrhoites affinis micro 57 0504 25 Averrhoites affinis noto 2, 46 0504 26 Averrhoites affinis micro 2,3,5,12 0504 27 Averrhoites affinis micro 2,19 0504 28 Averrhoites affinis micro 0 0504 29 Averrhoites affinis micro 12 0504 30 Averrhoites affinis micro 2,12 0504 31 Averrhoites affinis noto 5,12(3),46 0504 32 Averrhoites affinis micro 7(3) 0504 33 Averrhoites affinis micro 46 0504 34 Averrhoites affinis micro 44 0504 35 Averrhoites affinis micro 2,46 0504 36 Averrhoites affinis micro 12 0504 37 Averrhoites affinis noto 12(3),13 0504 38 Averrhoites affinis micro 2,3,4 0504 39 Averrhoites affinis micro 12 0504 41 Averrhoites affinis micro 0 0504 42 Averrhoites affinis micro 3,46 0504 43 Averrhoites affinis micro 40(3) 0504 44 Averrhoites affinis noto 46 0504 45 Averrhoites affinis micro 46 0504 46 Averrhoites affinis micro 12(8) 0504 47 Averrhoites affinis noto 1(3),12,17(2) 0504 48 Averrhoites affinis micro 14 0504 49 Averrhoites affinis micro 0 0504 50 Averrhoites affinis micro 2,12 0504 51 Averrhoites affinis noto 2(2),5(2) 0504 52 Averrhoites affinis noto 2;46 0504 53 Averrhoites affinis micro 46 0504 54 Averrhoites affinis noto 2,12,15 0504 55 Averrhoites affinis micro 46

389 Elk Creek

0504 56 Averrhoites affinis noto 46 0504 57 Averrhoites affinis micro 2(3),12,14(2),15,25(2) 0504 58 Averrhoites affinis micro 1,12,46 0504 59 Averrhoites affinis noto 20(2), 57(3) 0504 60 Averrhoites affinis micro 46 0504 61 Averrhoites affinis micro 46 0504 62 Averrhoites affinis micro 0 0504 63 Averrhoites affinis micro 46 0504 64 Averrhoites affinis micro 12,46 0504 65 Averrhoites affinis micro 46 0504 66 Averrhoites affinis micro 0 0504 67 Averrhoites affinis micro 1,2,14 0504 68 Averrhoites affinis micro 2(4),12 0504 69 Averrhoites affinis noto 0 0504 70 Averrhoites affinis micro 46 0504 71 Averrhoites affinis noto 0 0504 72 Averrhoites affinis micro 1 0504 73 Averrhoites affinis micro 1(3),46 0504 74 Averrhoites affinis micro 46 0504 75 Averrhoites affinis noto 15(2),46 0504 76 Averrhoites affinis micro 4 0504 77 Averrhoites affinis micro 0 0504 78 Averrhoites affinis micro 2(2),12 0504 79 Averrhoites affinis micro 0 0504 80 Averrhoites affinis micro 2 0504 81 Averrhoites affinis micro 0 0504 82 Averrhoites affinis micro 0 0504 83 Averrhoites affinis micro 0 0504 84 Averrhoites affinis micro 4,5,46 0504 85 Averrhoites affinis micro 46 0504 86 Averrhoites affinis micro 0 0504 87 Averrhoites affinis micro 0 0504 88 Averrhoites affinis micro 12 0504 89 Averrhoites affinis micro 0 0504 90 Averrhoites affinis noto 0 0504 91 Averrhoites affinis micro 19 0504 92 Averrhoites affinis micro 0 0504 93 Averrhoites affinis micro 0 0504 94 Averrhoites affinis micro 12,46 0504 96 Averrhoites affinis micro 1(2), 13 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0

390 Elk Creek

0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0

391 Elk Creek

0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis micro 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0504 C Averrhoites affinis noto 0 0505 1 Alnus sp. micro 0 0505 2 Alnus sp. micro 0 0505 4 Alnus sp. micro 0 0505 10 Alnus sp. micro 1 0505 12 Alnus sp. micro 2,57(2) 0505 14 Alnus sp. micro 2 0505 15 Alnus sp. micro 0 0505 23 Alnus sp. micro 2(5),4 0505 38 Alnus sp. micro 2(2) 0505 39 Alnus sp. micro 57

392 Elk Creek

0505 42 Alnus sp. micro 57 0505 57 Alnus sp. micro 2 0505 59 Alnus sp. micro 57(2) 0505 63 Alnus sp. micro 2 0505 65 Alnus sp. micro 2 0505 67 Alnus sp. micro 57(4) 0505 74 Alnus sp. nano 1(2),2 0505 80 Alnus sp. micro 2(2) 0505 81 Alnus sp. micro 2(3) 0505 82 Alnus sp. noto 2,8,8 0505 89 Alnus sp. micro 1,17(4) 0505 98 Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. micro 0 0505 C Alnus sp. nano 0

393 Elk Creek

0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 C Alnus sp. noto 0 0505 3 Averrhoites affinis noto 0 0505 5 Averrhoites affinis micro 0 0505 6 Averrhoites affinis micro 0 0505 7 Averrhoites affinis micro 1(2) 0505 8 Averrhoites affinis noto 0 0505 9 Averrhoites affinis micro 0 0505 11 Averrhoites affinis noto 12(5) 0505 13 Averrhoites affinis micro 0 0505 16 Averrhoites affinis micro 12 0505 17 Averrhoites affinis noto 2 0505 18 Averrhoites affinis micro 0 0505 19 Averrhoites affinis micro 13 0505 20 Averrhoites affinis noto 2(7) 0505 21 Averrhoites affinis noto 1,2(5) 0505 22 Averrhoites affinis micro 0 0505 24 Averrhoites affinis micro 0 0505 25 Averrhoites affinis micro 0 0505 26 Averrhoites affinis micro 12(3) 0505 27 Averrhoites affinis micro 12 0505 28 Averrhoites affinis micro 12 0505 29 Averrhoites affinis micro 2,57 0505 30 Averrhoites affinis noto 2(3),46 0505 31 Averrhoites affinis noto 13 0505 32 Averrhoites affinis micro 0 0505 33 Averrhoites affinis micro 1(2) 0505 34 Averrhoites affinis micro 12 0505 35 Averrhoites affinis micro 1 0505 36 Averrhoites affinis noto 2(4),3,12(3),13 0505 37 Averrhoites affinis noto 2(6),4,8 0505 40 Averrhoites affinis micro 2, 12(3) 0505 41 Averrhoites affinis micro 0 0505 43 Averrhoites affinis micro 19 0505 44 Averrhoites affinis micro 0 0505 45 Averrhoites affinis micro 0 0505 46 Averrhoites affinis micro 12,14 0505 47 Averrhoites affinis micro 104 0505 48 Averrhoites affinis noto 0 0505 49 Averrhoites affinis frag 2(2) 0505 50 Averrhoites affinis micro 2(3),12 0505 51 Averrhoites affinis micro 0 0505 52 Averrhoites affinis noto 4,12,27 0505 53 Averrhoites affinis noto 1(3),8 0505 54 Averrhoites affinis noto 0 0505 55 Averrhoites affinis micro 2(3),14 0505 56 Averrhoites affinis micro 12,13 0505 58 Averrhoites affinis micro 46 0505 60 Averrhoites affinis noto 2,3,46 0505 61 Averrhoites affinis micro 1(5),8,16(2) 0505 62 Averrhoites affinis micro 0 0505 64 Averrhoites affinis micro 0 0505 66 Averrhoites affinis frag 46 0505 68 Averrhoites affinis micro 0

394 Elk Creek

0505 69 Averrhoites affinis micro 1(3) 0505 70 Averrhoites affinis micro 2(2) 0505 71 Averrhoites affinis micro 0 0505 72 Averrhoites affinis micro 2,12,14 0505 73 Averrhoites affinis micro 2,12(2) 0505 75 Averrhoites affinis micro 40 0505 76 Averrhoites affinis micro 0 0505 77 Averrhoites affinis noto 2 0505 78 Averrhoites affinis micro 1(2),3, 5 0505 79 Averrhoites affinis micro 2(5) 0505 83 Averrhoites affinis noto 0 0505 84 Averrhoites affinis noto 2(4),27,19 0505 85 Averrhoites affinis micro 40,46 0505 86 Averrhoites affinis micro 0 0505 87 Averrhoites affinis micro 0 0505 88 Averrhoites affinis noto 36,46 0505 90 Averrhoites affinis noto 2(4),12 0505 91 Averrhoites affinis micro 1(2),3,15 0505 92 Averrhoites affinis noto 1(6),3,12 0505 93 Averrhoites affinis micro 12(6),1(2) 0505 94 Averrhoites affinis noto 40 0505 95 Averrhoites affinis micro 12,46 0505 97 Averrhoites affinis micro 2,5 0505 C Averrhoites affinis mega 0 0505 C Averrhoites affinis mega 0 0505 C Averrhoites affinis mega 0 0505 C Averrhoites affinis mega 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0

395 Elk Creek

0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 2(3) 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0

396 Elk Creek

0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 2 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0

397 Elk Creek

0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis mega 0 0505 C Averrhoites affinis noto 0 0505 C Averrhoites affinis micro 0 0505 C Averrhoites affinis micro 0

398 Cool Period

# Plant Species Size DT

LB25 Betulaceae sp. WW030 micro 0 LB26 Betulaceae sp. WW030 micro 0 LB27 Betulaceae sp. WW030 micro 1(2), 3, 5 LB28 Betulaceae sp. WW030 micro 0 LB29 Betulaceae sp. WW030 micro 0 LB30 Betulaceae sp. WW030 micro 0 LB31 Betulaceae sp. WW030 noto 0 LB32 Betulaceae sp. WW030 noto 0 LB33 Betulaceae sp. WW030 noto 2(3) LB11 Cercidiphyllum genetrix noto 16, 46 LB12 Cercidiphyllum genetrix micro 24 LB13 Cercidiphyllum genetrix micro 1(11) LB14 Cercidiphyllum genetrix micro 0 LB15 Cercidiphyllum genetrix micro 0 LB16 Cercidiphyllum genetrix noto 3 LB17 Cercidiphyllum genetrix micro 0 LB18 Cercidiphyllum genetrix micro 3(2) LB19 Cercidiphyllum genetrix micro 24(3), 12(2) LB20 Cercidiphyllum genetrix micro 24(5) LB21 Cercidiphyllum genetrix micro 0 LB22 Cercidiphyllum genetrix micro 0 LB1 Juglandaceae sp. FU740 meso 0 LB2 Juglandaceae sp. FU740 meso 24(3), 5 LB3 Juglandaceae sp. FU740 micro 0 LB4 Juglandaceae sp. FU740 micro 0 LB5 Juglandaceae sp. FU740 micro 0 LB6 Juglandaceae sp. FU740 noto 0 LB7 Juglandaceae sp. FU740 micro 0 LB8 Juglandaceae sp. FU740 micro 0 LB9 Juglandaceae sp. FU740 noto 5(2), 15 LB10 Juglandaceae sp. FU740 meso 0 LB35 Lauraceae sp. WW036 micro 0 LB36 Lauraceae sp. WW036 micro 2 LB23 Macginitiea gracilis meso fungal LB24 Platanus raynoldsi meso 3(2) LB37 Dicot sp. WW033 noto 0 LB38 Dicot sp. WW034 micro 0 LB39 Dicot sp. WW034 micro 0 LB40 Dicot sp. WW034 micro 0 LB41 Dicot sp. WW034 micro 0 LB42 Dicot sp. WW034 micro 0 LB43 Dicot sp. WW034 noto 16 LB44 Dicot sp. WW034 micro 0 LB45 Dicot sp. WW034 micro 0 LB46 Dicot sp. WW034 micro 0 LB47 Dicot sp. WW034 micro 0 LB48 Dicot sp. WW034 noto 0 LB49 Dicot sp. WW034 micro 0 LB50 Dicot sp. WW034 micro 0 LB51 Dicot sp. WW034 micro 0 LB52 Dicot sp. WW034 micro 12 LB53 Dicot sp. WW034 noto 16 LB34 Dicot sp. WW037 micro 1(2), 4, 46 DC1-1 Averrhoites affinis micro 0 DC1-2 Averrhoites affinis micro 3(3)

399 Cool Period

DC1-3 "Dombeya" novi-mundi meso 0 DC1-4 "Dombeya" novi-mundi meso 0 0701-87 Acer silberlingi micro 0 0701-19 Aesculus hickeyi micro 0 0701-30 Aesculus hickeyi nano 0 0701-53 Aesculus hickeyi micro 0 0701-79 Aesculus hickeyi micro 2(6), 46 0701-80 Aesculus hickeyi micro 46 0701-1 "Ampelopsis" acerifolia noto 46, 12 0701-4 "Ampelopsis" acerifolia micro 12 0701-10 "Ampelopsis" acerifolia micro 0 0701-15 "Ampelopsis" acerifolia noto 0 0701-18 "Ampelopsis" acerifolia micro 0 0701-22 "Ampelopsis" acerifolia micro 2(2), 16 0701-26 "Ampelopsis" acerifolia noto 56 0701-32 "Ampelopsis" acerifolia micro 0 0701-51 "Ampelopsis" acerifolia ?25 0701-55 "Ampelopsis" acerifolia micro 2 0701-57 "Ampelopsis" acerifolia meso 46 0701-58 "Ampelopsis" acerifolia meso 0 0701-59 "Ampelopsis" acerifolia noto 0 0701-60 "Ampelopsis" acerifolia meso 0 0701-63 "Ampelopsis" acerifolia meso 0 0701-64 "Ampelopsis" acerifolia micro 12, 16(2) 0701-78 "Ampelopsis" acerifolia noto 4, fungal 0701-81 "Ampelopsis" acerifolia micro 25 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 5 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 2(2) 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia meso 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 1 0701C "Ampelopsis" acerifolia noto 16 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 7 0701C "Ampelopsis" acerifolia micro 16 0701C "Ampelopsis" acerifolia noto 8 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 1(2) 0701C "Ampelopsis" acerifolia meso 3 0701C "Ampelopsis" acerifolia noto 12 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 1 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 1, 16

400 Cool Period

0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia meso 12 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 46 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia micro 8(2) 0701C "Ampelopsis" acerifolia noto 2 0701C "Ampelopsis" acerifolia micro 2 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia meso 0 0701C "Ampelopsis" acerifolia micro 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia noto 0 0701C "Ampelopsis" acerifolia micro 0 0701-2 Hamamelidaceae sp. WW031 meso 0 0701-6 Hamamelidaceae sp. WW031 meso 0 0701-11 Hamamelidaceae sp. WW031 micro 0 0701-13 Hamamelidaceae sp. WW031 micro 0 0701-34 Hamamelidaceae sp. WW031 micro 32(4) 0701-65 Hamamelidaceae sp. WW031 micro 2(2), 16 0701C Hamamelidaceae sp. WW031 meso 0 0701C Hamamelidaceae sp. WW031 noto 3, 5 0701C Hamamelidaceae sp. WW031 micro 16(4) 0701C Hamamelidaceae sp. WW031 noto 0 0701C Hamamelidaceae sp. WW031 meso 0 0701-54 Juglandaceae sp. FU740 micro 0 0701-12 Lauraceae sp. WW036 micro 12, 15 0701-123 Lauraceae sp. WW036 noto 0 0701-16 Lauraceae sp. WW036 micro 0 0701-20 Lauraceae sp. WW036 noto 0 0701-21 Lauraceae sp. WW036 micro 13 0701-24 Lauraceae sp. WW036 micro 1(2) 0701-25 Lauraceae sp. WW036 noto 0 0701-37 Lauraceae sp. WW036 noto 0 0701-38 Lauraceae sp. WW036 noto 0 0701-43 Lauraceae sp. WW036 noto 32 0701-47 Lauraceae sp. WW036 micro 2(3), 3 0701-5 Lauraceae sp. WW036 micro 0 0701-56 Lauraceae sp. WW036 micro 16 0701-72 Lauraceae sp. WW036 micro 0 0701-77 Lauraceae sp. WW036 frag 25(2) 0701-83 Lauraceae sp. WW036 micro 0 0701-90 Lauraceae sp. WW036 meso 3(2) 0701C Lauraceae sp. WW036 noto 2 0701C Lauraceae sp. WW036 micro 0

