1912 - 2012 Centenary of the Eiffel Wind Tunnel "Le Vent, Mon Ennemi…" Gustave Eiffel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving the Technical Knowledge and Background Level in Engineering Training by the Education Digitalization Process
E3S Web of Conferences 273, 12099 (2021) https://doi.org/10.1051/e3sconf/202127312099 INTERAGROMASH 2021 Improving the technical knowledge and background level in engineering training by the education digitalization process Konstantin Kryukov, Svetlana Manzhilevskaya*, Konstantin Tsapko, and Irina Belikova Don State University, 344000, Rostov-on-Don, Russia Abstract. The modern technical education digitalization implies an increase in the role of the information component in the training of students. At the same time there is a certain gap between the modern technologies training and the understanding of the fact that construction industry is the mixture of historically formed features and the current state of the industry. Nowadays construction industry is under continuous technical development. The main danger of an insufficient attention to the special aspects of the construction development is the neglect of the preservation of cultural background and architectural heritage, which can be observed in the modern life. The article deals with the issues of improving the effectiveness of the educational process of students by introducing into the educational training process not only modern methods of designing building structures, but also the issues of understanding the history of the emergence of individual construction objects. The construction object can't appear out of nothing. All constructive solution is preceded by a historical situation the situation of cultural and architectural heritage. However, there is no discernible connection between technical education and the humanities and social sciences. The authors use historical examples to justify the need for the use of elements of the humanities by a teacher of a higher technical educational institution with the introduction of the capabilities of modern digital information modeling technologies. -
Gustave Eiffel, a Pioneer of Aerodynamics
Int. J. Engineering Systems Modelling and Simulation, Vol. 5, Nos. 1/2/3, 2013 3 Gustave Eiffel, a pioneer of aerodynamics Bruno Chanetz* Onera, 8 rue des Vertugadins, F-92 190 Meudon, France Fax: +33-1-46-23-51-58 and University Paris-Ouest, LTIE-GTE, EA 4415, 50 rue de Sèvres, F-92410 Ville d’Avray, France Fax: +33-1-40-97-48-73 E-mail: [email protected] E-mail: [email protected] *Corresponding author Martin Peter Laboratoire Aérodynamique Eiffel, 68 rue Boileau, F-75016 Paris E-mail: [email protected] Abstract: At the beginning of the 20th century, Gustave Eiffel contributes with Ludwig Prandtl to establish a new science: aerodynamics. He was going to study the forces to which he was confronted as engineer during his life: gravity and wind. Keywords: Eiffel wind tunnel; diffuser; laminar regime; turbulent regime; transition; drag of the sphere; Eiffel chamber. Reference to this paper should be made as follows: Chanetz, B. and Peter, M. (2013) ‘Gustave Eiffel, a pioneer of aerodynamics’, Int. J. Engineering Systems Modelling and Simulation, Vol. 5, Nos. 1/2/3, pp.3–7. Biographical notes: Bruno Chanetz joins Onera in 1983 as a Research Engineer. He was the Head of Hypersonic Group in 1990, Head of Hypersonic Hyperenthalpic Project in 1997 and Head of Experimental Simulation and Physics of Fluid Unit in 1998, then Deputy Director of the Fundamental and Experimental Aerodynamics Department in 2003. He was a Lecturer in Charge of the course ‘Boundary Layer’ at the Ecole Centrale de Paris from 1996 to 2003, then Associate Professor at the University of Versailles from 2003 to 2009. -
Numerical Optimization and Wind-Tunnel Testing of Low
Numerical Optimization and WindTunnel Testing of Low ReynoldsNumber Airfoils y Th Lutz W Wurz and S Wagner University of Stuttgart D Stuttgart Germany Abstract A numerical optimization to ol has been applied to the design of low Reynolds number airfoils Re The aero dynamic mo del is based on the Eppler co de with ma jor extensions A new robust mo del for the calculation of short n transitional separation bubbles was implemented along with an e transition criterion and Drelas turbulent b oundarylayer pro cedure with a mo died shap efactor relation The metho d was coupled with a commercial hybrid optimizer and applied to p erform unconstrained high degree of freedom optimizations with ob jective to minimize the drag for a sp ecied lift range One resulting airfoil was tested in the Mo del WindTunnel MWT of the institute and compared to the classical RG airfoil In order to allow a realistic recalculation of exp eriments conducted in the MWT the limiting nfactor was evaluated for this facility A sp ecial airfoil featuring an extensive instability zone was designed for this purp ose The investigation was supplemented by detailed measurements of the turbulence level Toget more insight in design guidelines for very low Reynolds numb er airfoils the inuence of variations of the leadingedge geometry on the aero dynamic characteristics was studied exp erimentally at Re Intro duction For the Reynoldsnumber regime of aircraft wingsections Re sophisticated di rect and inverse metho ds for airfoil analysis and design are available -
