Doctorado En Ciencias Y Biotecnología De Plantas

Total Page:16

File Type:pdf, Size:1020Kb

Doctorado En Ciencias Y Biotecnología De Plantas DOCTORADO EN CIENCIAS Y BIOTECNOLOGÍA DE PLANTAS Análisis genómico del /ocus MATen Mycosphaerella fijiensis Tesis que-para obtener el grado de: Doctor en Ciencias Presenta: Biol. Laura Conde Ferráez Centro de Investigación Científica de Yucatán, A.C. Mérida, Yucatán, México 2007 CONTENIDO Reconocimientos Usta de figuras V Lista de tablas vii 1 Lista de abreviaturas ix Resumen xi Abstract xii INTRODUCCIÓN 1 PLANTEAMIENTO DEL PROBLEMA 3 OBJETIVOS 5 OBJETIVO GENERAL 5 OBJETIVOS PARTICULARES 5 REFERENCIAS 5 CAPITULO 1: ANTECEDENTES GENERALES 7 1.1 Antecedentes Parte 1: Generalidades de la Sigatoka negra y otras enfermedades foliares 7 1.1.1 LAS ENFERMEDADES DE MANCHA FOLIAR DEL BANANO 7 1.1.2 DISTRIBUCIÓN DE LA SIGATOKA NEGRA 8 1.1.3 DESARROLLO DE LA ENFERMEDAD DE LA SIGATOKA NEGRA 9 1.1.4 TAXONOMÍA DE Mycosphaerella fijiensis 10 1.1 .5 BIOLOGÍA Y CICLO DE VIDA DE Mycosphaerella fijiensis 11 1.1.6 GENÉTICA Y GENÓMICA DE Mycosphaerella fijiensis 13 1.2 Antecedentes parte 2: Ellocus MAT (mating-type) dede los ascomicetos: su evolución, estructura y regulación. 15 1.2.1 INTRODUCCION 15 1.2.2 LOS GENES DEL LOCUS MAT 15 1.2.3 EVOLUCIÓN DEL LOCUS MAT 16 1.2.4 ESTRUCTURA DEL CONTEXTO GENÓMICO DEL LOCUS MAT 17 1.2.5 REGULACIÓN DE LA EXPRESIÓN DE LOS GENES MAT 19 1.2.6 LOS GENES MAT EN HONGOS ANAMÓRFICOS 20 1.2.7 CONSIDERACIONES FINALES 21 1.3 REFERENCIAS 22 CAPITULO 2: MATERIALES Y MÉTODOS GENERALES 29 2.1 ESTRATEGIA EXPERIMENTAL 29 2.2 OBTENCIÓN DEL GEN DNA LIASA 29 2.3 OBTENCIÓN DEL GEN sla2 30 2.4 ESCRUTINIO DE UNA BIBLIOTECA BAC DE M. FIJIENSIS POR PCR E HIBRIDACION 31 2.5 PREPARACION E HIBRIDACION DE MEMBRANAS DEL CARIOTIPO MOLECULAR DE M. fijiensis 31 2.6 AMPLIFICACIÓN DE LOS GENES MAT POR PCR 32 2.6.1 OBTENCION DE LA CAJA HMG DE M. MUS/COLA 35 2.7 OBTENCION DE LOS IDIOMORFOS COMPLETOS 35 2.8 REFERENCIAS 36 CAPITULO 3: ANÁLISIS DEL CARIOTIPO MOLECULAR Y DE UNA BIBLIOTECA GENÓMICA BAC DE MYCOSPHAERELLA FIJIENSIS 39 3.1 INTRODUCCION 39 3.2 MATERIALES Y METODOS 40 3.2.1 Análisis del cariotipo molecular 40 3.2.1.1 Obtención de "Piugs" de micelio 40 3.2.1.2 Resolución de los cromosomas por PFGE 41 3.2.1.3 Southern Blot e Hibridaciones del cariotipo 41 3.2.1.4 Preparación de las Sondas utilizadas en las hibridaciones 42 3.2.2 Análisis de una biblioteca BAC 42 3.2.2.1 Elaboración de filtros de alta densidad 42 3.2.2.2 Escrutinio de la biblioteca por hibridación 42 3.3 RESULTADOS 43 3.3.1 Análisis del cariotipo 43 3.3.1.1 Hibridaciones del cariotipo 45 3.3.2 Obtención de fragmentos de genes flanqueantes 47 3.3.3 Escrutinio de una biblioteca BAC 4 7 3.4 DISCUSION 49 3.4.1 Análisis del cariotipo molecular 49 3.4.2 Hibridaciones del cariotipo y escrutinio de una biblioteca BAC 50 3.5 CONCLUSIONES 51 3.6 REFERENCIAS 51 CAPITULO 4: ISOLATION ANO CHARACTERIZATION OF THE MATING TYPE LOCUS OF MYCOSPHAERELLA F/J/ENSIS, THE CAUSAL AGENT OF BLACK LEAF