401 Cool Period

0701C Lauraceae sp. WW036 noto 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 noto 2, 12, 16 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 noto 2(2), 12 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701C Lauraceae sp. WW036 micro 0 0701-27 Dicot sp. WW032 micro 0 0701-52 Dicot sp. WW032 micro 0 0701-76 Dicot sp. WW033 noto 12 0701-29 Dicot sp. WW034 micro 12(2), 13 0701-33 Dicot sp. WW034 micro 0 0701-35 Dicot sp. WW034 micro 2(14) 0701-42 Dicot sp. WW034 micro 0 0701-45 Dicot sp. WW034 micro 0 0701-46 Dicot sp. WW034 micro 0 0701-49 Dicot sp. WW034 micro 12 0701-50 Dicot sp. WW034 micro 12 0701-62 Dicot sp. WW034 micro 0 0701-67 Dicot sp. WW034 micro 0 0701-85 Dicot sp. WW034 noto 16 0701C Dicot sp. WW034 micro 0 0701C Dicot sp. WW034 micro 0 0701C Dicot sp. WW034 micro 0 0701C Dicot sp. WW034 micro 8 0701C Dicot sp. WW034 micro 12 0701C Dicot sp. WW034 micro 3(6) 0701-3 Dicot sp. WW037 noto 0 0701-7 Dicot sp. WW037 noto 0 0701-8 Dicot sp. WW037 noto 0 0701-9 Dicot sp. WW037 noto 0 0701-14 Dicot sp. WW037 noto 0 0701-17 Dicot sp. WW037 micro 2(2) 0701-23 Dicot sp. WW037 micro 2 0701-31 Dicot sp. WW037 meso 0 0701-36 Dicot sp. WW037 frag 12 0701-39 Dicot sp. WW037 meso 3(2) 0701-40 Dicot sp. WW037 meso 0 0701-44 Dicot sp. WW037 noto 0 0701-48 Dicot sp. WW037 noto 0 0701-61 Dicot sp. WW037 noto 0 0701-66 Dicot sp. WW037 noto 165(2), 46 0701-68 Dicot sp. WW037 noto 2(2), 165 0701-69 Dicot sp. WW037 micro 0 0701-70 Dicot sp. WW037 noto fungal 0701-71 Dicot sp. WW037 noto 165(3) 0701-73 Dicot sp. WW037 micro 2, 46 0701-74 Dicot sp. WW037 meso 2(2) 0701-75 Dicot sp. WW037 noto 12 0701-82 Dicot sp. WW037 micro 12(2)

402 Cool Period

0701-86 Dicot sp. WW037 micro 0 0701-88 Dicot sp. WW037 noto 1 0701-89 Dicot sp. WW037 noto 0 0701-91 Dicot sp. WW037 micro 0 0701-92 Dicot sp. WW037 noto fungal 0701C Dicot sp. WW037 noto 3 0701C Dicot sp. WW037 micro 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 2, 3 0701C Dicot sp. WW037 micro 0 0701C Dicot sp. WW037 micro 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 2 0701C Dicot sp. WW037 micro 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 meso 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 meso 32 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 1 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 noto 0 0701C Dicot sp. WW037 meso 2(3) 0701C Dicot sp. WW037 meso 0 0701C Dicot sp. WW037 micro 0 0701C Dicot sp. WW037 noto 0 0701-41 ? Dicot sp. WW037 micro 0 0701-84 ? Dicot sp. WW037 micro 0 0702-2 Alnus sp. micro 2(2), 12(2) 0702-3 Alnus sp. micro 2, 30 0702-7 Alnus sp. micro 3(2) 0702-12 Alnus sp. micro 32(10) 0702-13 Alnus sp. noto 2, 12(3), 15 0702C Alnus sp. micro 0 0702-5 Cercidiphyllum genetrix micro 32 0702-1 "Dombeya" novi-mundi meso 0 0702-10 Hamamelidaceae sp. WW031 macro 2(3), 4, 5, 12, 16 0702-4 Hamamelidaceae sp. WW031 meso 16 0702-8 Hamamelidaceae sp. WW031 noto 0 0702-6 Populus wyomingiana micro 0 0702C Zizyphoides flabella micro 0 0702C Zizyphoides flabella micro 0 0702C Zizyphoides flabella micro 0 0702C Zizyphoides flabella noto 0 0702C Zizyphoides flabella micro 16 0703-1 Averrhoites affinis micro 22 0703-2 Averrhoites affinis micro 0 0703-3 Averrhoites affinis micro 0 0703-4 Averrhoites affinis micro 0 0703-5 Averrhoites affinis micro 5, 12(2), 13 0703-6 Averrhoites affinis micro 0 0703-7 Averrhoites affinis noto 12

403 Cool Period

0703-8 Averrhoites affinis micro 12 0703-9 Averrhoites affinis micro 13 0703-10 Averrhoites affinis micro 2 0703-11 Averrhoites affinis micro 2, 12 0703-13 Averrhoites affinis micro 0 0703-14 Averrhoites affinis micro 0 0703-12 Zizyphoides flabella micro 13 0704-25 Alnus sp. micro 2(4), 5, 63 0704-4 Averrhoites affinis micro 2(29), 5 0704-7 Averrhoites affinis micro 7 0704-9 Averrhoites affinis micro 0 0704-10 Averrhoites affinis micro 0 0704-11 Averrhoites affinis micro 12, 13 0704-16 Averrhoites affinis micro 12, 46 0704-17 Averrhoites affinis micro 12(2) 0704-18 Averrhoites affinis micro 0 0704-20 Averrhoites affinis micro 0 0704-24 Averrhoites affinis micro 0 0704-27 Averrhoites affinis micro 0 0704-34 Averrhoites affinis micro 12(2) 0704-35 Averrhoites affinis micro 12, 14 0704-36 Averrhoites affinis micro 16(3) 0704-37 Averrhoites affinis micro 12(2) 0704-38 Averrhoites affinis micro 12 0704-49 Averrhoites affinis micro 46 0704-50 Averrhoites affinis micro 12(5), 19 0704-51 Averrhoites affinis micro 2(5), 16(5) 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 12 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis nano 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 1(6) 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 12 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 12 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 12 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis micro 0 0704C Averrhoites affinis noto 0 0704-1 "Dombeya" novi-mundi noto 1 0704-13 "Dombeya" novi-mundi micro 0 0704-14 "Dombeya" novi-mundi micro 0 0704-15 "Dombeya" novi-mundi micro 5, 13, 63

404 Cool Period

0704-16 "Dombeya" novi-mundi meso 2(2) 0704-2 "Dombeya" novi-mundi noto 0 0704-21 "Dombeya" novi-mundi meso 164 0704-22 "Dombeya" novi-mundi meso 164 0704-23 "Dombeya" novi-mundi meso 164 0704-26 "Dombeya" novi-mundi meso 164 0704-28 "Dombeya" novi-mundi meso 2(5) 0704-29 "Dombeya" novi-mundi meso 2,12,57(2),164 0704-3 "Dombeya" novi-mundi noto 0 0704-30 "Dombeya" novi-mundi micro 0 0704-31 "Dombeya" novi-mundi meso 46 0704-32 "Dombeya" novi-mundi frag 3(12), 16, 164 0704-33 "Dombeya" novi-mundi frag 164 0704-39 "Dombeya" novi-mundi meso 2, 164 0704-40 "Dombeya" novi-mundi meso 2(3) 0704-41 "Dombeya" novi-mundi meso 0 0704-42 "Dombeya" novi-mundi meso 0 0704-43 "Dombeya" novi-mundi meso 164 0704-44 "Dombeya" novi-mundi noto 2(7) 0704-45 "Dombeya" novi-mundi frag 164 0704-46 "Dombeya" novi-mundi noto 2(2) 0704-47 "Dombeya" novi-mundi frag 164 0704-48 "Dombeya" novi-mundi meso 2(9), 12(2) 0704-5 "Dombeya" novi-mundi meso 2(3), 3, 46 0704-52 "Dombeya" novi-mundi frag 164 0704-6 "Dombeya" novi-mundi meso 12 0704-8 "Dombeya" novi-mundi meso 2 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 4, 7 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 2,3 0704C "Dombeya" novi-mundi meso 12 0704C "Dombeya" novi-mundi meso 2(3), 3, 12 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 2(2) 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 1(5) 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 2(7), 12(2) 0704C "Dombeya" novi-mundi meso 2, 12 0704C "Dombeya" novi-mundi meso 2(2), 5(2) 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 4(2) 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 1(5) 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 0

405 Cool Period

0704C "Dombeya" novi-mundi macro 2 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 2(3) 0704C "Dombeya" novi-mundi macro 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 1(3) 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 2(4) 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 2, 12 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 4(2) 0704C "Dombeya" novi-mundi macro 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi meso 4 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 2(2) 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0704C "Dombeya" novi-mundi noto 2(2), 3 0704C "Dombeya" novi-mundi noto 0 0704C "Dombeya" novi-mundi meso 0 0705-1 Averrhoites affinis micro 16 0705-2 Averrhoites affinis micro fungal 0705-3 Averrhoites affinis micro 12 0705-4 Averrhoites affinis micro fungal 0705-5 Averrhoites affinis nano 16(2) 0705-6 Averrhoites affinis noto 12 0705-7 Averrhoites affinis micro 12(3) 0705-8 Averrhoites affinis micro 2 0705-9 Averrhoites affinis micro 12(3) 0705-10 Averrhoites affinis micro 3 0705-11 Averrhoites affinis micro fungal 0705-12 Averrhoites affinis micro fungal 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis nano 0 0705C Averrhoites affinis noto 0 0705C Averrhoites affinis noto 12(2), 1 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 3(2) 0705C Averrhoites affinis micro 2 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0

406 Cool Period

0705C Averrhoites affinis micro 1 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis noto 0 0705C Averrhoites affinis micro 4, 12(3) 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 2 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis noto 0 0705C Averrhoites affinis micro 1(4) 0705C Averrhoites affinis micro 12(2) 0705C Averrhoites affinis micro 3 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 12 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis noto 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 2(2) 0705C Averrhoites affinis micro 12(2) 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 12 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 12 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis noto 0 0705C Averrhoites affinis micro 0 0705C Averrhoites affinis micro 0

407 PN

Site # Plant Species Size DT

0601 32 Betulaceae sp. WW038 noto 5 0601 3 Fabaceae sp. WW040 nano 0 0601 31 Fabaceae sp. WW040 micro 12(3), 46 0601 1 Macginitiea gracilis macro 4 0601 2 Macginitiea gracilis macro 0 0601 5 Macginitiea gracilis noto 0 0601 6 Macginitiea gracilis meso 0 0601 7 Macginitiea gracilis meso 0 0601 8 Macginitiea gracilis meso 0 0601 9 Macginitiea gracilis macro 2(2), 3(6) 0601 10 Macginitiea gracilis meso 0 0601 11 Macginitiea gracilis macro 16 0601 13 Macginitiea gracilis meso 0 0601 14 Macginitiea gracilis meso 0 0601 16 Macginitiea gracilis meso 46 0601 17 Macginitiea gracilis meso 46 0601 18 Macginitiea gracilis meso 0 0601 20 Macginitiea gracilis meso 3,16 0601 21 Macginitiea gracilis meso 2(2) 0601 22 Macginitiea gracilis meso 0 0601 24 Macginitiea gracilis macro 0 0601 25 Macginitiea gracilis macro 0 0601 26 Macginitiea gracilis meso 5 0601 28 Macginitiea gracilis noto 16 0601 29 Macginitiea gracilis meso 0 0601 30 Macginitiea gracilis noto 5(2), 12, 3 0601 33 Macginitiea gracilis micro 0 0601 34 Macginitiea gracilis meso 49(2) 0601 36 Macginitiea gracilis meso 46 0601 37 Macginitiea gracilis meso 0 0601 111 Macginitiea gracilis noto 0 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis meso 5 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 1(2),2(3) 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis macro 8,16 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis noto 2 0601 C Macginitiea gracilis meso 14 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 1(12) 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis noto 1 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 3(7),2 0601 C Macginitiea gracilis macro 2,29 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis meso 3(2),12 0601 C Macginitiea gracilis macro 0

408 PN

0601 C Macginitiea gracilis macro 2(2) 0601 C Macginitiea gracilis meso 3(2) 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis meso 2 0601 C Macginitiea gracilis meso 2 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis macro 1,2 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis macro 1(2),2 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 16(4) 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis macro 1(5) 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 2(2),4 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis meso 2(2) 0601 C Macginitiea gracilis meso 0 0601 C Macginitiea gracilis noto 0 0601 C Macginitiea gracilis macro 0 0601 C Macginitiea gracilis macro 0 0601 4 Platanus guillelmae frag 0 0601 19 Platanus guillelmae micro 0 0601 27 "Populus " wyomingiana frag 0 0601 35 Dicot sp. WW047 micro 80(25) 0602 126 Betulaceae sp. WW038 meso 2 0602 153 Betulaceae sp. WW038 meso 0 0602 5 Fabaceae sp. WW040 nano 0 0602 11 Fabaceae sp. WW040 micro 12 0602 12 Fabaceae sp. WW040 nano 2, 12, 13 0602 13 Fabaceae sp. WW040 nano 0 0602 15 Fabaceae sp. WW040 micro 0 0602 16 Fabaceae sp. WW040 nano 12 0602 17 Fabaceae sp. WW040 micro 0 0602 18 Fabaceae sp. WW040 micro 12(2) 0602 20 Fabaceae sp. WW040 micro 12(10) 0602 21 Fabaceae sp. WW040 micro 2, 12(4) 0602 28 Fabaceae sp. WW040 micro 12 0602 29 Fabaceae sp. WW040 nano 12 0602 30 Fabaceae sp. WW040 micro 0 0602 31 Fabaceae sp. WW040 micro 2(3), 12(6) 0602 34 Fabaceae sp. WW040 micro 12(7), 13 0602 36 Fabaceae sp. WW040 micro 2(2), 3 0602 38 Fabaceae sp. WW040 micro 2, 12(18) 0602 42 Fabaceae sp. WW040 micro 0

409 PN

0602 44 Fabaceae sp. WW040 micro 1(5) 0602 53 Fabaceae sp. WW040 micro 3, 12 0602 55 Fabaceae sp. WW040 micro 0 0602 63 Fabaceae sp. WW040 micro 0 0602 73 Fabaceae sp. WW040 micro 2, 12(9) 0602 80 Fabaceae sp. WW040 micro 1, 2, 12(17) 0602 82 Fabaceae sp. WW040 micro 3, 12(5) 0602 84 Fabaceae sp. WW040 micro 0 0602 85 Fabaceae sp. WW040 micro 0 0602 91 Fabaceae sp. WW040 micro 12 0602 101 Fabaceae sp. WW040 nano 12(2) 0602 102 Fabaceae sp. WW040 micro 12(2) 0602 113 Fabaceae sp. WW040 micro 3(3), 12(8) 0602 116 Fabaceae sp. WW040 micro 12(3), 32 0602 117 Fabaceae sp. WW040 micro 2 0602 121 Fabaceae sp. WW040 micro 0 0602 122 Fabaceae sp. WW040 micro 13 0602 C Fabaceae sp. WW040 micro 12(3) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 nano 0 0602 C Fabaceae sp. WW040 nano 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 2,12 0602 C Fabaceae sp. WW040 micro 12(5) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 nano 12,13 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 nano 0 0602 C Fabaceae sp. WW040 micro 2 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 nano 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 nano 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 12(2),2(6) 0602 C Fabaceae sp. WW040 micro 2,12(2)

410 PN

0602 C Fabaceae sp. WW040 micro 13 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 2(2),12(2) 0602 C Fabaceae sp. WW040 nano 2(2),12 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(3) 0602 C Fabaceae sp. WW040 micro 2,12(8) 0602 C Fabaceae sp. WW040 nano 0 0602 C Fabaceae sp. WW040 nano 0 0602 C Fabaceae sp. WW040 micro 12(3) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 2,12(2) 0602 C Fabaceae sp. WW040 micro 12(8) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 nano 12 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(3),13,14 0602 C Fabaceae sp. WW040 micro 12(3) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 12(3) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 1(5),12(2) 0602 C Fabaceae sp. WW040 micro 12(3),27,12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 5 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 2,12(3) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 2(4)