French Follow in the Footsteps of Gustave Eiffel
Follow in the footsteps of Gustave Eiffel Your mission is to construct, paint or draw your own version of the Eiffel Tower, and then fly your school flag (of your own design) from the top. Here are some ideas of ways to construct your Eiffel Tower: • Spaghetti and marshmallows • Straws and blue tack • Lego • Junk (boxes, bottles, kitchen rolls, cardboard etc) • String and pins (be careful!) • Anything else you can think of! If you are painting or drawing your Eiffel Tower, choose whichever medium (or mixture of mediums) you like: pencil, pen, crayon, oil pastel, watercolour, finger prints, light and shadows… Get inspired! Gustave Eiffel (1832-1923) La Tour Eiffel * French Civil Engineer and *Global cultural icon Architect *Most visited paying monument in the world *In his early career, he concentrated on building *Made of iron bridges *Is repainted every seven years *His company was responsible *Weighs 10000 tonnes for building the Eiffel Tower for *There are 1665 steps to climb the Universal Exhibition of 1889 *There are 5 million lights on the *Gustave Eiffel also helped to Eiffel Tower build the Statue of Liberty https://www.youtube.com/ *Gustave Eiffel only intended the watch?v=5CQoP-G5fx8 Eiffel tower to stand for 20 years, but once Parisians got used to it, https://www.toureiffel.paris/en they didn’t want it to go! https://www.youtube.com/ *Gustave Eiffel had a private watch?v=qPR24LBnRzQ apartment at the top of the Eiffel Tower! https://www.toureiffel.paris/en/ the-monument/gustave-eiffel Some ideas using food!! . -
Comparison of Wind Tunnel Airfoil Performance Data with Wind Turbine Blade Data
SERI/TP-254·3799 UC Category: 261 DE90000343 Comparison of Wind Tunnel Airfoil Performance Data with Wind Turbine Blade Data C. P. Butterfield G. N. Scott W. Musial July 1990 presented at the 25th lntersociety Energy Conversion Engineering Conference (sponsored by American Institute of Aeronautics and Astronautics) Reno, Nevada 12-17 August 1990 Prepared under Task No. WE011 001 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401-3393 Prepared for the U.S. Department of Energy Contract No. DE-AC02-83CH1 0093 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche A01 Printed Copy A02 Codes are used for pricing all publications. -
Taller Than Eiffel's Tower: the London and Chicago Tower Projects, 1889
Taller Than Eiffel's Tower: The London and Chicago Tower Projects, 1889-1894 Author(s): Robert Jay Reviewed work(s): Source: Journal of the Society of Architectural Historians, Vol. 46, No. 2 (Jun., 1987), pp. 145-156 Published by: University of California Press on behalf of the Society of Architectural Historians Stable URL: http://www.jstor.org/stable/990183 . Accessed: 02/02/2012 10:22 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of California Press and Society of Architectural Historians are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Society of Architectural Historians. http://www.jstor.org Taller than Eiffel's Tower: The London and Chicago Tower Projects, 1889-1894 ROBERT J A Y University of Hawaii During the later 19th century the rapid spread of iron and steel buildingtechnology created an engineers'architecture in which tech- nical problemsfrequently took priority over traditionalconcerns of E::::~ architecturalstyle. Perhapsno otherstructure represents a moredra- 1~ ;~~ matic statement this new in architecturethan the a,; of spirit Eiffel ~~I; "? Tower. Yet while the controversysurrounding the buildingof the Tower is well known, the almost immediateattempts on the ~:-????--a Eiffel ~iiQ ~ part of Americanand British engineersand architectsto builda taller :si:2~ ~8;? towerare not. -
Eiffel Towerby: Elliot
Eiffel Tower by: Elliot Where is the structure located? The Eiffel Tower is located in Paris, France; which is located in Europe. The Eiffel tower is one of the wonders in the globe. About one hundred sixty-seven million people have visited the Eiffel Tower in France. Who built the structure? The person who built the Eiffel tower is called, Alexandre Gustave Eiffel. Eiffel was born on December 15, 1832 and died on December 28, 1923. He was one of the greatest (civil) engineers of all time. After he graduated from École Centrale des Arts et Manufactures in 1885, he began constructing objects out of metal. He began constructing the Eiffel tower in 1887 and finished two years later (1889). After the Eiffel tower was completed, he was known as The Magician of Iron. The Eiffel tower is made of wrought iron. Why was the structure built? Alexandre Gustave Eiffel built the Eiffel Tower for the 1889 world’s fair in May. The world’s fair was for the hundredth centenary of the French revolution. They thought it was a great idea. It was one of the tallest buildings of its time until the Chrysler building was built. How does this structure develop or change? The Eiffel tower is repainted every seven years with fifty tons of dark, brown paint so it won’t look rusty. They paint the Eiffel tower with three shades of brown. The bottom of the Eiffel is the darkest shade of brown and the top is the lightest shade. They paint it with fifteen hundred paint brushes and only twenty-five painters in fifteen months. -