STREAK DISEASE OF BANANA 53 4.1 INTRODUCTION 53 4.2 EXPERIMENTAL PROCEDURES 54 4.2.1 Fungal isolates and DNA extraction 54 4.2.2 PCR and DNA walking strategies 56 4.2.3 PCR confirmation of inverted sequences within the idiomorphs 56 4.2.4 Bioinformatic analyses 56 4.3 RESUL TS 57 4.3.1 PCR amplification of the HGM box and flanking genes 57 4.3.2 Long -range PCR isolation of the mat1-1 idiomorph 59 4.3.3 Characterization of the idiomorphs 59 4.3.4 ORF finding and gene prediction 63 4.3.5 Comparative analysis 63 4.4 DISCUSSION 63 4.4.1 Amplification of the HMG box 63 4.4.2 Characterization of the idiomorphs 65 4.4.3 Comparative analysis 65 4.4.4 Synteny amongst ascomycetes 66 4.4.5 The use of the idiomorphs for the study of populations and evolution.67 4.5 ACKNOWLEDGEMENTS 67 4.6 REFERENCES 67 CONCLUSIONES GENERALES Y PERSPECTIVAS 71 ANEXOS 73 RECONOCIMIENTOS Este trabajo fue posible gracias a la Beca de Doctorado, CONACYT 70133, y fue desarrollado en su mayor parte en las instalaciones del Laboratorio de Biotecnología Molecular del CICY. Agradezco profundamente a: Mi director de tesis Dr Andrew James, por su apoyo y confianza; Dra Blondy Canto Canché, por sus valiosas enseñanzas, aportaciones científicas y discusiones; Dr Edwin C.A. Abeln y Dr Cees Waalwijk por sus contribuciones en el desarrollo de este trabajo, Dr Gert H.J. Kema por discusiones y apoyo durante la estancia en su laboratorio. A la QFB Rosa Grijalva Arango y al Biol Néstor Raigosa Flores por su gran apoyo técnico , aportaciones científicas y compañerismo. En general a todos mis compañ-eros del laboratorio, por su disponibilidad, ayuda y compañerismo, sobre todo a la M.C. Leticia Peraza Echeverría, por su apoyo incondicional y por sus aportaciones al trabajo expuesto en el capítulo 3, al igual que a la Ora Cecilia Rodríguez García y la M.C. Diana Guillén Maldonado. Al personal de Plant Research lnternational por su apoyo durante la estancia realizada en el desarrollo de este trabajo, en particular a lneke de Vries, Odette Mendes y Theo Van der Lee. A mi comité tutora! y predoctoral, a los revisores de tesis, por sus comentarios y sugerencias para mejorar este trabajo: Dr Jean Philippe Vielle Calzada, Dr Alfredo Herrera Estrella, Ora Caroline Burgeff D'Hondt, Ora Aileen O'Connor Sánchez, Dr Osear Moreno Valenzuela y Ora Renata Rivera Madrid. Dedico este trabajo y mis logros a mi familia y a Dios, ya que sin ellos nada hubiera sido posible. 11 "Si no quieres perderte en el olvido tan pronto como estés muerto y corrompido, escribe cosas dignas de leerse, o haz cosas dignas de escribirse': Benjamin Franklin " .. .Debemos estudiar para saber, y debemos saber para servir[. ..] Si un necio lee muchos libros, al final sólo será un necio que ha leído muchos libros. Léelos tú, porque eso te dará conocimiento. Pero acércate con amor a la gente, y escúchala, porque eso te dará sabiduría. Y la sabiduría es más importante que el puro conocimiento, porque es conocimiento con amor''. Armando Fuentes Aguirre 111 iv LISTA DE FIGURAS Figura 1.1. Expansión de la Sigatoka negra en México y Centro América (Tomado de Orozco-Santos, 1998). 