411 PN

0602 C Fabaceae sp. WW040 micro 2,12 0602 C Fabaceae sp. WW040 micro 12(2),27,2 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 1(2) 0602 C Fabaceae sp. WW040 micro 2,12(2) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(4) 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(2) 0602 C Fabaceae sp. WW040 micro 2(2) 0602 C Fabaceae sp. WW040 micro 12(8) 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12 0602 C Fabaceae sp. WW040 micro 0 0602 C Fabaceae sp. WW040 micro 12(4) 0602 C Fabaceae sp. WW040 micro 12(2) 0602 70 Fabaceae sp. WW041 micro 3 0602 75 Fabaceae sp. WW041 micro 0 0602 7 Fabaceae sp. WW042 nano 12 0602 23 Fabaceae sp. WW042 micro 0 0602 24 Fabaceae sp. WW042 nano 12(2) 0602 26 Fabaceae sp. WW042 nano 12(4) 0602 94 Fabaceae sp. WW042 micro 12(2) 0602 133 Fabaceae sp. WW042 nano 2, 12(9), 32(10) 0602 134 Fabaceae sp. WW042 nano 2, 12(2), 32(6) 0602 137 Fabaceae sp. WW042 micro 0 0602 138 Fabaceae sp. WW042 micro 0 0602 139 Fabaceae sp. WW042 micro 0 0602 140 Fabaceae sp. WW042 micro 0 0602 141 Fabaceae sp. WW042 micro 0 0602 142 Fabaceae sp. WW042 micro 0 0602 143 Fabaceae sp. WW042 micro 0 0602 144 Fabaceae sp. WW042 micro 0 0602 145 Fabaceae sp. WW042 micro 0 0602 1 Macginitiea gracilis meso 0 0602 2 Macginitiea gracilis macro 0 0602 3 Macginitiea gracilis micro 0 0602 4 Macginitiea gracilis macro 5(2) 0602 19 Macginitiea gracilis macro 16(2), 61 0602 22 Macginitiea gracilis meso 34(~100) 0602 27 Macginitiea gracilis micro 1(2) 0602 33 Macginitiea gracilis meso 0 0602 37 Macginitiea gracilis nano 13 0602 39 Macginitiea gracilis macro 4(3), 57(11) 0602 40 Macginitiea gracilis meso 4(4) 0602 41 Macginitiea gracilis macro 63 0602 47 Macginitiea gracilis meso 0 0602 48 Macginitiea gracilis macro 2(3), 5(2) 0602 49 Macginitiea gracilis macro 16 0602 50 Macginitiea gracilis meso 15 0602 54 Macginitiea gracilis meso 0 0602 56 Macginitiea gracilis meso 16(3)

412 PN

0602 57 Macginitiea gracilis meso 16 0602 58 Macginitiea gracilis meso 4, 16(4) 0602 65 Macginitiea gracilis meso 0 0602 66 Macginitiea gracilis meso 0 0602 67 Macginitiea gracilis macro 16, 44 0602 68 Macginitiea gracilis macro 16(2) 0602 72 Macginitiea gracilis macro 2(2), 16(3) 0602 76 Macginitiea gracilis meso 0 0602 81 Macginitiea gracilis meso 46 0602 87 Macginitiea gracilis meso 16 0602 89 Macginitiea gracilis meso 16(2) 0602 90 Macginitiea gracilis meso 19(2) 0602 92 Macginitiea gracilis noto 0 0602 93 Macginitiea gracilis meso 0 0602 95 Macginitiea gracilis meso 61(2) 0602 96 Macginitiea gracilis meso 1(2), 2(2), 46 0602 97 Macginitiea gracilis meso 34 0602 98 Macginitiea gracilis noto 3(2), 13, 16 0602 99 Macginitiea gracilis meso 3(2), 5(3), 12, 15 0602 100 Macginitiea gracilis noto 5(2) 0602 107 Macginitiea gracilis macro 57(13), 16(2) 0602 108 Macginitiea gracilis meso 16 0602 111 Macginitiea gracilis macro 0 0602 112 Macginitiea gracilis meso 1, 16(2) 0602 114 Macginitiea gracilis meso 5(3) 0602 115 Macginitiea gracilis meso 16 0602 119 Macginitiea gracilis noto 46 0602 123 Macginitiea gracilis macro 0 0602 124 Macginitiea gracilis micro 0 0602 127 Macginitiea gracilis meso 49 0602 128 Macginitiea gracilis meso 4(12), 2 0602 129 Macginitiea gracilis meso 0 0602 131 Macginitiea gracilis micro 0 0602 135 Macginitiea gracilis micro 0 0602 146 Macginitiea gracilis meso 19 0602 147 Macginitiea gracilis meso 16 0602 149 Macginitiea gracilis meso 16, 20 0602 150 Macginitiea gracilis noto 13 0602 154 Macginitiea gracilis noto 0 0602 156 Macginitiea gracilis meso 5,12 0602 C Macginitiea gracilis meso 2(2),3 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 4 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 2(5),5(3) 0602 C Macginitiea gracilis meso 2(3),4 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 2(3) 0602 C Macginitiea gracilis macro 2(2),16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 0

413 PN

0602 C Macginitiea gracilis meso 2 0602 C Macginitiea gracilis macro 4(2),5 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 2,3 0602 C Macginitiea gracilis macro 2(2),15 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 3,7 0602 C Macginitiea gracilis macro 2(4) 0602 C Macginitiea gracilis macro 4(4) 0602 C Macginitiea gracilis macro 2(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 2,27 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 1,2(12),7,16(2) 0602 C Macginitiea gracilis meso 12 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 1,2(5) 0602 C Macginitiea gracilis macro 2 0602 C Macginitiea gracilis meso 1(2),2,5 0602 C Macginitiea gracilis macro 4(4),5 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 2,5 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 2(2) 0602 C Macginitiea gracilis macro 1(4),2(3),14 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 3(2) 0602 C Macginitiea gracilis noto 4 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 1(3),2 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 16(4) 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 2 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 3,16 0602 C Macginitiea gracilis meso 7(2) 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis noto 16(3) 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 3(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 13,15 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 1(3),12 0602 C Macginitiea gracilis macro 1(2),4 0602 C Macginitiea gracilis meso 16

414 PN

0602 C Macginitiea gracilis meso 2(2) 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis macro 1(4),16(3) 0602 C Macginitiea gracilis noto 1,2(2) 0602 C Macginitiea gracilis macro 2(2),3 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 1(2),2,3 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 12(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 2,3,5 0602 C Macginitiea gracilis macro 16(2) 0602 C Macginitiea gracilis macro 2(6) 0602 C Macginitiea gracilis macro 1(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis nano 5(2) 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 3,5,16 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 3 0602 C Macginitiea gracilis meso 2,3,15,16(3) 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 3 0602 C Macginitiea gracilis meso 16(2) 0602 C Macginitiea gracilis macro 1,2(2),16(2) 0602 C Macginitiea gracilis macro 12,5 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 4 0602 C Macginitiea gracilis macro 3,15,16 0602 C Macginitiea gracilis macro 1(2) 0602 C Macginitiea gracilis macro 1 0602 C Macginitiea gracilis meso ?46 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 2(4),3(2) 0602 C Macginitiea gracilis meso 27 0602 C Macginitiea gracilis meso 1(4),3,5,16(5) 0602 C Macginitiea gracilis macro 16(2), 61 0602 C Macginitiea gracilis meso 16(3) 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis macro 2,3 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 12 0602 C Macginitiea gracilis micro 0

415 PN

0602 C Macginitiea gracilis noto 13 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 3(3) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 5(2), 16 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 2, 61(3) 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis meso 1(3),8(3),16,29 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 1(2),16(2) 0602 C Macginitiea gracilis macro 4(3),14,16 0602 C Macginitiea gracilis meso 2(3),3(2),5 0602 C Macginitiea gracilis meso 2(4),3 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 2,4 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 4,12 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 1(4),12(4) 0602 C Macginitiea gracilis meso 16(3) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 46 0602 C Macginitiea gracilis meso 3,16 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 3,7,12(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 2 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 1,5,16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis meso 2,5,16 0602 C Macginitiea gracilis meso 2(4),5,7 0602 C Macginitiea gracilis macro 2 0602 C Macginitiea gracilis noto 5,16,16(2) 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis meso 3 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 16(4) 0602 C Macginitiea gracilis meso 0

416 PN

0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 16(2) 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis noto 4 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 56 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis noto 4,8 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 12 0602 C Macginitiea gracilis macro 1,3,4 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis macro 16(3) 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 2(3) 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 1(2),3(3) 0602 C Macginitiea gracilis micro 3(2) 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 3 0602 C Macginitiea gracilis meso 4(2),12 0602 C Macginitiea gracilis meso 12 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 4 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 3,16 0602 C Macginitiea gracilis meso 1(3) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 4 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis meso 2(2) 0602 C Macginitiea gracilis meso 56 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis macro 16(2), 16(2) 0602 C Macginitiea gracilis macro 16 0602 C Macginitiea gracilis micro 0 0602 C Macginitiea gracilis macro 16(2) 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis macro 2,4 0602 C Macginitiea gracilis meso 16(3) 0602 C Macginitiea gracilis noto 12,4(2),3,2(3) 0602 C Macginitiea gracilis meso 2(2) 0602 C Macginitiea gracilis macro 0 0602 C Macginitiea gracilis noto 0

417 PN

0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 2 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 2(2) 0602 C Macginitiea gracilis macro 2(10),3(2),16 0602 C Macginitiea gracilis meso 2(2),16 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 5 0602 C Macginitiea gracilis macro 1(10),7,16(5) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 4 0602 C Macginitiea gracilis macro 4(3),5(3),1(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 16(13),1 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 3 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis meso 16 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 2(2) 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis macro 4(3),5 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis meso 2(4) 0602 C Macginitiea gracilis noto 16 0602 C Macginitiea gracilis meso 5 0602 C Macginitiea gracilis noto 0 0602 C Macginitiea gracilis micro 2(7),13 0602 C Macginitiea gracilis macro 16(3) 0602 C Macginitiea gracilis meso 5(2) 0602 C Macginitiea gracilis meso 0 0602 C Macginitiea gracilis noto 2(2) 0602 C Macginitiea gracilis noto 16(4) 0602 C Macginitiea gracilis macro 16 0602 10 Machaerium sp. micro 3 0602 35 Machaerium sp. micro 0 0602 43 Machaerium sp. micro 0 0602 51 Machaerium sp. micro 0 0602 61 Machaerium sp. micro 0 0602 62 Machaerium sp. micro 0 0602 64 Machaerium sp. micro 14(2) 0602 88 Machaerium sp. micro 16

418 PN

0602 103 Machaerium sp. micro 0 0602 109 Machaerium sp. micro 46 0602 110 Machaerium sp. micro 0 0602 120 Machaerium sp. micro 0 0602 132 Machaerium sp. micro 0 0602 148 Machaerium sp. micro 12(2) 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 2 0602 C Machaerium sp. micro 12 0602 C Machaerium sp. micro 2 0602 C Machaerium sp. micro 12 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 15 0602 C Machaerium sp. micro 2(2) 0602 C Machaerium sp. micro 2(2) 0602 C Machaerium sp. micro 12 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 12,27 0602 C Machaerium sp. micro 12,15 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 1(3) 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 1 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 12(2) 0602 C Machaerium sp. micro 0 0602 C Machaerium sp. micro 2(2) 0602 6 Platanus guillelmae frag 4(2) 0602 45 Platanus guillelmae meso 12(7) 0602 46 Platanus guillelmae frag 12(4) 0602 69 Platanus guillelmae macro 0 0602 71 Platanus guillelmae macro 0 0602 78 Platanus guillelmae noto 0 0602 136 Platanus guillelmae meso 1(37), 2(4), 3(5), 12, 13 0602 152 Platanus guillelmae micro 0 0602 155 Platanus guillelmae micro 0 0602 C Platanus guillelmae micro 1(3) 0602 C Platanus guillelmae macro 0 0602 C Platanus guillelmae meso 5 0602 C Platanus guillelmae meso 0 0602 C Platanus guillelmae meso 3,16(3) 0602 C Platanus guillelmae meso 16(3) near base 0602 C Platanus guillelmae meso 0 0602 C Platanus guillelmae meso 0 0602 52 Populus wyomingiana noto 0 0602 59 Populus wyomingiana noto 0 0602 74 Populus wyomingiana meso 1(2), 3(2) 0602 104 Populus wyomingiana meso 1(5), 2, 20 0602 105 Populus wyomingiana meso 1(3), 5, 7, 163(3), 154(3) 0602 151 Populus wyomingiana meso 0

419 PN

0602 157 Populus wyomingiana frag 32(8) 0602 158 Populus wyomingiana meso 3(2), 163(17) 0602 C Populus wyomingiana noto 5 0602 159 Dicot sp. WW039 meso 0 0602 118 Dicot sp. WW043 micro 29(4) 0602 60 Dicot sp. WW044 micro 0 0602 86 Dicot sp. WW045 noto 0 0602 125 Dicot sp. WW046 micro 0 0602 25 Dicot sp. WW047 micro 0 0602 83 Dicot sp. WW047 noto 4, 16 0602 130 Dicot sp. WW047 noto 0

420 15 Mile Creek

Site # Plant Species Size DT

0603 2 Aleurites fremontensis micro 29 0603 19 Aleurites fremontensis noto 0 0603 91 Aleurites fremontensis noto 12(3) 0603 92 Aleurites fremontensis meso 46 0603 93 Aleurites fremontensis frag 2 0603 141 Aleurites fremontensis noto 1(8),2,3,14 0603 38 Allophylus flexifolia micro 40 0603 1 Alnus sp. noto 12,15,16(2) 0603 7 Alnus sp. micro 16,46 0603 9 Alnus sp. noto 2(2),61(3) 0603 10 Alnus sp. noto 0 0603 12 Alnus sp. noto 16(2) 0603 15 Alnus sp. micro 12(2) 0603 20 Alnus sp. micro 46 0603 21 Alnus sp. micro 46 0603 23 Alnus sp. micro 16 0603 27 Alnus sp. micro 40 0603 29 Alnus sp. noto 12(2) 0603 30 Alnus sp. micro 12,29(2) 0603 35 Alnus sp. micro 1,16(2) 0603 39 Alnus sp. micro 0 0603 40 Alnus sp. micro 3(2),12 0603 41 Alnus sp. noto 0 0603 43 Alnus sp. noto 16 0603 48 Alnus sp. noto 3,12,14 0603 50 Alnus sp. meso 36 0603 52 Alnus sp. noto 1(2),12(4),16(7), 40,46 0603 53 Alnus sp. noto 0 0603 64 Alnus sp. micro 12 0603 66 Alnus sp. noto 1(2),2 0603 71 Alnus sp. micro 32(3) 0603 73 Alnus sp. noto 1(3),3(5),5,42,46 0603 74 Alnus sp. noto 12,46 0603 75 Alnus sp. micro 1,12,16,41,46 0603 76 Alnus sp. micro 5,16(2) 0603 78 Alnus sp. micro 1(3),3(2) 0603 79 Alnus sp. micro 0 0603 82 Alnus sp. micro 3 0603 83 Alnus sp. micro 81 0603 90 Alnus sp. noto 40,46 0603 100 Alnus sp. micro 91 0603 102 Alnus sp. micro 19,46 0603 103 Alnus sp. noto 1,3(3),12,40,46 0603 104 Alnus sp. micro 2(2),46 0603 105 Alnus sp. micro 12(3),40 0603 107 Alnus sp. noto 40(2) 0603 114 Alnus sp. noto 2(12),3(2),12(2),103 0603 118 Alnus sp. meso 12(7) 0603 120 Alnus sp. micro 1(12),2,12,46 0603 126 Alnus sp. micro 2 0603 133 Alnus sp. micro 12(2) 0603 140 Alnus sp. noto 29(4),32(~100) 0603 143 Alnus sp. micro 40 0603 145 Alnus sp. noto 12(2) 0603 148 Alnus sp. micro 40 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 16(6)