List of European Entities of Mondelēz International, Inc Group of Companies
List of European entities of Mondelēz International, Inc Group of companies AUSTRIA - ÖSTERREICH Mondelez Österreich GmbH Fohrenburgstraße 1, A-6700 Bludenz Mondelez Europe Services GmbH - Fohrenburgstraße 1, A-6700 Bludenz Zweigniederlassung Österreich BELGIUM - BELGIË Mondelez Belgium BVBA Stationsstraat 100, 2800 Mechelen Mondelez Belgium Services BVBA Stationsstraat 100, 2800 Mechelen Nouvelle Route de Suarlée 6, 5020 Namur Confibel SPRL (Rhisnes) BULGARIA - БЪЛГАРИЯ България, София 1766 Монделийз България ЕООД/ Ул. Бизнес парк София 1, Сграда 3, Ет. 4 / Mondelez Bulgaria EOOD Bulgaria, 1766 Sofia 1 Business Park Sofia Str., Building 3, floor 4 Монделийз Юръп Сървисиз“ ГмбХ – клон България, София 1766 България Ул. Бизнес парк София 1, Сграда 3, Ет. 4 / Mondelez Europe Services GmbH - Bulgarian Bulgaria, 1766 Sofia branch 1 Business Park Sofia Str., Building 3, floor 4 CROATIA - HRVATSKA Mondelez Zagreb d.o.o. Radnička cesta 80, 10000 Zagreb, Hrvatska Mondelez Europe Services GmbH - Podruznica Radnička cesta 80, 10000 Zagreb, Hrvatska Zagreb CZECH REPUBLIC - ČESKÁ REPUBLIKA Mondelez Czech Republic s.r.o. Karolinská 661/4, 186 00 Praha 8 Karlín Mondelez Europe Services GmbH – odštěpný Karolinská 661/4, 186 00 Praha 8 Karlín závod Česká republika DENMARK - DANMARK Fra og med den 15. juni 2018 er vores adresse Ringager 2 A, 2.tv., 2605 Brøndby. Mondelez Danmark ApS Indtil denne dato er adressen Søndre Ringvej 55, 2605 Brøndby Fra og med den 15. juni 2018 er vores Mondelez Danmark Services, filial af Mondelez adresse Ringager 2 A, 2.tv., 2605 Brøndby. Europe Services GmbH, Schweiz Indtil denne dato er adressen Søndre Ringvej 55, 2605 Brøndby FINLAND - SUOMI Mondelez Finland Oy Tammiston kauppatie 7B, FI-01510 Vantaa Mondelez Europe Services GmbH - sivuliike Tammiston kauppatie 7B, FI-01510 Vantaa Suomessa FRANCE Mondelez France SAS 6 avenue Reaumur, 92140 Clamart Centre d'affaires Dillon Valmeniere - Bat. -
Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
Statue of Liberty
Statue of Liberty https://www.ducksters.com/history/us_1800s/statue_of_liberty.php ushistorystatueofliberty.mp3 The Statue of Liberty Photo by Ducksters The Statue of Liberty is a large statue that stands on Liberty Island in New York Harbor. The statue was a gift from the people of France and was dedicated on October 28, 1886. It has become one of the most iconic symbols of the United States of America. The official name of the statue is "Liberty Enlightening the World", but she also goes by other names including "Lady Liberty" and the "Mother of Exiles." What does she represent? The statue represents the freedom and liberty of the United States democracy. The figure is modeled after a Roman goddess named Libertas. The torch she holds high represents the enlightenment of the world. There are also broken chains at her feet that symbolize the United State breaking free from tyranny. She holds a tablet in her left hand that represents the law and has July 4, 1776 inscribed on it in Roman numerals. How tall is she? Statue of Liberty https://www.ducksters.com/history/us_1800s/statue_of_liberty.php The height of the statue from the base to the tip of the torch is 151 feet 1 inch (46 meters). If you include the pedestal and the foundation, she is 305 feet 1 inch tall (93 meters). This is about the height of a 30 story building. Some other interesting measurements for the statue include her head (17 feet 3 inches tall), her nose (4 feet 6 inches long), her right arm (42 feet long), and her index finger (8 feet long). -
Famous French People Gustave Eiffel © by Robert Shepherd
Famous French People Gustave Eiffel © by Robert Shepherd Hello, you're listening to Robert Shepherd on EnglishWaves. It's time to review the life of a great civil engineer and architect who was behind the creation of France's most famous free- standing structure and New York's Statue of Liberty. He is of course Gustave Eiffel. He was born Alexandre Gustave Bönickhausen in the French city of Dijon, on 15th December 1832. The family surname Eiffel was adopted - a nod to the Eifel mountains near where they came from. They always went by the name Eiffel, but Gustave's surname was only formally changed from Bönickhausen in 1880. Eiffel knew very early on what he wanted to do with his life, so he studied at the École Centrale in Paris. Having graduated in 1855, Eiffel specialized in metal construction, most notably bridges and worked on several over the next few decades. One of Eiffel's early projects came about in 1858, when he oversaw the building of an iron bridge in Bordeaux. By 1866 Eiffel had set up his own company and by the time he designed the arched Gallery of Machines for the Paris Exhibition in 1867, his reputation was solid. His works include the 525-foot steel-arched Ponte Maria Pia Bridge in Oporto and the renowned 540-foot Viaduc de Garabit in France. Suspended 400 feet above the surface of the water, it was the highest bridge in the world for years after its construction. However, Eiffel moved away from bridges and that's when he created his most famous structures.