9 Figura 1.2. Etapas de Desarrollo de los síntomas de la Sigatoka negra; (a) elapas 1 y 2, (b) etapas 3 y 4, (e) etapas 5 y 6 (tomado de Mourichon et al., 1997). 10 Figura 1.3. Ciclo de vida de Mycosphaerella fijiensis (Tomado de Manzo- Sánchez et al., 2005) 12 Figura 1.4. Esporas de Mycosphaerella fijiensis: a: (1) peritecio, (2) aseas, (3) ascosporas; b: (1) estroma, (2) células conidiogenas (3) conidio (Tomado de Pons, 1987). 12 Figura 1.5. Comparación dellocus MATen cinco especies de hongos. 17 Figura 2.1. Diagrama de flujo de las reacciones de PCR que se realizan utilizando el kit DNA walking SpeedUp (Seegene ®). Figura tomada del manual del usuario. · 36 Figura 3.1 . "Piugs" de micelio incluido en agarosa 41 Figura 3.2. a) Separación de los cromosomas de M fijiensis tamaño pequeño por medio de electroforesis de campo pulsante, y teñido con SYBR green; las condiciones electroforéticas son específicas para cromosomas pequeños y se describen en materiales y métodos. b) Hibridación del los cromosomas pequeños de M fijiensis y d) de los cromosomas grandes, empleando como sonda el telómero (TTAGGG) 18 , para verificar el patrón de bandeo del cariotipo. e) Separación de los cromosomas grandes de M fijiensis por PFGE con tinción con SYBR green. 44 Figura 3.3. Autorradiografías obtenidas al hibridar con las sondas de 7 kb , mat1-1 (a) y mat1-2 (b). 45 Figura 3.4. Autorradiografías obtenidas al hibridar con las sondas de 7 kb, mat1-1 (a) y mat1-2 (b). La hibridación se realizó a 48 oc, al igual que los lavados; dos de 30 min con 2x SSC, 0.1% SOS; de 30 min y 1.5 hr con 1x SSC, 0.1% SOS y uno de 0.1x SSC, 0.1% SOS 1.5 hr. 45 Figura 3.5. a) Gel de agarosa teñido con SYBR Green, en el que se resolvieron los cromosomas de M fijiensis de hasta 2,200 kb, b) Autorradiografía obtenida al hibridar los cromosomas de 200- 2,200 kb de M fijiensis con la caja la caja HMG de M graminicola, a 48° C. Los lavados fueron a 48° C, dos de 30 m in con 2xSSC. 0.1 %SOS; y uno de 15 m in con 1 x SSC, 0.1% SOS. El film se expuso 24 hr. e) Autorradiografía obtenida al hibridar con la misma sonda a 55 °C. 46 Figura 3.6. Amplicones obtenidos utilizando oligos degenerados para la DNA liasa (a) y sla2 (b). 47 Figura 4.1. Multiple sequence alignments of predicted amino acids from a) the HMG box and b) the alpha box, of Mycosphaerella fijiensis, · Mycosphaerella musicola, Septoria passerinii, Cochliobolus V heterostrophus, Sordaria macrospora, Alternaría alternata, Colletotrichum musae, Coch/iobolus sativus, Fusarium oxysporum, Leptosphaeria maculans, Neurospcra crassa, Podospora anserina and Pyrenopeziza brassicae. 58 Figura 4.2. Diagram of the mat locus organization in Mycosphaerella fijiensis. The boxes labeled mat1-1 and mat1-2 represent the idiomorphs; the adjacent genes are labeled APC (Anaphase Promoting Complex) and DNA lyase. 60 Figura 4.3. Dotplot graph of both idiomorphs of M.