421 15 Mile Creek

0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 12 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 12,15 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 29 0603 C Alnus sp. micro 2,29 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 1(6) 0603 C Alnus sp. micro 12 0603 C Alnus sp. noto 2(2),3 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 12,2 0603 C Alnus sp. micro 2,3,8 0603 C Alnus sp. noto 1(11) 0603 C Alnus sp. micro 1,2(2),4 0603 C Alnus sp. noto 1(12),46 0603 C Alnus sp. noto 15 0603 C Alnus sp. noto 12(4),15 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 1(3),2(3) 0603 C Alnus sp. noto 2,16 0603 C Alnus sp. micro 12(2),16(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3,5 0603 C Alnus sp. noto 12(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3(4),16(4) 0603 C Alnus sp. micro 1,12 0603 C Alnus sp. micro 2(2),3(2) 0603 C Alnus sp. micro 12,46 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 12 0603 C Alnus sp. micro 2(2),16 0603 C Alnus sp. noto 2(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3,12 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 1 0603 C Alnus sp. micro 3(2),16(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. nano 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 14 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 16 0603 C Alnus sp. micro 8 0603 C Alnus sp. noto 46 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 46 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 16(3),5

422 15 Mile Creek

0603 C Alnus sp. micro 29(2) 0603 C Alnus sp. micro 12 0603 C Alnus sp. micro 12 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 46 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 12 0603 C Alnus sp. noto 2 0603 C Alnus sp. noto 2,29,46 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 12 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 16(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 12(2),2(2),3 0603 C Alnus sp. micro 2(5) 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 2 0603 C Alnus sp. noto 16 0603 C Alnus sp. noto 3 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 46,2,8 0603 C Alnus sp. micro 46 0603 C Alnus sp. noto 2(2) 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 78 0603 C Alnus sp. noto 12(4),3,46 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 1 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 2(2) 0603 C Alnus sp. micro 1(3),2,8 0603 C Alnus sp. noto 2 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 16(3),79 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 12,16 0603 C Alnus sp. micro 1,3(2),5,20 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 1(4),3(2),5(3) 0603 C Alnus sp. micro 3(3) 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 2,3(2),14 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 2(2),3(2) 0603 C Alnus sp. micro 3,46 0603 C Alnus sp. micro 16 0603 C Alnus sp. noto 3(3) 0603 C Alnus sp. noto 5,2(3),3,12,46 0603 C Alnus sp. micro 2(3),16 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 46 0603 C Alnus sp. noto 12

423 15 Mile Creek

0603 C Alnus sp. noto 0 0603 C Alnus sp. nano 0 0603 C Alnus sp. noto 5,12 0603 C Alnus sp. micro 57 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 3 0603 C Alnus sp. micro 3(2),15 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 12 0603 C Alnus sp. noto 16(5) 0603 C Alnus sp. micro 2(4) 0603 C Alnus sp. meso 3(3),16 0603 C Alnus sp. micro 12(2) 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 12(3),2,3(2) 0603 C Alnus sp. micro 2 0603 C Alnus sp. micro 3 0603 C Alnus sp. noto 12(2) 0603 C Alnus sp. noto 46 0603 C Alnus sp. noto 57(2) 0603 C Alnus sp. noto 2 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. nano 0 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 12(2),2 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 46 0603 C Alnus sp. micro 1(4) 0603 C Alnus sp. noto 12(2) 0603 C Alnus sp. micro 57 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 46 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 34 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3,46 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 3,12 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 29 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 2(3),1(7),16(4) 0603 C Alnus sp. micro 12 0603 C Alnus sp. micro 2(5),12,14 0603 C Alnus sp. meso 0 0603 C Alnus sp. micro 0 0603 C Alnus sp. nano 16 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 1,12(2) 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 2,12 0603 C Alnus sp. micro 2(2) 0603 C Alnus sp. noto 1,2(2)

424 15 Mile Creek

0603 C Alnus sp. micro 16 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 1(2),2 0603 C Alnus sp. micro 12,46 0603 C Alnus sp. nano 12 0603 C Alnus sp. micro 0 0603 C Alnus sp. micro 4,2 0603 C Alnus sp. micro 16(2) 0603 C Alnus sp. noto 0 0603 C Alnus sp. noto 12,32(3) 0603 C Alnus sp. micro 12,2(2) 0603 C Alnus sp. micro 0 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 2,46 0603 C Alnus sp. noto 0 0603 C Alnus sp. micro 2,12(2),16 0603 C Alnus sp. micro 2,46 0603 C Alnus sp. noto 12 0603 C Alnus sp. noto 2(2),3 0603 C Alnus sp. micro 1(3),3 0603 C Alnus sp. noto 1,5 0603 C Alnus sp. noto 12 0603 C Alnus sp. noto 0 0603 C Apocynaceae sp. WW051 noto 1,3 0603 134 Apocynaceae sp. WW051 micro 0 0603 C Averrhoites affinis micro 2,16 0603 84 Chaetoptelea microphylla micro 0 0603 117 Chaetoptelea microphylla micro 0 0603 119 Chaetoptelea microphylla noto 46 0603 132 Chaetoptelea microphylla frag 0 0603 77 Cornus hyperborea micro 5,46 0603 4 "Dombeya " novi-mundi noto 16(3) 0603 24 "Dombeya " novi-mundi meso 2(2),3 0603 37 "Dombeya " novi-mundi meso 2 0603 49 "Dombeya " novi-mundi micro 0 0603 59 "Dombeya " novi-mundi meso 1(3),2(2)3,4(2),5 0603 60 "Dombeya " novi-mundi meso 5,12,25(2) 0603 70 "Dombeya " novi-mundi micro 0 0603 101 "Dombeya " novi-mundi noto 1(5),2(9),3,5(3),12(2),16(4) 0603 108 "Dombeya " novi-mundi noto 40 0603 109 "Dombeya " novi-mundi meso 1,2(2),3(2)8,32(6),46 0603 111 "Dombeya " novi-mundi noto 2,5 0603 130 "Dombeya " novi-mundi micro 0 0603 135 "Dombeya " novi-mundi micro 0 0603 C "Dombeya " novi-mundi nano 0 0603 C "Dombeya " novi-mundi noto 12 0603 C "Dombeya " novi-mundi meso 2(2) 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi noto 3 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi noto 3 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi meso 2,12 0603 C "Dombeya " novi-mundi noto 3 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi noto 2,57

425 15 Mile Creek

0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi meso 16 0603 C "Dombeya " novi-mundi micro 0 0603 C "Dombeya " novi-mundi nano 0 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi noto 16 0603 C "Dombeya " novi-mundi micro 2(2) 0603 C "Dombeya " novi-mundi noto 2,4(2) 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi micro 0 0603 C "Dombeya " novi-mundi noto 5 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi noto 29 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi meso 2,4 0603 C "Dombeya " novi-mundi micro 0 0603 C "Dombeya " novi-mundi meso 0 0603 C "Dombeya " novi-mundi noto 12 0603 C "Dombeya " novi-mundi noto 12 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi noto 4(2),12 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi meso 16(2) 0603 C "Dombeya " novi-mundi meso 16(3),12 0603 C "Dombeya " novi-mundi noto 2,3 0603 C "Dombeya " novi-mundi noto 2(3),4 0603 C "Dombeya " novi-mundi meso 5(3),2(7),3 0603 C "Dombeya " novi-mundi noto 2(2) 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi micro 2,16(2) 0603 C "Dombeya " novi-mundi noto 0 0603 C "Dombeya " novi-mundi micro 2(2) 0603 8 Lauraceae sp. WW054 noto 0 0603 86 Lauraceae sp. WW054 - 5,40 0603 13 Lauraceae sp. WW059 noto 0 0603 147 Lauraceae sp. WW059 micro 13 0603 97 Lauraceae sp. WW059 meso 0 0603 17 Lauraceae sp. WW061 micro 3,12(2) 0603 25 Lauraceae sp. WW061 micro 82 0603 26 Lauraceae sp. WW061 micro 2,82 0603 31 Lauraceae sp. WW061 3,32 0603 36 Lauraceae sp. WW061 micro 0 0603 72 Lauraceae sp. WW061 noto 0 0603 80 Lauraceae sp. WW061 noto 3,30 0603 94 Lauraceae sp. WW061 noto 30(24) 0603 106 Lauraceae sp. WW061 micro 12,46 0603 113 Lauraceae sp. WW061 noto 12,30(8) 0603 125 Lauraceae sp. WW061 micro 0 0603 131 Lauraceae sp. WW061 noto 32(16),33,34(13) 0603 137 Lauraceae sp. WW061 noto 1(2) 0603 142 Lauraceae sp. WW061 noto 3,4,12 0603 144 Luehea newberryana frag 151 0603 28 Platycarya castaneopsis noto 0 0603 42 Platycarya castaneopsis micro 17(5) 0603 51 Platycarya castaneopsis noto 0 0603 54 Platycarya castaneopsis 0 0603 67 Platycarya castaneopsis micro 0 0603 88 Platycarya castaneopsis micro 0

426 15 Mile Creek

0603 89 Platycarya castaneopsis noto 12(2),46 0603 115 Platycarya castaneopsis micro 0 0603 116 Platycarya castaneopsis micro 1(6),16(4) 0603 124 Platycarya castaneopsis noto 46 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 7 0603 C Platycarya castaneopsis micro 1(4),2(2),3,27 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 12 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 2 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 29 0603 C Platycarya castaneopsis micro 7 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 16 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 12 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 1,2,3 0603 C Platycarya castaneopsis noto 15 0603 C Platycarya castaneopsis noto 16 0603 C Platycarya castaneopsis noto 16(2) 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 12(2) 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis noto 16 0603 C Platycarya castaneopsis noto 12 0603 C Platycarya castaneopsis micro 12 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 12 0603 C Platycarya castaneopsis meso 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 4(3) 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis micro 2 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 2 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 16(2) 0603 C Platycarya castaneopsis micro 2(3) 0603 C Platycarya castaneopsis noto 0 0603 C Platycarya castaneopsis micro 0 0603 C Platycarya castaneopsis micro 2(3) 0603 C Platycarya castaneopsis micro 2

427 15 Mile Creek

0603 C Platycarya castaneopsis micro 0 0603 3 Populus wyomingiana frag 16(2),46,90 0603 22 Populus wyomingiana noto 0 0603 33 Populus wyomingiana noto 0 0603 44 Populus wyomingiana noto 0 0603 56 Populus wyomingiana noto 20 0603 57 Populus wyomingiana noto 0 0603 58 Populus wyomingiana micro 0 0603 62 Populus wyomingiana micro 0 0603 63 Populus wyomingiana micro 0 0603 81 Populus wyomingiana micro 16(3) 0603 85 Populus wyomingiana meso 0 0603 96 Populus wyomingiana noto 0 0603 112 Populus wyomingiana micro 1(21),3(6),40 0603 121 Populus wyomingiana noto 1(2),2(3),46 0603 122 Populus wyomingiana noto 0 0603 139 Populus wyomingiana micro 0 0603 146 Populus wyomingiana noto 90 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana micro 16(6) 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 16(4) 0603 C Populus wyomingiana noto 16(3),1(4) 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 2,3,16 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana micro 3,16 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 2(2),3 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana noto 3(2),57(2) 0603 C Populus wyomingiana noto 2 0603 C Populus wyomingiana noto 2 0603 C Populus wyomingiana noto 12 0603 C Populus wyomingiana micro 12 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana micro 16(4) 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 57 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana noto 16,29 0603 C Populus wyomingiana noto 29 0603 C Populus wyomingiana noto 16 0603 C Populus wyomingiana micro 0 0603 C Populus wyomingiana noto 0 0603 C Populus wyomingiana meso 0 0603 C Populus wyomingiana micro 0

428 15 Mile Creek

0603 C Populus wyomingiana micro 0 0603 47 Dicot sp. WW035 noto 17(4),46 0603 55 Dicot sp. WW035 meso 46 0603 68 Dicot sp. WW035 meso 12,29(3),46 0603 6 Dicot sp. WW052 nano 0 0603 16 Dicot sp. WW052 micro 29 0603 34 Dicot sp. WW052 noto 0 0603 65 Dicot sp. WW052 meso 29(2) 0603 C Dicot sp. WW052 micro 16(5) 0603 69 Dicot sp. WW052 noto 2,12 0603 123 Dicot sp. WW052 micro 61 0603 129 Dicot sp. WW052 meso 0 0603 138 Dicot sp. WW052 noto 2,12,13 0603 C Dicot sp. WW052 micro 0 0603 C Dicot sp. WW052 micro 0 0603 5 Dicot sp. WW053 micro 0 0603 32 Dicot sp. WW053 meso 0 0603 98 Dicot sp. WW053 micro 3 0603 99 Dicot sp. WW053 meso 12 0603 110 Dicot sp. WW053 meso 3 0603 128 Dicot sp. WW057 micro 1(3),3,5 0603 61 Dicot sp. WW062 micro 3,32(24) 0604 9 Alnus sp. micro 1(5),32(3) 0604 18 Alnus sp. noto 0 0604 19 Alnus sp. micro 5,12,41 0604 C Alnus sp. micro 13,57 0604 C Alnus sp. micro 16(2) 0604 C Alnus sp. micro 0 0604 C Alnus sp. micro 2 0604 C Alnus sp. micro 0 0604 C Alnus sp. micro 2 0604 C Alnus sp. micro 0 0604 C Alnus sp. micro 0 0604 C Alnus sp. micro 0 0604 C Alnus sp. noto 0 0604 C Alnus sp. micro 0 0604 C Alnus sp. micro 46 0604 C Apocynaceae sp. WW051 micro 0 0604 15 Apocynaceae sp. WW051 micro 1(2),3(3),5(2),46 0604 16 Chaetoptelea microphylla micro 38 0604 1 "Dombeya " novi-mundi meso 57 0604 14 "Dombeya " novi-mundi noto 61 0604 C "Dombeya " novi-mundi noto 3 0604 C "Dombeya " novi-mundi noto 0 0604 C "Dombeya " novi-mundi micro 3 0604 C "Dombeya " novi-mundi micro 2 0604 C "Dombeya " novi-mundi meso 2,1(2),16(3) 0604 C "Dombeya " novi-mundi noto 1,16 0604 C "Dombeya " novi-mundi micro 0 0604 C "Dombeya " novi-mundi noto 0 0604 C "Dombeya " novi-mundi micro 0 0604 C "Dombeya " novi-mundi noto 0 0604 C "Dombeya " novi-mundi noto 2(2) 0604 C "Dombeya " novi-mundi micro 2(2),1 0604 C "Dombeya " novi-mundi meso 4,2(2) 0604 C "Dombeya " novi-mundi meso 0 0604 C "Dombeya " novi-mundi noto 2 0604 7 Lauraceae sp. WW054 frag 34 0604 2 Lauraceae sp. WW061 noto 2(7),16(2)

429 15 Mile Creek

0604 5 Platycarya castaneopsis micro 2,16(22) 0604 6 Platycarya castaneopsis noto 16(3) 0604 8 Platycarya castaneopsis micro 46 0604 11 Platycarya castaneopsis noto 0 0604 20 Platycarya castaneopsis micro 46 0604 C Platycarya castaneopsis micro 16(4) 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 3 0604 C Platycarya castaneopsis micro 16(4) 0604 C Platycarya castaneopsis micro 16(6) 0604 C Platycarya castaneopsis micro 1,16 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 2(3) 0604 C Platycarya castaneopsis micro 12 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis noto 2 0604 C Platycarya castaneopsis noto 0 0604 C Platycarya castaneopsis noto 16(2), 19(2) 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis noto 1(6),16 0604 C Platycarya castaneopsis meso 0 0604 C Platycarya castaneopsis noto 57 0604 C Platycarya castaneopsis noto 16 0604 C Platycarya castaneopsis noto 2(2),1(2),16(2) 0604 C Platycarya castaneopsis noto 3 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis noto 3,1(13),12(3) 0604 C Platycarya castaneopsis noto 3(2),2(2) 0604 C Platycarya castaneopsis micro 2 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis noto 0 0604 C Platycarya castaneopsis micro 12 0604 C Platycarya castaneopsis noto 12(2),15 0604 C Platycarya castaneopsis micro 4 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 12 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis noto 2(6),12(2) 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis meso 16(3) 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Platycarya castaneopsis micro 0 0604 C Populus wyomingiana noto 1 0604 4 Dicot sp. WW052 noto 12 0604 17 Dicot sp. WW052 meso 2 0604 C Dicot sp. WW052 meso 0 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 meso 2(6),3(2) 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 noto 2,3(2) 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 meso 16(7),12