Recommended publications
  • The Taxonomy, Phylogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western Australia
    The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia By Aaron Maxwell BSc (Hons) Murdoch University Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University Perth, Western Australia April 2004 Declaration I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution Aaron Maxwell April 2004 II Acknowledgements This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received. I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell’s great wit has been a welcome addition to his wealth of knowledge. A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD’s research. Chris Dunne and Sarah Collins for writing advice.
    [Show full text]
  • Banana Black Sigatoka Pathogen Pseudocercospora Fijiensis (Synonym Mycosphaerella Fijiensis) Genomes Reveal Clues for Disease Control
    Purdue University Purdue e-Pubs Department of Botany and Plant Pathology Faculty Publications Department of Botany and Plant Pathology 2016 Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control Rafael E. Arango-Isaza Corporacion para Investigaciones Biologicas, Plant Biotechnology Unit, Medellin, Colombia Caucasella Diaz-Trujillo Wageningen University and Research Centre, Plant Research International, Wageningen, Netherlands Braham Deep Singh Dhillon Purdue University, Department of Botany and Plant Pathology Andrea L. Aerts DOE Joint Genome Institute Jean Carlier CIRAD Centre de Recherche de Montpellier Follow this and additional works at: https://docs.lib.purdue.edu/btnypubs Part of the Botany Commons, and the Plant Pathology Commons See next page for additional authors Recommended Citation Arango Isaza, R.E., Diaz-Trujillo, C., Dhillon, B., Aerts, A., Carlier, J., Crane, C.F., V. de Jong, T., de Vries, I., Dietrich, R., Farmer, A.D., Fortes Fereira, C., Garcia, S., Guzman, M.l, Hamelin, R.C., Lindquist, E.A., Mehrabi, R., Quiros, O., Schmutz, J., Shapiro, H., Reynolds, E., Scalliet, G., Souza, M., Jr., Stergiopoulos, I., Van der Lee, T.A.J., De Wit, P.J.G.M., Zapater, M.-F., Zwiers, L.-H., Grigoriev, I.V., Goodwin, S.B., Kema, G.H.J. Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics Volume 12, Issue 8, August 2016, Article number e1005876, 36p This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
    [Show full text]
  • AR TICLE a Plant Pathology Perspective of Fungal Genome Sequencing
    IMA FUNGUS · 8(1): 1–15 (2017) doi:10.5598/imafungus.2017.08.01.01 A plant pathology perspective of fungal genome sequencing ARTICLE Janneke Aylward1, Emma T. Steenkamp2, Léanne L. Dreyer1, Francois Roets3, Brenda D. Wingfield4, and Michael J. Wingfield2 1Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; corresponding author e-mail: [email protected] 2Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 4Department of Genetics, University of Pretoria, Pretoria 0002, South Africa Abstract: The majority of plant pathogens are fungi and many of these adversely affect food security. This mini- Key words: review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically genome size available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathogen evolution pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential pathogen lifestyle reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October plant pathology 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category FORTHCOMING MEETINGS FORTHCOMING (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size.
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • Morphological and Molecular Characterisation of Periconia Pseudobyssoides Sp
    Mycol Progress DOI 10.1007/s11557-013-0914-6 ORIGINAL ARTICLE Morphological and molecular characterisation of Periconia pseudobyssoides sp. nov. and closely related P. byssoides Svetlana Markovskaja & Audrius Kačergius Received: 23 April 2013 /Revised: 26 June 2013 /Accepted: 9 July 2013 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2013 Abstract Anamorphic ascomycetes of the genus Periconia, and in other European countries, 34 species of anamorphic occurring on invasive Heracleum sosnowskyi and on other fungi was established, including Periconia spp. which frequent- native Apiaceae plants were examined during this study. On ly occurred. Part of Periconia specimens were identified as P. the basis of morphological, cultural characteristics and ITS byssoides Pers., which is widely distributed on Apiaceae and sequences a new species of Periconia closely related to other herbaceous plants, but several specimens differed from P. Periconia byssoides, is described and illustrated. The new byssoides and other known Periconia species by morphological species Periconia pseudobyssoides, collected on dead stalks and cultural characters. These specimens represented a separate of Heracleum sosnowskyi, is characterized by producing taxonomic entity which is proposed here as a new species. brownish verruculose mycelium on malt-extract agar, and Most Periconia species are widely distributed terrestrial differs from P. byssoides and other known Periconia species saprobes and endophytes colonizing herbaceous and woody by producing reddish-brown, macronematous conidiophores plants in various geographical regions and habitats (Ellis with numerous percurrent proliferations, often verruculose at 1971, 1976;Matsushima1971, 1975, 1980, 1989, 1996;Rao the apex immediately below the conidial head, verrucose and Rao 1964;Subramanian1955; Subrahmanyam 1980; ovoid conidiogenous cells arising directly from the swollen Lunghini 1978; Saikia and Sarbhoy 1982; Muntañola- apical cell cut off by a septum from the stipe apex, and Cvetković et al.
    [Show full text]
  • Comparative Genomics of the Sigatoka Disease Complex On
    RESEARCH ARTICLE Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host a11111 Ti-Cheng Chang1¤, Anthony Salvucci1, Pedro W. Crous2, Ioannis Stergiopoulos1* 1 Department of Plant Pathology, University of California Davis, Davis, California, United States of America, 2 CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands ¤ Current address: Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America * OPEN ACCESS [email protected] Citation: Chang T-C, Salvucci A, Crous PW, Stergiopoulos I (2016) Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Abstract Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora The Sigatoka disease complex, caused by the closely-related Dothideomycete fungi Pseu- eumusae and Increased Virulence on the Banana docercospora musae (yellow sigatoka), Pseudocercospora eumusae (eumusae leaf spot), Host. PLoS Genet 12(8): e1005904. doi:10.1371/ and Pseudocercospora fijiensis (black sigatoka), is currently the most devastating disease journal.pgen.1005904 on banana worldwide. The three species emerged on bananas from a recent common Editor: James K. Hane, CSIRO, AUSTRALIA ancestor and show clear differences in virulence, with P. eumusae and P. fijiensis consid- Received: August 24, 2015 ered the most aggressive. In order to understand the genomic modifications associated Accepted: February 5, 2016 with shifts in the species virulence spectra after speciation, and to identify their pathogenic Published: August 11, 2016 core that can be exploited in disease management programs, we have sequenced and ana- lyzed the genomes of P.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • Pseudocercospora and Allied Genera Associated with Leaf Spots of Banana (Musa Spp.)