430 15 Mile Creek

0604 C Dicot sp. WW052 noto 16(3),12,1,3(2) 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 noto 0 0604 C Dicot sp. WW052 meso 0 0604 C Dicot sp. WW052 meso 0 0604 C Dicot sp. WW052 micro 0 0604 C Dicot sp. WW052 noto 3 0604 C Dicot sp. WW052 meso 2(2) 0604 C Dicot sp. WW052 micro 0 0604 12 Dicot sp. WW053 micro 0 0605 C Alnus sp. micro 12(2) 0605 C Alnus sp. noto 3(1) 0605 C Alnus sp. micro 16 0605 C Alnus sp. micro 0 0605 C Alnus sp. micro 12 0605 C Alnus sp. micro 2 0605 C Alnus sp. micro 12(3),2 0605 C Alnus sp. micro 12,2,16 0605 C Alnus sp. micro 16,19(2) 0605 C Alnus sp. micro 15 0605 C Alnus sp. noto 2,3 0605 C Alnus sp. micro 1(7),2(2),16 0605 C Alnus sp. micro 1(3),7,12 0605 C Alnus sp. noto 0 0605 C Alnus sp. micro 19 0605 C Alnus sp. micro 16 0605 C Alnus sp. micro 1 0605 2 "Dombeya " novi-mundi micro 45 0605 C "Dombeya " novi-mundi noto 0 0605 C "Dombeya " novi-mundi noto 0 0605 C "Dombeya " novi-mundi meso 15(2),2 0605 C "Dombeya " novi-mundi noto 2(3),16 0605 C "Dombeya " novi-mundi noto 0 0605 C "Dombeya " novi-mundi meso 1(5) 0605 C "Dombeya " novi-mundi noto 0 0605 C "Dombeya " novi-mundi micro 3 0605 C "Dombeya " novi-mundi meso 2,16(5) 0605 3 Lauraceae sp. WW061 micro 2,12,15 0605 4 Lauraceae sp. WW061 micro 46 0605 6 Platycarya castaneopsis noto 29 0605 8 Platycarya castaneopsis micro 0 0605 9 Platycarya castaneopsis noto 154 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 1,2 0605 C Platycarya castaneopsis micro 16 0605 C Platycarya castaneopsis micro 3,4,46 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 16 0605 C Platycarya castaneopsis micro 12 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 12 0605 C Platycarya castaneopsis micro 2 0605 C Platycarya castaneopsis noto 2,12 0605 C Platycarya castaneopsis micro 2

431 15 Mile Creek

0605 C Platycarya castaneopsis noto 16(2) 0605 C Platycarya castaneopsis noto 2 0605 C Platycarya castaneopsis micro 8 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis meso 0 0605 C Platycarya castaneopsis micro 3 0605 C Platycarya castaneopsis micro 12 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 5 0605 C Platycarya castaneopsis micro 12,16(3) 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis micro 3 0605 C Platycarya castaneopsis micro 16(4) 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 3(3) 0605 C Platycarya castaneopsis micro 1 0605 C Platycarya castaneopsis noto 46 0605 C Platycarya castaneopsis meso 16 0605 C Platycarya castaneopsis meso 46 0605 C Platycarya castaneopsis micro 16 0605 C Platycarya castaneopsis meso 0 0605 C Platycarya castaneopsis micro 12(2) 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis micro 2 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis meso 12,46 0605 C Platycarya castaneopsis micro 16(2) 0605 C Platycarya castaneopsis noto 12,16 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis micro 0 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis noto 0 0605 C Platycarya castaneopsis micro 0 0605 1 Dicot sp. WW048 micro 2(2),3, 38(6) 0605 5 Dicot sp. WW052 micro 0 0605 C Dicot sp. WW052 noto 0 0605 C Dicot sp. WW052 noto 0 0605 C Dicot sp. WW052 micro 0 0605 C Dicot sp. WW052 micro 0 0605 C Dicot sp. WW052 micro 2 0605 C Dicot sp. WW052 micro 0 0605 C Dicot sp. WW052 noto 12 0605 C Dicot sp. WW052 meso 0 0605 C Dicot sp. WW052 noto 12 0605 C Dicot sp. WW052 noto 0 0605 C Dicot sp. WW052 micro 0 0605 C Dicot sp. WW052 meso 0 0606 20 Aleurites fremontensis noto 0 0606 32 Aleurites fremontensis meso 1(11),3(2),5,8(2),57(2) 0606 33 Aleurites fremontensis 1(2),12 0606 39 Aleurites fremontensis micro 0 0606 51 Aleurites fremontensis noto 2(2) 0606 63 Aleurites fremontensis noto 1(9),3(3) 0606 66 Aleurites fremontensis noto 1(2),3(3) 0606 76 Aleurites fremontensis noto 1(13),3(7),8,12,25(3)

432 15 Mile Creek

0606 92 Aleurites fremontensis noto 2(3),3,8(2) 0606 95 Aleurites fremontensis micro 5(2),25,12 0606 104 Aleurites fremontensis nano 12(2) 0606 C Aleurites fremontensis micro 2(2) 0606 C Aleurites fremontensis noto 46 0606 C Aleurites fremontensis noto 2,29 0606 44 Allophylus flexifolia micro 1(4) 0606 53 Allophylus flexifolia micro 0 0606 60 Allophylus flexifolia noto 2(3), 80(50) 0606 70 Allophylus flexifolia micro 2,80(50) 0606 73 Allophylus flexifolia noto 1,2,46,80(50) 0606 98 Allophylus flexifolia noto 3,16,30 0606 103 Allophylus flexifolia micro 80(23) 0606 105 Allophylus flexifolia micro 0 0606 106 Allophylus flexifolia micro 80(36) 0606 108 Allophylus flexifolia noto 80 (~100) 0606 109 Allophylus flexifolia meso 5, 80(25) 0606 115 Allophylus flexifolia micro 1(29),3(9),7 0606 122 Allophylus flexifolia micro 80(50) 0606 123 Allophylus flexifolia micro 8(2), 62 0606 C Allophylus flexifolia noto 0 0606 C Allophylus flexifolia micro 0 0606 C Allophylus flexifolia noto 0 0606 C Allophylus flexifolia noto 3(2) 0606 C Allophylus flexifolia noto 2(4) 0606 C Allophylus flexifolia noto 12 0606 1 Alnus sp. noto 0 0606 2 Alnus sp. meso 32(3) 0606 3 Alnus sp. noto 12,46 0606 7 Alnus sp. micro 0 0606 8 Alnus sp. micro 0 0606 9 Alnus sp. micro 0 0606 19 Alnus sp. noto 29(2) 0606 23 Alnus sp. noto 2 0606 27 Alnus sp. micro 12,46 0606 29 Alnus sp. micro 19,32 0606 30 Alnus sp. micro 29(6),57(2) 0606 31 Alnus sp. frag 30(~25),40 0606 34 Alnus sp. noto 44 0606 35 Alnus sp. noto 1(3),2(3),3(11),5(3),12 0606 41 Alnus sp. micro 0 0606 55 Alnus sp. meso 32 0606 56 Alnus sp. micro 12 0606 57 Alnus sp. noto 12(2),40 0606 61 Alnus sp. noto 62 0606 65 Alnus sp. micro 5,12,40 0606 74 Alnus sp. micro 1(2),40 0606 86 Alnus sp. noto 69 0606 87 Alnus sp. micro 1(5),12(2) 0606 88 Alnus sp. noto 2(7),69(7) 0606 89 Alnus sp. micro 2 0606 94 Alnus sp. micro 5,78(4) 0606 97 Alnus sp. micro 16(2),41 0606 100 Alnus sp. frag 40 0606 102 Alnus sp. 2,3,12,13,29 0606 110 Alnus sp. noto 1(2) 0606 112 Alnus sp. noto 1(5),3(3),16(2),46 0606 113 Alnus sp. noto 32(14) 0606 118 Alnus sp. noto 5,12,46,69(2)

433 15 Mile Creek

0606 121 Alnus sp. micro 12 0606 C Alnus sp. noto 5(3),12,2(2) 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 16(6) 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 3,12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 5,14 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. noto 2(2) 0606 C Alnus sp. noto 2,12 0606 C Alnus sp. micro 12(3) 0606 C Alnus sp. noto 2 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 1(6) 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 16(3),12(2) 0606 C Alnus sp. micro 16 0606 C Alnus sp. micro 29 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 46 0606 C Alnus sp. noto 12(2) 0606 C Alnus sp. micro 16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 57 0606 C Alnus sp. micro 29(2),2,12 0606 C Alnus sp. micro 2(4),5(2) 0606 C Alnus sp. micro 3(2) 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 29(2) 0606 C Alnus sp. micro 2,14 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 1 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 2 0606 C Alnus sp. micro 3(2) 0606 C Alnus sp. noto 5 0606 C Alnus sp. micro 12(3),3 0606 C Alnus sp. micro 0 0606 C Alnus sp. meso 0 0606 C Alnus sp. micro 2,12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2,12,16(2) 0606 C Alnus sp. noto 16(6) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. micro 2(3),16(4) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0

434 15 Mile Creek

0606 C Alnus sp. noto 1(4),3(3),2(4) 0606 C Alnus sp. micro 1,5,12(2) 0606 C Alnus sp. micro 2(3),12(2) 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 1(3) 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 5(2) 0606 C Alnus sp. nano 0 0606 C Alnus sp. noto 12(2) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 2(5) 0606 C Alnus sp. micro 2(3) 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 46 0606 C Alnus sp. micro 12 0606 C Alnus sp. noto 7,12 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. micro 2 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 5(2),3(2) 0606 C Alnus sp. micro 2,29 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 4 0606 C Alnus sp. micro 14 0606 C Alnus sp. noto 5 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 2,12,16 0606 C Alnus sp. meso 2(2) 0606 C Alnus sp. noto 16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2 0606 C Alnus sp. micro 15,16 0606 C Alnus sp. meso 2(2),3 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12,16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 29(2),46 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 46 0606 C Alnus sp. noto 46 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0

435 15 Mile Creek

0606 C Alnus sp. noto 2,46 0606 C Alnus sp. micro 3,16 0606 C Alnus sp. noto 5(2) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2(3),3,16 0606 C Alnus sp. noto 2,3 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 8 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 1(2),16 0606 C Alnus sp. micro 12,2(2) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 5 0606 C Alnus sp. micro 12 0606 C Alnus sp. noto 2,3 0606 C Alnus sp. noto 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2(2),12 0606 C Alnus sp. noto 0 0606 C Alnus sp. noto 2(3),3,5(2) 0606 C Alnus sp. meso 2(4) 0606 C Alnus sp. micro 15 0606 C Alnus sp. micro 1,5 0606 C Alnus sp. micro 16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 27,46 0606 C Alnus sp. noto 0 0606 C Alnus sp. noto 16(3),46 0606 C Alnus sp. micro 2(3),16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 2(2),3(4),16 0606 C Alnus sp. noto 5,16 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. meso 0 0606 C Alnus sp. micro 12,46 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12(2) 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 16(4),12 0606 C Alnus sp. micro 2,3,12,14 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. noto 2 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12(2) 0606 C Alnus sp. micro 2(4) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 12

436 15 Mile Creek

0606 C Alnus sp. micro 2,15 0606 C Alnus sp. micro 12,16 0606 C Alnus sp. noto 12 0606 C Alnus sp. noto 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 0 0606 C Alnus sp. meso 2,15 0606 C Alnus sp. noto 0 0606 C Alnus sp. noto 29(3),2 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 16(5) 0606 C Alnus sp. noto 12 0606 C Alnus sp. micro 0 0606 C Alnus sp. meso 1(7) 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 46 0606 C Alnus sp. micro 1,2,3,12,46 0606 C Alnus sp. micro 46 0606 C Alnus sp. micro 0 0606 C Alnus sp. micro 2(2) 0606 C Alnus sp. micro 12 0606 C Alnus sp. micro 16 0606 C Alnus sp. micro 5,14 0606 C Alnus sp. noto 0 0606 C Apocynophyllum micro 2 0606 C Apocynophyllum micro 2(3),16 0606 48 Chaetoptelea microphylla micro 0 0606 101 Cornus hyperborea micro 1(3),57 0606 C Cornus hyperborea micro 0 0606 C Cornus hyperborea noto 2 0606 5 Dicot sp. WW052 noto 2,16(3),61 0606 24 Dicot sp. WW052 micro 12 0606 36 Dicot sp. WW052 nano 0 0606 77 Dicot sp. WW052 noto 2(2) 0606 80 Dicot sp. WW052 noto 3(2),12(5),13,15 0606 C Dicot sp. WW052 noto 0 0606 C Dicot sp. WW052 micro 0 0606 C Dicot sp. WW052 noto 0 0606 18 Dicot sp. WW053 micro 2 0606 21 Dicot sp. WW053 micro 0 0606 49 Dicot sp. WW053 noto 17(8),32,34(2) 0606 50 Dicot sp. WW053 noto 2(4),13 0606 68 Dicot sp. WW053 noto 1(8),5(2),12,16 0606 83 Dicot sp. WW053 micro 3,5 0606 84 Dicot sp. WW053 micro 16,32(3) 0606 99 Dicot sp. WW053 micro 16,29 0606 11 Dicot sp. WW035 micro 2(2) 0606 42 Dicot sp. WW035 noto 16(5) 0606 59 Dicot sp. WW035 micro 29(5) 0606 10 "Dombeya " novi-mundi noto 16 0606 117 "Dombeya " novi-mundi frag 1(5),2,46 0606 C "Dombeya " novi-mundi meso 0 0606 C "Dombeya " novi-mundi meso 0 0606 C "Dombeya " novi-mundi micro 2(9),3 0606 C "Dombeya " novi-mundi meso 16 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi noto 2(3) 0606 C "Dombeya " novi-mundi micro 2 0606 C "Dombeya " novi-mundi meso 3

437 15 Mile Creek

0606 C "Dombeya " novi-mundi meso 0 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi micro 0 0606 C "Dombeya " novi-mundi mw 3(2) 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi meso 1,2(2) 0606 C "Dombeya " novi-mundi micro 0 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi meso 1(8),3 0606 C "Dombeya " novi-mundi noto 1(2) 0606 C "Dombeya " novi-mundi meso 2,3 0606 C "Dombeya " novi-mundi micro 0 0606 C "Dombeya " novi-mundi micro 0 0606 C "Dombeya " novi-mundi noto 4,12 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi meso 2,46 0606 C "Dombeya " novi-mundi noto 2 0606 C "Dombeya " novi-mundi noto 0 0606 C "Dombeya " novi-mundi noto 2 0606 C "Dombeya " novi-mundi noto 2(2) 0606 58 Lauraceae sp. WW054 micro 0 0606 64 Lauraceae sp. WW054 micro 12,16,32(2) 0606 90 Lauraceae sp. WW055 0 0606 4 Lauraceae sp. WW054 micro 13 0606 25 Lauraceae sp. WW061 noto 12 0606 54 Lauraceae sp. WW061 micro 46 0606 79 Lauraceae sp. WW061 micro 0 0606 72 Luehea newberryana micro 2(2),3(2) 0606 96 Luehea newberryana noto 1,2,151,152 0606 107 Luehea newberryana noto 3(2),32,151(2) 0606 116 Luehea newberryana noto 1(3),2(3),3(9),12,151(2),152 0606 15 Platycarya castaneopsis noto 1,2(2),5,12 0606 22 Platycarya castaneopsis meso 2(2),16(5),29 0606 62 Platycarya castaneopsis micro 0 0606 67 Platycarya castaneopsis micro 16 0606 78 Platycarya castaneopsis micro 2,12,46 0606 91 Platycarya castaneopsis micro 1(4) 0606 C Platycarya castaneopsis micro 1,16 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 16 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 2,13,27 0606 C Platycarya castaneopsis micro 3 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 12 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 5 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 12(2),14 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0

438 15 Mile Creek

0606 C Platycarya castaneopsis meso 12 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 3 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 2 0606 C Platycarya castaneopsis noto 3,46 0606 C Platycarya castaneopsis noto 12 0606 C Platycarya castaneopsis noto 16(6) 0606 C Platycarya castaneopsis micro 12(2) 0606 C Platycarya castaneopsis micro 2 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 1 0606 C Platycarya castaneopsis micro 3(2),12(2) 0606 C Platycarya castaneopsis micro 12,16 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 16 0606 C Platycarya castaneopsis micro 1 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis noto 2(3),12 0606 C Platycarya castaneopsis noto 2(2),12 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 12 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 12 0606 C Platycarya castaneopsis meso 4,5(2),15 0606 C Platycarya castaneopsis micro 4 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis noto 2(8) 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 2 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis micro 2 0606 C Platycarya castaneopsis noto 0 0606 C Platycarya castaneopsis noto 1 0606 C Platycarya castaneopsis micro 46 0606 C Platycarya castaneopsis micro 1(5),2(10) 0606 C Platycarya castaneopsis noto 29(2) 0606 C Platycarya castaneopsis micro 0 0606 C Platycarya castaneopsis meso 29(3) 0606 C Platycarya castaneopsis micro 1,3(2) 0606 C Platycarya castaneopsis meso 0 0606 C Platycarya castaneopsis micro 2(2) 0606 C Platycarya castaneopsis noto 1 0606 6 Populus wyomingiana micro 11(2), 46 0606 26 Populus wyomingiana noto 29(7) 0606 40 Populus wyomingiana micro 32,33(2) 0606 45 Populus wyomingiana noto 36 0606 46 Populus wyomingiana micro 29(2)