    VOLUME 7 JUNE 2021 Fungal Systematics and Evolution PAGES 1–19 doi.org/10.3114/fuse.2021.07.01 Pseudocercospora and allied genera associated with leaf spots of banana (Musa spp.) P.W. Crous1,2,3*, J. Carlier4, V. Roussel4, J.Z. Groenewald1 1Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands 4Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD), TA 40/02, avenue Agropolis, 34 398 Montpellier, France *Corresponding author: [email protected] Key words: Abstract: The Sigatoka leaf spot complex on Musa spp. includes three major pathogens: Pseudocercospora, namely multi-gene phylogeny P. musae (Sigatoka leaf spot or yellow Sigatoka), P. eumusae (eumusae leaf spot disease), and P. fijiensis (black leaf Mycosphaerella streak disease or black Sigatoka). However, more than 30 species of Mycosphaerellaceae have been associated with new taxa Sigatoka leaf spots of banana, and previous reports of P. musae and P. eumusae need to be re-evaluated in light of Sigatoka leaf spots recently described species. The aim of the present study was thus to investigate a global set of 228 isolates ofP. musae, systematics P. eumusae and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (rpb2), translation elongation factor 1-alpha gene (tef1), beta-tubulin gene (tub2), and the actin gene (act)] to confirm if these isolates represent P.
    [Show full text]
  • Functional Genetics and Genomics of the Banana Black Sigatoka Pathogen Pseudocercospora Fijiensis
    Functional genetics and genomics of the banana black Sigatoka pathogen Pseudocercospora fijiensis Caucasella Díaz-Trujillo Thesis committee Promotors Prof. Dr G.H.J. Kema Special Professor Tropical Phytopathology Wageningen University & Research Prof. Dr P.J.G.M. de Wit Emeritus Professor of Phytopathology Wageningen University & Research Co-promotor Prof. Dr R.E. Arango Associate professor at the National University of Colombia, School of Biosciencies, Faculty of Sciences. Colombia Head of Plant Biotechnology Unit, Corporación para Investigaciones Biológicas (CIB). Colombia Other members Prof. Dr J.A.G.M. de Visser, Wageningen University & Research Dr M.H. Lebrun, INRA, Thiverval-Grignon, France Dr C. Waalwijk, Wageningen University & Research Dr L. De Lapeyre De Bellaire, CIRAD, Montpellier, France This research was conducted under auspices of the Graduate School Experimental Plant Sciences Functional genetics and genomics of the banana black Sigatoka pathogen Pseudocercospora fijiensis Caucasella Díaz-Trujillo Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 6 June 2018 at 1:30 p.m. in the Aula. 3 Caucasella Díaz Trujillo Functional genetics and genomics of the banana black Sigatoka pathogen Pseudocercospora fijiensis, 246 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands, (2018) With references,
    [Show full text]
  • The Mitochondrial Genome of a Plant Fungal Pathogen Pseudocercospora Fijiensis (Mycosphaerellaceae), Comparative Analysis and Di
    life Article The Mitochondrial Genome of a Plant Fungal Pathogen Pseudocercospora fijiensis (Mycosphaerellaceae), Comparative Analysis and Diversification Times of the Sigatoka Disease Complex Using Fossil Calibrated Phylogenies Juliana E. Arcila-Galvis 1, Rafael E. Arango 2,3, Javier M. Torres-Bonilla 2,3,4 and Tatiana Arias 1,*,† 1 Corporación para Investigaciones Biológicas, Comparative Biology Laboratory, Cra 72A Medellín, Antioquia, Colombia; [email protected] 2 Escuela de Biociencias, Universidad Nacional de Colombia-Sede Medellín, Cl 59A Medellín, Antioquia, Colombia; [email protected] (R.E.A.); [email protected] (J.M.T.-B.) 3 Corporación para Investigaciones Biológicas, Plant Biotechnology Unit, Cra 72A Medellín, Antioquia, Colombia 4 Colegio Mayor de Antioquia, Grupo Biociencias, Cra 78 Medellín, Antioquia, Colombia * Correspondence: [email protected]; Tel.: +57-300-845-6250 † Current address: Tecnológico de Antioquia, Cl 78B Medellín, Antioquia, Colombia. Abstract: Mycosphaerellaceae is a highly diverse fungal family containing a variety of pathogens affecting many economically important crops. Mitochondria play a crucial role in fungal metabolism Citation: Arcila-Galvis, J.E.; Arango, and in the study of fungal evolution. This study aims to: (i) describe the mitochondrial genome R.E.; Torres-Bonilla, J.M.; Arias, T. of Pseudocercospora fijiensis, and (ii) compare it with closely related species (Sphaerulina musiva, The Mitochondrial Genome of a Plant S. populicola, P. musae and P. eumusae) available online, paying particular attention to the Sigatoka Fungal Pathogen Pseudocercospora disease’s complex causal agents. The mitochondrial genome of P. fijiensis is a circular molecule of fijiensis (Mycosphaerellaceae), 74,089 bp containing typical genes coding for the 14 proteins related to oxidative phosphorylation, Comparative Analysis and 2 rRNA genes and a set of 38 tRNAs.