439 15 Mile Creek

0606 47 Populus wyomingiana micro 0 0606 69 Populus wyomingiana micro 0 0606 81 Populus wyomingiana micro 14,29,34 0606 82 Populus wyomingiana noto 3(2) 0606 111 Populus wyomingiana noto 1 0606 C Populus wyomingiana noto 12 0606 C Populus wyomingiana noto 2(2),29 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana micro 3(2),2,27 0606 C Populus wyomingiana noto 1(3) 0606 C Populus wyomingiana noto 16 0606 C Populus wyomingiana micro 2 0606 C Populus wyomingiana noto 12 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana meso 12 0606 C Populus wyomingiana meso 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana noto 29(3) 0606 C Populus wyomingiana micro 5 0606 C Populus wyomingiana noto 16(3),29(4) 0606 C Populus wyomingiana micro 12 0606 C Populus wyomingiana micro 1(4) 0606 C Populus wyomingiana noto 2(2) 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 2,3 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 1(2),3,12(2) 0606 C Populus wyomingiana noto 2(2),1 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana noto 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana micro 0 0606 C Populus wyomingiana micro 2(2),3 0606 120 Dicot sp. WW049 micro 12 0606 13 Dicot sp. WW050 micro 0 0606 52 Dicot sp. WW050 0 0606 12 Dicot sp. WW056 micro 1(4),2,3,7 0606 85 Dicot sp. WW056 noto 2 0606 93 Dicot sp. WW056 micro 0 0607 6 Allophylus flexifolia noto 5 0607 12 Allophylus flexifolia noto 80(21) 0607 5 Alnus sp. micro 3(2),12(3),61 0607 10 Alnus sp. micro 12(3),41

440 15 Mile Creek

0607 C Alnus sp. micro 0 0607 C Alnus sp. noto 16(2) 0607 C Alnus sp. micro 12 0607 C Alnus sp. micro 3,46 0607 C Alnus sp. micro 1(3),2,12 0607 C Alnus sp. nano 0 0607 C Alnus sp. noto 12 0607 C Alnus sp. micro 0 0607 C Alnus sp. micro 12 0607 C Alnus sp. micro 12,46 0607 C Alnus sp. micro 2(2),3(2) 0607 C Alnus sp. micro 0 0607 C Alnus sp. micro 12 0607 C Alnus sp. micro 1(2) 0607 C Alnus sp. micro 0 0607 C Alnus sp. noto 2,16 0607 C Alnus sp. micro 12 0607 C Alnus sp. noto 2 0607 C Alnus sp. micro 1(2),2(2),12 0607 C Alnus sp. micro 0 0607 C Alnus sp. micro 2,4(2) 0607 C Alnus sp. micro 0 0607 C Alnus sp. micro 3(2) 0607 C Alnus sp. noto 0 0607 C Alnus sp. micro 0 0607 C Alnus sp. noto 0 0607 C Alnus sp. micro 0 0607 C Apocynaceae sp. WW051 noto 16 0607 C Apocynaceae sp. WW051 micro 0 0607 7 "Dombeya " novi-mundi meso 65 0607 C "Dombeya " novi-mundi noto 2 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi micro 2(2) 0607 C "Dombeya " novi-mundi noto 15,16 0607 C "Dombeya " novi-mundi micro 2 0607 C "Dombeya " novi-mundi noto 12,3(2),16 0607 C "Dombeya " novi-mundi micro 0 0607 C "Dombeya " novi-mundi noto 2 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi noto 2 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi micro 2(2) 0607 C "Dombeya " novi-mundi noto 7 0607 C "Dombeya " novi-mundi noto 2 0607 C "Dombeya " novi-mundi micro 2,3(2) 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi micro 1(3) 0607 C "Dombeya " novi-mundi micro 0 0607 C "Dombeya " novi-mundi micro 12(2) 0607 C "Dombeya " novi-mundi noto 2(3),5 0607 C "Dombeya " novi-mundi noto 3,8 0607 C "Dombeya " novi-mundi micro 4 0607 C "Dombeya " novi-mundi noto 1(2) 0607 C "Dombeya " novi-mundi micro 0 0607 C "Dombeya " novi-mundi noto 12 0607 C "Dombeya " novi-mundi noto 3,5(2) 0607 C "Dombeya " novi-mundi micro 0

441 15 Mile Creek

0607 C "Dombeya " novi-mundi micro 3 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi noto 2 0607 C "Dombeya " novi-mundi micro 2 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi noto 0 0607 C "Dombeya " novi-mundi micro 0 0607 C "Dombeya " novi-mundi micro 1(2) 0607 C Platycarya castaneopsis micro 0 0607 C Platycarya castaneopsis noto 3(4) 0607 C Platycarya castaneopsis noto 3 0607 C Platycarya castaneopsis micro 0 0607 C Platycarya castaneopsis micro 0 0607 C Platycarya castaneopsis micro 3,16 0607 C Platycarya castaneopsis micro 16(3) 0607 C Platycarya castaneopsis noto 0 0607 C Platycarya castaneopsis micro 12 0607 C Platycarya castaneopsis micro 2(2) 0607 C Platycarya castaneopsis micro 13 0607 C Platycarya castaneopsis micro 0 0607 C Platycarya castaneopsis micro 2 0607 C Platycarya castaneopsis micro 0 0607 C Platycarya castaneopsis micro 3 0607 C Populus wyomingiana micro 12 0607 C Populus wyomingiana micro 2(2) 0607 2 Dicot sp. WW035 micro 0 0607 1 Dicot sp. WW052 micro 0 0607 3 Dicot sp. WW052 noto 0 0607 8 Dicot sp. WW052 micro 0 0607 11 Dicot sp. WW052 meso 0 0607 C Dicot sp. WW052 meso 3,5 0607 C Dicot sp. WW052 noto 5 0607 C Dicot sp. WW052 noto 0 0607 C Dicot sp. WW052 noto 0 0607 C Dicot sp. WW052 micro 0 0607 C Dicot sp. WW052 micro 16(8) 0607 C Dicot sp. WW052 meso 0 0607 C Dicot sp. WW052 meso 12 0607 C Dicot sp. WW052 micro 0 0609 8 Aleurites fremontensis noto 1 0609 55 Aleurites fremontensis frag 80(20) 0609 45 Allophylus flexifolia noto 29,46 0609 14 Allophylus flexifolia micro 30(2), 40 0609 30 Allophylus flexifolia micro 16(3),46 0609 34 Allophylus flexifolia noto 1(2),40 0609 51 Allophylus flexifolia noto 16(2), 80(5) 0609 64 Allophylus flexifolia micro 0 0609 69 Allophylus flexifolia micro 0 0609 72 Allophylus flexifolia micro 0 0609 5 Alnus sp. micro 33 0609 6 Alnus sp. micro 14,46 0609 15 Alnus sp. micro 0 0609 28 Alnus sp. micro 2(5),7 0609 33 Alnus sp. noto 1(2),3,8,38,46 0609 43 Alnus sp. micro 16,29(3),46 0609 49 Alnus sp. noto 1,12,40 0609 60 Alnus sp. noto 12(2) 0609 63 Alnus sp. micro 46, fungal 0609 C Alnus sp. micro 46

442 15 Mile Creek

0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. noto 46 0609 C Alnus sp. micro 12(3),16(3) 0609 C Alnus sp. micro 16 0609 C Alnus sp. micro 1,12 0609 C Alnus sp. micro 2(2),3,16(4) 0609 C Alnus sp. micro 4(2) 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 1(7),3,12(2) 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 2,16 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 16 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2(3),3,13,46 0609 C Alnus sp. meso 5 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 1,2,12 0609 C Alnus sp. micro 12,16(4) 0609 C Alnus sp. noto 0 0609 C Alnus sp. noto 3,16(4) 0609 C Alnus sp. micro 12(2) 0609 C Alnus sp. micro 2(3) 0609 C Alnus sp. micro 2(2),12(2) 0609 C Alnus sp. micro 2,12 0609 C Alnus sp. micro 1(5),2(2),3(3) 0609 C Alnus sp. micro 2 0609 C Alnus sp. noto 1(2) 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 3,46 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 1(12) 0609 C Alnus sp. micro 12(2),46 0609 C Alnus sp. micro 2(4) 0609 C Alnus sp. micro 1(2),2(2),3,27 0609 C Alnus sp. meso 1(6),2(6),3 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2(2) 0609 C Alnus sp. micro 12(2),16(5) 0609 C Alnus sp. micro 1(5) 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. nano 0 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 2 0609 C Alnus sp. micro 0 0609 C Alnus sp. noto 2 0609 C Alnus sp. noto 2,12(2),16 0609 C Alnus sp. micro 12,46 0609 C Alnus sp. micro 2(2),3(2) 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 14 0609 C Alnus sp. micro 5,16(2) 0609 C Alnus sp. micro 46

443 15 Mile Creek

0609 C Alnus sp. micro 1 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 1(2),2(2) 0609 C Alnus sp. noto 1(2) 0609 C Alnus sp. micro 0 0609 C Alnus sp. noto 16 0609 C Alnus sp. micro 1(5),16(6) 0609 C Alnus sp. micro 16 0609 C Alnus sp. noto 46 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 12 0609 C Alnus sp. meso 16 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2(2),3 0609 C Alnus sp. noto 0 0609 C Alnus sp. noto 12(2) 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 16 0609 C Alnus sp. micro 16 0609 C Alnus sp. micro 12 0609 C Alnus sp. micro 12(2) 0609 C Alnus sp. nano 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 46 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 2 0609 C Alnus sp. meso 16 0609 C Alnus sp. micro 12(2) 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. noto 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 12(3),46 0609 C Alnus sp. noto 2(6),3(2) 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2,46 0609 C Alnus sp. micro 57 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 2 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 3(2) 0609 C Alnus sp. nano 0 0609 C Alnus sp. micro 46 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 16 0609 C Alnus sp. noto 3 0609 C Alnus sp. noto 12,2(2) 0609 C Alnus sp. micro 0 0609 C Alnus sp. micro 16(3) 0609 C Alnus sp. micro 0

444 15 Mile Creek

0609 C Alnus sp. micro 2(3),16,29(2) 0609 C Alnus sp. micro 0 0609 56 "Dombeya " novi-mundi frag 41 0609 62 "Dombeya " novi-mundi meso 1 0609 66 "Dombeya " novi-mundi micro 5 0609 71 "Dombeya " novi-mundi frag 0 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi micro 5 0609 C "Dombeya " novi-mundi noto 2(2),8(4) 0609 C "Dombeya " novi-mundi noto 2(3) 0609 C "Dombeya " novi-mundi micro 2(3) 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 3 0609 C "Dombeya " novi-mundi noto 2,4 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi meso 2,19 0609 C "Dombeya " novi-mundi noto 16 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 12 0609 C "Dombeya " novi-mundi meso 2,4 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 3 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 15 0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi micro 5 0609 C "Dombeya " novi-mundi noto 2(5),3 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 5 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi meso 12(2) 0609 C "Dombeya " novi-mundi meso 2(2) 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 3 0609 C "Dombeya " novi-mundi micro 1(3),16(2) 0609 C "Dombeya " novi-mundi noto 2,3 0609 C "Dombeya " novi-mundi micro 16(2) 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 3 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi micro 3 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 2(2),3

445 15 Mile Creek

0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi micro 2(2) 0609 C "Dombeya " novi-mundi meso 5,57 0609 C "Dombeya " novi-mundi meso 5,12 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 2 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 12 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 2,3(2) 0609 C "Dombeya " novi-mundi meso 0 0609 C "Dombeya " novi-mundi meso 4 0609 C "Dombeya " novi-mundi micro 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi micro 2 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 2(2) 0609 C "Dombeya " novi-mundi noto 7,12 0609 C "Dombeya " novi-mundi micro 16 0609 C "Dombeya " novi-mundi noto 2,3 0609 C "Dombeya " novi-mundi noto 2,16 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi noto 0 0609 C "Dombeya " novi-mundi meso 0 0609 13 Lauraceae sp. WW054 noto 34(4) 0609 21 Lauraceae sp. WW054 frag 0 0609 27 Lauraceae sp. WW054 meso 57(7) 0609 37 Lauraceae sp. WW054 noto 0 0609 2 Lauraceae sp. WW061 micro 0 0609 12 Lauraceae sp. WW061 micro 0 0609 16 Lauraceae sp. WW061 micro 1(3),16 0609 22 Lauraceae sp. WW061 micro 3,12,16(3) 0609 31 Lauraceae sp. WW061 noto 3,16(3) 0609 35 Lauraceae sp. WW061 noto 2(2) 0609 36 Lauraceae sp. WW061 micro 0 0609 42 Lauraceae sp. WW061 micro 5,12,78 0609 48 Lauraceae sp. WW061 micro 0 0609 50 Lauraceae sp. WW061 micro 12,16(4) 0609 52 Lauraceae sp. WW061 noto 30 0609 58 Lauraceae sp. WW061 micro 0 0609 59 Lauraceae sp. WW061 micro 1(2),12 0609 C Lauraceae sp. WW061 noto 3(5),2(4) 0609 C Lauraceae sp. WW061 micro 2(3),3(2) 0609 C Lauraceae sp. WW061 micro 12 0609 C Lauraceae sp. WW061 micro 3 0609 C Lauraceae sp. WW061 noto 27 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 16(2) 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 12

446 15 Mile Creek

0609 C Lauraceae sp. WW061 noto 0 0609 C Lauraceae sp. WW061 micro 2(3),3,12 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 12 0609 C Lauraceae sp. WW061 micro 57 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 2,12 0609 C Lauraceae sp. WW061 noto 2(2) 0609 C Lauraceae sp. WW061 micro 12 0609 C Lauraceae sp. WW061 micro 12 0609 C Lauraceae sp. WW061 micro 0 0609 C Lauraceae sp. WW061 micro 12,3(2) 0609 C Lauraceae sp. WW061 noto 2 0609 C Lauraceae sp. WW061 micro 0 0609 41 Luehea newberryana micro 1(8),3 0609 3 Platycarya castaneopsis micro 34(3) 0609 9 Platycarya castaneopsis micro 16 0609 10 Platycarya castaneopsis noto 16(4) 0609 11 Platycarya castaneopsis micro 3 0609 18 Platycarya castaneopsis micro 5(2) 0609 23 Platycarya castaneopsis noto 1(4),15,16 0609 24 Platycarya castaneopsis noto 1(2),8 0609 40 Platycarya castaneopsis micro 62 0609 47 Platycarya castaneopsis micro 3,20(~100) 0609 53 Platycarya castaneopsis micro 1,15,40 0609 67 Platycarya castaneopsis micro 153(6) 0609 74 Platycarya castaneopsis noto 153(18) 0609 C Platycarya castaneopsis micro 2(2),16 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 19 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis noto 2(4),16 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 2,12,16(3) 0609 C Platycarya castaneopsis noto 2(3) 0609 C Platycarya castaneopsis micro 15 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 3 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis nano 2 0609 C Platycarya castaneopsis micro 2(2) 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 16 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2,3,16

447 15 Mile Creek

0609 C Platycarya castaneopsis noto 16(3) 0609 C Platycarya castaneopsis noto 12 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 5,16 0609 C Platycarya castaneopsis noto 2(3),29(3) 0609 C Platycarya castaneopsis noto 2(13),16(2) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 1(2) 0609 C Platycarya castaneopsis micro 1 0609 C Platycarya castaneopsis micro 3,12(2) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis meso 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 3 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 2(6),27 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2,12 0609 C Platycarya castaneopsis noto 3,12 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 12 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis noto 2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 1(2),2,16(2) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 2,3,1(4) 0609 C Platycarya castaneopsis micro 16 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 12 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 16 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 3(2),16(4) 0609 C Platycarya castaneopsis micro 1(2) 0609 C Platycarya castaneopsis noto 2(36) 0609 C Platycarya castaneopsis micro 16 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0

448 15 Mile Creek

0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis micro 2(10),16(8) 0609 C Platycarya castaneopsis micro 2(4) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 1,2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 19 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 16(3) 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 29(3) 0609 C Platycarya castaneopsis noto 5 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 1 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 12 0609 C Platycarya castaneopsis micro 12(3) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 1(4),2(4) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 15,12(2),1(7),3(2),2(3) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 2,3 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 29 0609 C Platycarya castaneopsis micro 16 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 1(20) 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis noto 0

449 15 Mile Creek

0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis micro 29 0609 C Platycarya castaneopsis micro 0 0609 C Platycarya castaneopsis micro 2 0609 C Platycarya castaneopsis meso 1(2) 0609 C Platycarya castaneopsis noto 0 0609 C Platycarya castaneopsis meso 27 0609 C Platycarya castaneopsis noto 1(3),15 0609 39 Populus wyomingiana micro 0 0609 61 Populus wyomingiana noto 1(3),2(5),5 0609 C Populus wyomingiana micro 12(2) 0609 C Populus wyomingiana micro 16 0609 C Populus wyomingiana noto 2(4) 0609 26 Dicot sp. WW035 meso 0 0609 57 Dicot sp. WW035 noto 0 0609 1 Dicot sp. WW052 noto 5 0609 25 Dicot sp. WW052 noto 24(10) 0609 32 Dicot sp. WW052 micro 0 0609 38 Dicot sp. WW052 micro 2(5),5,16(7),12 0609 70 Dicot sp. WW052 micro 34(20) 0609 C Dicot sp. WW052 micro 12 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 12 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 nano 12 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 noto 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 1(2),3,12 0609 C Dicot sp. WW052 noto 2(5) 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 noto 2,12 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 micro 12 0609 C Dicot sp. WW052 noto 5,16 0609 C Dicot sp. WW052 micro 2(2),12 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 noto 16 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 noto 0 0609 C Dicot sp. WW052 noto 2 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 2 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 micro 0 0609 C Dicot sp. WW052 noto 12 0609 C Dicot sp. WW052 micro 3,5 0609 C Dicot sp. WW052 micro 16 0609 C Dicot sp. WW052 micro 0 0609 19 Dicot sp. WW058 noto 3 0609 7 Dicot sp. WW059 meso 24(23)

450 15 Mile Creek

0609 29 Dicot sp. WW060 micro 3 0609 20 Dicot sp. WW062 meso 0 0609 C Dicot sp. WW062 noto 3 0610 2 Aleurites fremontensis micro 12(4) 0610 3 Alnus sp. micro 3,15,40 0610 C Alnus sp. micro 12(3),57(2) 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 2 0610 C Alnus sp. micro 2(2) 0610 C Alnus sp. noto 2,7 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 2(2),3(2) 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 0 0610 C Alnus sp. noto 0 0610 C Alnus sp. noto 0 0610 C Alnus sp. micro 12(2) 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 0 0610 C Alnus sp. micro 12(2),3 0610 1 "Dombeya " novi-mundi meso 2(5),3(3),5,13,16 0610 C "Dombeya " novi-mundi noto 2,3 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi micro 1(2),12(2) 0610 C "Dombeya " novi-mundi meso 2(8),3,4 0610 C "Dombeya " novi-mundi micro 0 0610 C "Dombeya " novi-mundi noto 2,46 0610 C "Dombeya " novi-mundi noto 2 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi noto 3 0610 C "Dombeya " novi-mundi micro 0 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi noto 2,57 0610 C "Dombeya " novi-mundi micro 12 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi micro 0 0610 C "Dombeya " novi-mundi noto 2 0610 C "Dombeya " novi-mundi meso 0 0610 C "Dombeya " novi-mundi noto 0 0610 C "Dombeya " novi-mundi meso 0 0610 C Platycarya castaneopsis micro 0 0610 C Platycarya castaneopsis micro 2(6),3 0610 C Platycarya castaneopsis micro 0 0610 4 Populus wyomingiana micro 0 0610 C Populus wyomingiana noto 0 0610 C Populus wyomingiana micro 0 0610 C Populus wyomingiana noto 0 0610 C Populus wyomingiana micro 0 0610 C Populus wyomingiana noto 0 0610 C Dicot sp. WW052 micro 0 0610 C Dicot sp. WW052 noto 2

451 REFERENCES Adams, J. M., and F. I. Woodward. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339:699-701. Alley, R., T. Berntsen, N. L. Bindoff, Z. Chen, A. Chidthaisong, P. Friedlingstein, J. Gregory, G. Hegerl, M. Heimann, B. Hewitson, B. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, M. Manning, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, D. Qin, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, S. Solomon, R. Somerville, T. F. Stocker, P. Stott, R. J. Stouffer, P. Whetton, R. A. Wood, and D. Wratt. 2007. Climate Change 2007: The Physical Science Basis, Summary for Policymakers. Alroy, J., P. L. Koch, and J. C. Zachos. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259-288. Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. H. Jones, R. L. Lindroth, M. C. Press, I. Symrnioudis, A. D. Watt, and J. B. Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8:1-16. Basset, Y., H. P. Aberlenc, H. Barrios, G. Curletti, J. M. Bérenger, J. P. Vesco, P. Causse, A. Haug, A. S. Hennion, L. Lesobre, F. Marquès, and R. O'Meara. 2001. Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biological Journal of the Linnean Society 72:585-607. Bazzaz, F. A. 1990. The Response of Natural Ecosystems to the Rising Global Co2 Levels. Annual Review of Ecology and Systematics 21:167-196. Bennington, J. B. 2003. Transcending patchiness in the comparative analysis of paleocommunities: A test case from the Upper Cretaceous of New Jersey. Palaios 18:22-33. Bernays, E. A., and R. F. Chapman. 1994. Host-Plant Selection by Phytophagous Insects. Chapman and Hall, London. Bonelli, J. R., C. E. Brett, A. I. Miller, and J. B. Bennington. 2006. Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among recurring coral-rich biofacies in the Middle Devonian Appalachian Basin. Paleobiology 32:20-37. Bown, T. M., and M. J. Kraus. 1981. Lower Eocene Alluvial Paleosols (Willwood Formation, Northwest Wyoming, USA) and Their Significance for Paleoecology, Paleoclimatology, and Basin Analysis. Palaeogeography Palaeoclimatology Palaeoecology 34:1-30. Bown, T. M., K. D. Rose, E. L. Simons, and S. L. Wing. 1994. Distribution and stratigraphic correlation of upper Paleocene and lower Eocene fossil mammal and plant localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming. U.S. Geological Survey Professional Paper 1540:1-103. Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325-349. Brown, R. W. 1962. Paleocene Flora of the Rocky Mountains and Great Plains. United States Department of the Interior, Washington, D.C. Burnham, R. J. 1993. Reconstructing richness in the plant fossil record. Palaios 8:376- 384. Burnham, R. J., B. Ellis, and K. R. Johnson. 2005. Modern tropical forest taphonomy: Does high biodiversity affect paleoclimatic interpretations? Palaios 20:439-451.

452 Burnham, R. J., S. L. Wing, and G. G. Parker. 1992. The reflection of deciduous forest communities in leaf litter - Implications for autochthonous litter assemblages from the fossil record. Paleobiology 18:30-49. Clarke, K. R. 1993. Nonparametric Multivariate Analyses of Changes in Community Structure. Australian Journal of Ecology 18:117-143. Clyde, W. C., and P. D. Gingerich. 1998. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:1011-1014. Clyde, W. C., W. Hamzi, J. A. Finarelli, S. L. Wing, D. Schankler, and A. Chew. 2007. Basin-wide magnetostratigraphic framework for the bighorn basin, Wyoming. Geological Society of America Bulletin 119:848-859. Coley, P. D. 1998. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Climatic Change 39:455-472. Coley, P. D., and T. M. Aide. 1991. Comparisons of herbivory and plant defenses in temperate and tropical broad-leaved forests. Pp. 25-49. In P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson, eds. Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley & Sons, Inc., New York. Coley, P. D., and J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305-335. Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985a. Resource availability and plant antiherbivore defense. Science 230:895-899. Coley, P. D., J. P. Bryant, and F. S. I. Chapin. 1985b. Resource availability and plant antiherbivore defense. Science 230:895-899. Coope, G. 1995. The effects of Quaternary climatic changes on insect populations: Lessons from the past. Pp. 29-48. In R. Harrington, and N. Stork, eds. Insects in a Changing Environment. Academic Press, San Diego. Crane, P. R., S. R. Manchester, and D. L. Dilcher. 1991. Reproductive and Vegetative Structure of Nordenskioldia (Trochodendraceae), a Vesselless Dicotyledon from the Early Tertiary of the Northern Hemisphere. 78:1311-1334. Currano, E. D., P. Wilf, S. L. Wing, C. C. Labandeira, E. C. Lovelock, and D. L. Royer. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America 105:1960-1964. Currie, D. J., and V. Paquin. 1987. Large-scale biogeographical patterns of species richness of trees. Nature 329:326-327. Davies-Vollum, K. S., and S. L. Wing. 1998. Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood Formation, Bighorn Basin, Wyoming). Palaios 13:28-40. Dickens, G. R., J. R. O'Neil, D. K. Rea, and R. M. Owen. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10. DiMichele, W. A., H. W. Pfefferkorn, and R. A. Gastaldo. 2001. Response of Late Carboniferous and Early plant communities to climate change. Annual Review of Earth and Planetary Sciences 29:461-487. Dyer, L. A., M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner, H. C. Morais, I. R. Diniz, T. A. Kursar, and P. D. Coley. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696-U9. Ellis, B., D. C. Daly, L. J. Hickey, K. R. Johnson, J. D. Mitchell, P. Wilf, and S. L. Wing. 2008. Manual of Leaf Architecture. P. 113.

453 Ellis, B., D. C. Daly, L. J. Hickey, K. R. Johnson, J. D. Mitchell, P. Wilf, and S. L. Wing. 2009. Manual of Leaf Architecture. P. 113. Ellis, B., K. R. Johnson, and R. E. Dunn. 2003. Evidence for an in situ early Paleocene rainforest from Castle Rock, Colorado. Rocky Mountain Geology 38:73-100. Ellis, B., K. R. Johnson, R. E. Dunn, and M. R. Reynolds. 2004. The Castle Rock rainforest. Denver Museum of Nature and Science Technical Report 2004-2:1-455. Falcon-Lang, H. J. 2004. Pennsylvanian tropical rain forests responded to glacial- interglacial rhythms. Geology 32:689-692. Farrell, B. D., and A. S. Sequeira. 2004. Evolutionary rates in the adaptive radiation of beetles on plants. Evolution 58:1984-2001. Feeny, P. 1976. Plant apparency and chemical defense. Pp. 1-40. In J. W. Wallace, and R. L. Mansell, eds. Biochemical interaction between plants and insects. Plenum Press, New York. Fine, P. V. A., I. Mesones, and P. D. Coley. 2004. Herbivores promote habitat specialization by trees in amazonian forests. Science 305:663-665. Fukuda, T., H. Ito, and T. Yoshida. 2003. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 63:795-801. Gingerich, P. D. 1983. Paleocene-Eocene faunal zones and a preliminary analysis of Laramide structural deformation in the Clark's Fork Basin, Wyoming. Wyoming: Wyoming Geological Association Guidebook of the 34th Annual Field Conference:185-195. Gingerich, P. D. 1989a. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high- floodplain assemblage. University of Michigan Papers on Paleontology 28:1-97. Gingerich, P. D. 1989b. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high- floodplain assemblage. University of Michigan Papers on Paleontology 28. Gingerich, P. D. 2001a. Biostratigraphy of the continental Paleocene-Eocene boundary interval on Polecat Bench in the northern Bighorn Basin. In P. D. Gingerich, ed. Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. University of Michigan, Ann Arbor. Gingerich, P. D., ed. 2001b. Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. University of Michigan, Ann Arbor. Gingerich, P. D. 2006. Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology & Evolution 21:246-253. Givnish, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193-210. Gradstein, F. M., J. G. Ogg, and A. G. Smith, eds. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge. Grimaldi, D. A., and M. S. Engel. 2005. Evolution of the Insects. Cambridge University Press, New York. Haddad, N. M., D. Tilman, J. Haarstad, M. Ritchie, and J. M. H. Knops. 2001. Contrasting effects of plant richness and composition on insect communities: A field experiment. American Naturalist 158:17-35. Hayek, L. C., and M. A. Buzas. 1997. Surveying Natural Populations. Columbia University Press, New York. Heck, K. L., G. van Belle, and D. Simberloff. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459-1461. Hering, M. 1951. Biology of Leaf Miners. Den Hagen, Junk.

454 Hickey, L. J. 1977. Stratigraphy and Paleobotany of the (Early Tertiary) of Western North Dakota. Geological Society of America, Boulder, CO. Hickey, L. J. 1980. Paleocene stratigraphy and flora of the Clark's Fork Basin. Pp. 33-49. In P. D. Gingerich, ed. Early Cenozoic Paleontology and Stratigraphy of the Bighorn Basin, Wyoming. University of Michigan, Ann Arbor. Hicks, J. F., K. R. Johnson, J. D. Obradovich, L. Tauxe, and D. Clark. 2002. Magnetostratigraphy and geochronology of the Hell Creek and basal Fort Union Formations of southwestern North Dakota and a recalibration of the age of the Cretaceous-Tertiary boundary. Geological Society of America Special Paper 361:35-55. Higgins, J. A., and D. P. Schrag. 2006. Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum. Earth and Planetary Sciences Letters 245:523-537. Hotton, C. L. 2002. Palynology of the Cretaceous-Tertiary boundary in central Montana: Evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions. In J. H. Hartman, K. R. Johnson, and D. J. Nichols, eds. The and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous. Geological Society of America, Denver. Hurlburt, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-586. Johnson, K. R. 2002. Megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: Vegetational response to climate change, the Cretaceous- Tertiary boundary event, and rapid marine transgression. Pp. 329-391. In J. H. Hartman, K. R. Johnson, and D. J. Nichols, eds. The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains - An Integrated Continental Record at the End of the Cretaceous. Geological Society of America, Boulder, CO. Jolivet, P. 1998. Interrelationship Between Insects and Plants. CRC Press, Boca Raton. Kaufman, L., and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York. Kennett, J. P., and L. D. Stott. 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Paleocene. Nature 353:225- 229. Kidwell, S. M., and D. W. J. Bosence. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 116-211. In D. E. G. Briggs, and P. A. Allison, eds. Taphonomy, Releasing Information from the Fossil Record. Plenum Press, New York. Koch, P. L., and P. D. Gingerich. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene Boundary. Nature 358:319-322. Kraus, M. J. 2001. Sedimentology and depositional setting of the Willwood Formation in the Bighorn and Clarks Fork Basins. Pp. 15-28. In P. D. Gingerich, ed. Paleocene- Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. The University of Michigan Papers on Paleontology, Ann Arbor. Kraus, M. J., and A. Aslan. 1993. Eocene hydromorphic paleosols: Significance for interpreting ancient floodplain processes. Journal of Sedimentary Petrology 63:453-463. Kraus, M. J., and S. Riggins. 2007. Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. Palaeogeography Palaeoclimatology Palaeoecology 245:444-461.