    [Show full text]
  • Comparative Genomics of the Sigatoka Disease
    RESEARCH ARTICLE Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host a11111 Ti-Cheng Chang1¤, Anthony Salvucci1, Pedro W. Crous2, Ioannis Stergiopoulos1* 1 Department of Plant Pathology, University of California Davis, Davis, California, United States of America, 2 CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands ¤ Current address: Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America * OPEN ACCESS [email protected] Citation: Chang T-C, Salvucci A, Crous PW, Stergiopoulos I (2016) Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Abstract Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora The Sigatoka disease complex, caused by the closely-related Dothideomycete fungi Pseu- eumusae and Increased Virulence on the Banana docercospora musae (yellow sigatoka), Pseudocercospora eumusae (eumusae leaf spot), Host. PLoS Genet 12(8): e1005904. doi:10.1371/ and Pseudocercospora fijiensis (black sigatoka), is currently the most devastating disease journal.pgen.1005904 on banana worldwide. The three species emerged on bananas from a recent common Editor: James K. Hane, CSIRO, AUSTRALIA ancestor and show clear differences in virulence, with P. eumusae and P. fijiensis consid- Received: August 24, 2015 ered the most aggressive. In order to understand the genomic modifications associated Accepted: February 5, 2016 with shifts in the species virulence spectra after speciation, and to identify their pathogenic Published: August 11, 2016 core that can be exploited in disease management programs, we have sequenced and ana- lyzed the genomes of P.
    [Show full text]
  • Mycosphaerellaceae): Variation in Mitochondrial
    bioRxiv preprint doi: https://doi.org/10.1101/694562; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Comparative genomics in plant fungal pathogens (Mycosphaerellaceae): variation in mitochondrial composition due to at least five independent intron invasions Juliana E. Arcila 1, Rafael E. Arango 2, 3, Javier M. Torres 2,3 and Tatiana Arias 1* 1. Corporación para Investigaciones Biológicas, Medellín, Colombia. Cra 72A #78b-141, Comparative Biology Laboratory, Medellín, Colombia 2. Corporación para Investigaciones Biológicas, Medellín, Colombia. Cra 72A #78b-141, Plant Biotechnology Unit, Medellín, Colombia 3. Universidad Nacional de Colombia, Cl. 59a #63-20, office 14-324, Biosciences School, Medellín, Colombia. E-mail addresses:[email protected], [email protected], [email protected], [email protected] * Corresponding authors at: [email protected] Abstract Fungi provide new opportunities to study highly differentiated mitochondrial DNA. Mycosphaerellaceae is a highly diverse fungal family containing a variety of pathogens affecting many economically important crops. Mitochondria plays a major role in fungal metabolism and fungicide resistance but up until now only two annotated mitochondrial genomes have been published in this family. We sequenced and annotated mitochondrial genomes of selected Mycosphaerellaceae species that diverged ~66 MYA. During this time frame, mitochondrial genomes expanded significantly due to at least five independent invasions of introns into different electron transport chain genes. Comparative analysis revealed high variability in size and gene order among mitochondrial genomes even of closely related organisms, truncated extra gene copies and, accessory genes in some species.
    [Show full text]