455 Kursar, T. A., and P. D. Coley. 1991. Nitrogen-content and expansion rate of young leaves of rain-forest species - implications for herbivory. Biotropica 23:141-150. Kursar, T. A., and P. D. Coley. 1992. Delayed development of the photosynthetic apparatus in tropical rain-forest species. Functional Ecology 6:411-422. Kursar, T. A., and P. D. Coley. 2003. Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology 31:929-949. Labandeira, C. C. 1998. Early history of arthropod and associations. Annual Review of Earth and Planetary Sciences 26:329-377. Labandeira, C. C. 2002a. The history of associations between plants and animals. Pp. 26- 74. In C. M. Herrara, and O. Pellmyr, eds. Plant-Animal Interactions: An Evolutionary Approach. Blackwell Science, London. Labandeira, C. C. 2002b. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: A preliminary report. Rocky Mountain Geology 37:31-59. Labandeira, C. C. 2006. The four phases of plant-arthropod associations in deep time. Geologica Acta 4:409-438. Labandeira, C. C., K. R. Johnson, and P. Lang. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound. Pp. 297-327. In J. H. Hartman, K. R. Johnson, and D. J. Nichols, eds. The Hell Creek Formation of the northern Great Plains. Geological Society of America Special Paper, Boulder. Labandeira, C. C., K. R. Johnson, and P. Wilf. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences of the United States of America 99:2061-2066. Labandeira, C. C., P. Wilf, K. R. Johnson, and F. Marsh. 2007. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0. Smithsonian Institution, Washington, D.C. Lang, P. J. 1996. Fossil evidence for patterns of leaf-feeding from the late Cretaceous and early Tertiary. PhD. University of London. Levin, D. A. 1976. Chemical Defenses of Plants to Pathogens and Herbivores. Annual Review of Ecology and Systematics 7:121-159. Lincoln, D. E., E. D. Fajer, and R. H. Johnson. 1993. Plant Insect Herbivore Interactions in Elevated Co2 Environments. Trends in Ecology & Evolution 8:64-68. Lovelock, E. C. 2006. Undergraduate Thesis. University of Pennsylvania. Lowman, M. D. 1985. Temporal and Spatial Variability in Insect Grazing of the Canopies of 5 Australian Rainforest Tree Species. Australian Journal of Ecology 10:7-24. Lowman, M. D., and H. Heatwole. 1992. Spatial and Temporal Variability in Defoliation of Australian Eucalypts. Ecology 73:129-142. MacGinitie, H. D. 1969. The Eocene Green River Flora of Northwestern Colorado and Northeastern Utah. University of California Press, Berkeley. MacGinitie, H. D. 1974. An Early Middle Eocene Flora from the Yellowstone-Absaroka Volcanic Province, Northwestern Wind River Basin, Wyoming. University of California Press, Berkeley. Machlus, M., S. R. Hemming, P. E. Olsen, and N. Christie-Blick. 2004. Eocene calibration of geomagnetic polarity time scale reevaluated: Evidence from the Green River Formation of Wyoming. Geology 32:137-140. Manchester, S. R. 1986. Vegetative and reproductive morphology of an extinct plane tree (Platanaceae) from the Eocene of western North-America. Botanical Gazette 147:200-226. Manchester, S. R. 2001. Leaves and fruits of Aesculus (Sapindales) from the Paleocene of North America. International Journal of Plant Sciences 162:985-998.

456 Manchester, S. R. 2002. Leaves and fruits of Davidia (Cornales) from the paleocene of North America. Systematic Botany 27:368-382. Manchester, S. R., M. A. Akhmetiev, and T. M. Kodrul. 2002. Leaves and fruits of Celtis aspera (Newberry) comb. nov (Celtidaceae) from the Paleocene of North America and eastern Asia. International Journal of Plant Sciences 163:725-736. Manchester, S. R., P. R. Crane, and L. B. Golovneva. 1999. An extinct genus with affinities to extant Davidia and Camptotheca (Cornales) from the Paleocene of North America and eastern Asia. International Journal of Plant Sciences 160:188- 207. Manchester, S. R., and L. J. Hickey. 2007. Reproductive and vegetative organs of Browniea gen. N. (Nyssaceae) from the paleocene of North America. International Journal of Plant Sciences 168:229-249. Marquis, R. J., and H. E. Braker. 1994. Plant-herbivore interactions: diversity, specificity, and impact. Pp. 261-281. In L. A. McDade, K. S. Bawa, H. A. Hespenheide, and G. S. Hartshorn, eds. La Selva, Ecology and Natural History of a Neotropical Rain Forest. University of Chicago Press, Chicago. McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 28-58. In K. J. McNamara, ed. Evolutionary Trends. Belhaven Press, London. Moran, V. C., and T. R. E. Southwood. 1982. The Guild Composition of Arthropod Communities in Trees. Journal of Animal Ecology 51:289-306. Novotny, V., P. Drozd, S. E. Miller, M. Kulfan, M. Janda, Y. Basset, and G. D. Weiblen. 2006. Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115-1118. Novotny, V., S. E. Miller, J. Hulcr, R. A. I. Drew, Y. Basset, M. Janda, G. P. Setliff, K. Darrow, A. J. A. Stewart, J. Auga, B. Isua, K. Molem, M. Manumbor, E. Tamtiai, M. Mogia, and G. D. Weiblen. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature 448:692-U8. O'Brien, E. M. 1993. Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa's woody flora. Journal of Biogeography 20:181-198. Pagani, M., K. Caldera, D. Archer, and J. C. Zachos. 2006. An ancient carbon mystery. Science 314. Pielou, E. C. 1969. An Introduction to Mathematical Ecology. Wiley Interscience, New York. Price, P. W. 1991. Patterns in communities along latitudinal gradients. Pp. 51-69. In P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson, eds. Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York. Price, P. W. 2002. Resource-driven terrestrial interaction webs. Ecological Research 17:241-247. Price, P. W., G. W. Fernandes, A. C. F. Lara, J. Brawn, H. Barrios, M. G. Wright, S. P. Ribeiro, and N. Rothcliff. 1998. Global patterns in local number of insect galling species. Journal of Biogeography 25:581-591. Quispel, A. 1954. Symbiotic Nitrogen-Fixation in Non-Leguminous Plants .1. Preliminary Experiments on the Root-Nodule Symbiosis of Alnus-Glutinosa. Acta Botanica Neerlandica 3:495-511. Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:633-672.

457 Richards, L. A., and D. M. Windsor. 2007. Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. Journal of Tropical Ecology 23:169-176. Röhl, U., T. J. Bralower, R. D. Norris, and G. Wefer. 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927- 930. Rose, K. D. 1981. The Clarkforkian Land-Mammal Age and Mammalian Faunal Composition across the Paleocene-Eocene Boundary. University of Michigan, Ann Arbor. Royer, D. L., L. Sack, P. Wilf, C. H. Lusk, G. J. Jordan, Ü. Niinemets, I. J. Wright, M. Westoby, B. Cariglino, P. D. Coley, A. D. Cutter, K. R. Johnson, C. C. Labandeira, A. T. Moles, M. B. Palmer, and F. Valladares. 2007. Fossil leaf economics quantifies: calibration, Eocene case study, and implications. Paleobiology 33:574- 589. Royer, D. L., S. L. Wing, D. J. Beerling, D. W. Jolley, P. L. Koch, L. J. Hickey, and R. A. Berner. 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310-2313. Secord, R., P. D. Gingerich, and K. C. Lohman. 2007. New evidence for pre-CIE warming during the Paleocene-Eocene Thermal Maximum. Geological Society of America Abstracts with Programs 39:498. Secord, R., P. D. Gingerich, M. E. Smith, W. C. Clyde, P. Wilf, and B. S. Singer. 2006. Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming. American Journal of Science 306:211- 245. Siemann, E., D. Tilman, and J. Haarstad. 1996. Insect species diversity, abundance and body size relationships. Nature 380:704-706. Sluijs, A., H. Brinkhuis, S. Schouten, S. M. Bohaty, C. M. John, J. C. Zachos, G. J. Reichart, J. S. S. Damsté, E. M. Crouch, and G. R. Dickens. 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450:1218-U5. Smith, F. A., S. L. Wing, and K. H. Freeman. 2007. Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change. Earth and Planetary Science Letters 262:50-65. Smith, M. E., A. R. Carroll, and B. S. Singer. 2008. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geol Soc Am Bull 120:54-84. Smith, M. E., B. S. Singer, and A. R. Carroll. 2004. Reply: 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming Discussion. GSA Bulletin 116:251-256. Sokal, R. R., and F. J. Rohlf. 1995. Biometry. Third Edition. W.H. Freeman & Co, New York. Stork, N. E. 1987. Guild Structure of Arthropods from Bornean Rain-Forest Trees. Ecological Entomology 12:69-80. Sweet, A. R. 2001. Plants, a yardstick for measuring the environmental consequences of the Cretaceous-Tertiary boundary event. Geoscience Canada 28:127-138. Termonia, A., T. H. Hsiao, J. M. Pasteels, and M. C. Milinkovitch. 2001. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proceedings of the National Academy of Sciences of the United States of America 98:3909-3914. Thomas, D. J., J. C. Zachos, T. J. Bralower, E. Thomas, and S. Bohaty. 2002. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:1067-1070.

458 Tripati, A., and H. Elderfield. 2005. Deep-sea temperature and circulation changes at the Paleocene-Eocene thermal maximum. Science 308:1894-1898. Verbinski, G. 2006. Pirates of the Caribbean: Dead Man's Chest. P. 151 minutes. Walt Disney Pictures, USA. Watt, A. D., J. B. Whittaker, M. Docherty, G. Brooks, E. Lindsay, and D. T. Salt. 1995. The impact of elevated atmospheric CO2 on insect herbivores. Pp. 198-217. In R. Harrington, and N. Stork, eds. Insects in a Changing Environment. Academic Press, San Diego. Webb, L. J. 1959. A Physiognomic Classification of Australian Rain Forests. Journal of Ecology 47:551-570. Whittaker, J. B. 2001. Insects and plants in a changing atmosphere. Journal of Ecology 89:507-518. Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373-390. Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: Paleobotanical analysis. Geological Society of America Bulletin 112:292-307. Wilf, P. 2008. Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist 178:486-502. Wilf, P., and K. R. Johnson. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30:347- 368. Wilf, P., and C. C. Labandeira. 1999. Response of plant-insect associations to Paleocene- Eocene warming. Science 284:2153-2156. Wilf, P., C. C. Labandeira, K. R. Johnson, P. D. Coley, and A. D. Cutter. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. Proceedings of the National Academy of Sciences of the United States of America 98:6221-6226. Wilf, P., C. C. Labandeira, K. R. Johnson, and N. R. Cuneo. 2005. Richness of plant-insect associations in Eocene Patagonia: A legacy for South American biodiversity. Proceedings of the National Academy of Sciences of the United States of America 102:8944-8948. Wilf, P., C. C. Labandeira, K. R. Johnson, and B. Ellis. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112-1115. Wing, S. L. 1981. A study of paleoecology and paleobotany in the Willwood Formation (early Eocene, Wyoming). Yale University, New Haven, CT. Wing, S. L. 1984. Relation of paleovegetation to geometry and cyclicity of some fluvial carbonaceous deposits. Journal of Sedimentary Petrology 54:52-66. Wing, S. L. 1998. Late Paleocene-Early Eocene floral and climatic change in the Bighorn Basin, Wyoming. Pp. 380-400. In M. P. Aubry, S. G. Lucas, and W. A. Berggren, eds. Late Paleocene - Early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York. Wing, S. L. 2000. Cool, warm, cool, warm - climate oscillation and floral change during the Paleocene/Eocene boundary interval. Gff 122:182-183. Wing, S. L., J. Alroy, and L. J. Hickey. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography Palaeoclimatology Palaeoecology 115:117-155. Wing, S. L., H. Bao, and P. L. Koch. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. Pp. 197-237. In B. T. Huber, K. G. MacLeod, and S. L. Wing, eds. Warm climates in earth history. Oxford U P, Cambridge. Wing, S. L., and T. M. Bown. 1985. Fine scale reconstruction of late Paleocene-early Eocene Paleogeography in the Bighorn Basin of northern Wyoming. Pp. 93-105. In

459 R. M. Flores, and S. S. Kaplan, eds. Cenozoic Paleogeography of West-Central United States. Rocky Mountain Section - SEPM, Denver. Wing, S. L., and W. A. Dimichele. 1995. Conflict between local and global changes in plant diversity through geological time. Palaios 10:551-564. Wing, S. L., and G. J. Harrington. 2001. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539-563. Wing, S. L., G. J. Harrington, F. A. Smith, J. I. Bloch, D. M. Boyer, and K. H. Freeman. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993-996. Wing, S. L., and L. J. Hickey. 1984. The Platycarya Perplex and the Evolution of the Juglandaceae. American Journal of Botany 71:388-411. Wing, S. L., E. C. Lovelock, and E. D. Currano. 2006. Climatic and floral change during the PETM in the Bighorn Basin, Wyoming, USA. Climate & Biota of the Early Paleogene. Bilbao, Spain. Wolfe, J. A., and W. C. Wehr. 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. GSA Bulletin 1597:1-25. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender- Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, Ü. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827. Wright, I. J., and M. Westoby. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist 155:403-416. Wright, M. G., and M. J. Samways. 1998. Insect species richness tracking plant species richness in a diverse flora: gall-insects in the Cape Floristic Region, South Africa. Oecologia 115:427-433. Yamasaki, M., and K. Kikuzawa. 2003. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137:226-232. Yans, J., S. G. Strait, T. Smith, C. Dupuis, E. Steurbaut, and P. D. Gingerich. 2006. High- resolution carbon isotope stratigraphy and mammalian faunal change at the Paleocene-Eocene boundary in the honeycombs area of the southern Bighorn Basin, Wyoming. American Journal of Science 306:712-735. Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693. Zachos, J. C., U. Röhl, S. A. Schellenberg, A. Sluijs, D. A. Hodell, D. C. Kelly, E. Thomas, M. Nicolo, I. Raffi, L. J. Lourens, H. McCarren, and D. Kroon. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611-1615. Zachos, J. C., M. W. Wara, S. Bohaty, M. L. Delaney, M. R. Petrizzo, A. Brill, T. J. Bralower, and I. Premoli-Silva. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:1551- 1554. Zvereva, E. L., and M. V. Kozlov. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biology 12:27-41.

460 Vita - Ellen D. Currano

EDUCATION Pennsylvania State University, University Park, PA, 2003 – 2008. Ph.D. in geosciences, area of specialization: paleobotany, advisor: Dr. Peter Wilf.

Smithsonian Institution, Washington DC, 2006 – present. Research student in paleobiology, advisor: Dr. Scott Wing.

University of Chicago, Chicago, IL, 1999-2003. B.Sc. with honors in geophysical sciences, advisor: Dr. Munir Humayun. A.B. in biological sciences.

RESEARCH INTERESTS: fossil record of plant - insect herbivore interactions; response of terrestrial ecosystems to past environmental perturbations and implications for predicting the impact of modern, anthropogenic change; use of multivariate statistical techniques in paleobotany

RESEARCH EXPERIENCE Doctoral research. Changes in insect herbivory on angiosperm leaves across the Paleocene- Eocene boundary in the Bighorn Basin, WY. Research advisors: Drs. Peter Wilf and Scott Wing.

Undergraduate honors research. Increased concentrations of the rare earth elements in fossil bones from Laetoli, Tanzania. 2001-2002. Research advisor: Dr. Munir Humayun.

PUBLICATION E.D. Currano, P. Wilf, S.L. Wing, C.C. Labandeira, E.C. Lovelock, D.L. Royer. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. PNAS. 105: 1960- 1964.

PROFESSIONAL COMMENTARY ABOUT EDC’s WORK E.H. DeLucia, C.L. Casteel, P.D. Nabity, B.F. O’Neils. 2008. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. PNAS. 105: 1781-1782.

SCHOLASTIC HONORS AND GRANTS NSF Graduate Research Fellowship, Penn State Awards (EMS Centennial Research Award, Arnulf I Muan Fellowship, Ohmoto Scholar, Scholten-Williams-Wright Scholarship), GSA Student Research Grant, Paleontological Society Steven J. Gould Research Grant, Evolving Earth Research Fellowship, Penn State University Graduate Fellowship, University of Chicago Student Marshall, Phi Beta Kappa

TEACHING EXPERIENCE Mentor to6 undergraduate field assistants. Bighorn Basin, Wyoming, summers 2005-2007. Teaching assistant: Geosc 572 Field stratigraphy (spring 2006), Geosc 20 Planet Earth (fall 2004), Geosc 10 National Parks (spring 2005).

INVITED PRESENTATIONS ƒ E.D. Currano. Insect herbivory during global warming events in the Paleocene and Eocene, Bighorn Basin, Wyoming. Paleontological Society of Washington seminar series (10/2007), University of Maryland BEES course 609P (11/2007), Miami University (2/2008), STRI (3/2008), and Lafayette College (5/2008).

RADIO INTERVIEWS ƒ BBC. Science in Action. February 15, 2008. ƒ ABC (Australia). RN Breakfast. Interviewed by Fran Kelly. February 13, 2008. ƒ BBC. Farming Today. Interviewed by Charlotte Smith. February 13, 2008.