Existence and Importance of Magnetic Fields in Tight Pairs and Groups of Galaxies 15 3 Summary of the Published Articles 17 3.1

Total Page:16

File Type:pdf, Size:1020Kb

Existence and Importance of Magnetic Fields in Tight Pairs and Groups of Galaxies 15 3 Summary of the Published Articles 17 3.1 EXISTENCEANDIMPORTANCEOFMAGNETICFIELDSIN TIGHTPAIRSANDGROUPSOFGALAXIES błazej˙ nikiel-wroczynski´ A PhD thesis written under the supervision of Professor Marek Urbanik and co-supervision of Doctor Marek Jamrozy Astronomical Observatory Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University June 2015 Błazej˙ Nikiel-Wroczy´nski: Existence and importance of magnetic fields in tight pairs and groups of galaxies, © June 2015 supervisors: Prof. dr hab. Marek Urbanik Dr Marek Jamrozy alma mater: Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science Dedication This work is dedicated to Rugia for being (probably unknowingly) an Earth-based analogue of the MHD dynamo, that amplified my determination to collect all the presented articles into one thesis, transferring the kinetic energy of my turbulent movements into a genuinely regular (not just anisotropic), scientific dissertation. ABSTRACT This dissertation is an attempt to investigate the existence and role of the intergalactic magnetic fields in compact groups and tight pairs of galaxies. Radio emission from several, well known objects of these types is analysed and properties of the discovered intergalactic mag- netised structures are discussed. Together, these results are used to show that wherever found, intergalactic magnetic fields play impor- tant role in the galactic dynamics and evolution. Non-thermal, in- tergalactic radio emission, which signifies existence of the magnetic fields, can be used as a very sensitive tracer of interactions and gas flows. Unusual magnetised objects and structures can be found in the intergalactic space, and their studies open a possibility to discover more about the cosmic magnetism itself. v PUBLICATIONS This dissertation has been written as a summary of the scientific ac- tivities previously reported in these articles: • Nikiel-Wroczy ´nski,B., Jamrozy, M., Soida, M., Urbanik, M., Multiwavelength study of the radio emission from a tight galaxy pair Arp 143, 2014, MNRAS, 444, 1729 • Nikiel-Wroczy ´nski,B., Soida, M., Bomans, D. J., Urbanik, M., Discovery of a Tidal Dwarf Galaxy in the Leo Triplet, 2014, ApJ, 786, 144 • Nikiel-Wroczy ´nski,B., Soida, M., Urbanik, M., Beck, R., Bo- mans, D. J., Intergalactic magnetic fields in Stephan’s Quintet, 2013, MNRAS, 435, 149 • Nikiel-Wroczy ´nski,B., Soida, M., Urbanik, M., Wezgowiec,˙ M., Beck, R., Bomans, D. J., Adebahr, B., Radio continuum observations of the Leo Triplet at 2.64 GHz, 2013, A&A, 553, 4 A single article just submitted to the MNRAS was also referred to: • Nikiel-Wroczy ´nski,B., Jamrozy, M., Soida, M., Urbanik, M., Knapik, J., Probing the magnetic field of the nearby galaxy pair Arp 269, submitted to MNRAS at 10.06.2015 vii After sleeping through a hundred million centuries we have finally opened our eyes on a sumptuous planet, sparkling with colour, bountiful with life. Within decades we must close our eyes again. Isn’t it a noble, an enlightened way of spending our brief time in the Sun, to work at understanding the Universe and how we have come to wake up in it? — Richard Dawkins, Unweaving the Rainbow ACKNOWLEDGEMENTS First and foremost, I would like to thank my Advisor, Professor Marek Urbanik of the Jagiellonian University in Krakow, for inevitable help, guidance, and ideas for new research projects. Without his help, it would not be possible to write this dissertation. I am very thankful to my Co-Advisor, Dr Marek Jamrozy, who has shown me how useful the metrewave radioastronomy can be, and spent enormous amount of time with me to reduce and analyse data in all the projects done with the help of the GMRT. Great thanks should be given to Dr hab. Marian Soida, who was keen for long discussions of physics that lies beyond the detected struc- tures, taught me how to analyse both interferometric and single-dish data, and was always willing to help me with any usual, or unusual problems I ran into while analysing the observations. Dr hab. Krzysztof Chyzy˙ and the whole personnel of the Department of Radio Astronomy and Space Physics of the Astronomical Obser- vatory of the Jagiellonian Univeristy should also be mentioned here. Thank you for being my work colleagues for more than four years I spent as a PhD student, giving me a possibility to learn a lot about the cosmic magnetism – not only in Kraków, but also in various insti- tutions throughout the world, to where I was made able to travel. I wish to thank Dr Rainer Beck and Dr Andreas Horneffer from the Max-Planck Instut für Radioastronomie in Bonn, Professor Ralf- Jürgen Dettmar and Privat-Dozent Dr. Dominik Bomans of the As- tronomisches Institut der Ruhr-Universität Bochum, and Dr George Heald and Dr Roberto Pizzo from ASTRON, the Netherlands Insti- tute for the Radio Astronomy, as well as the whole crews of the afore- mentioned Institutes. Gates of these Institutions were always open for ix me, and it would be impossible to complete this thesis without the helping hand lent by them. I would also like to thank the personnel of the Effelsberg Telescope of the Max-Planck Instut für Radioastronomie, the Karl G. Jansky Very Large Array in Socorro, NM, and the Giant Metrewave Radio Tele- scope near Pune, India for performing the observations that made my studies possible. Finally, I acknowledge funding from the scientific grant from the Na- tional Science Centre (NCN), dec. No. 2011/03/B/ST9/01859, which was used for most of my scientific activities that were connected to this dissertation. x Contents I current state of the knowledge1 1 introduction3 1.1. Galaxy systems . 3 1.2. The reasons beyond this thesis . 4 2 magnetic fields in galaxies and beyond7 2.1. Physics of cosmic magnetic fields . 7 2.1.1. Origin and amplification of cosmic magnetic fields 7 2.1.2. Methods of observing and studying galactic mag- netic field . 8 2.1.3. Polarisation of the synchrotron emission . 9 2.2. Magnetic fields in galaxies . 10 2.3. What was previously known about the magnetised in- tergalactic medium? . 11 II on the existence and importance of magnetic fields in tight pairs and groups of galaxies 15 3 summary of the published articles 17 3.1. Probing the intergalactic medium of an iconic gas streamer: Leo Triplet at 2.64 GHz . 17 3.2. Where five worlds collide: the magnetised intragroup medium of the Stephan’s Quintet . 18 3.3. Collisional ring of radio emission: galaxy pair Arp 143 21 3.4. The side study of Leo Triplet: detection of the most proximate tidal dwarf galaxy . 23 3.5. A magnetised tail that does not follow the neutral one: the case of Arp 269 ..................... 24 4 conclusions: what can be said about the mag- netic fields in galaxy pairs and groups? 27 4.1. Can the magnetic field play a significant role in an in- tergalactic structure? . 27 4.2. How useful is the magnetic field as an interaction tracer? 27 4.3. What can we learn about the magnetic field itself while detecting it in the intergalactic medium? . 28 4.3.1. A prospect for the further study: unexpected ar- eas of magnetic field amplification and regular- isation . 28 4.3.2. To which phase of the ISM is the magnetic field bound to? . 29 xi 4.4. The final word on the intergalactic magnetic fields . 29 III appendix 31 a.1. Radio continuum observations of the Leo Triplet at 2.64 GHz.............................. 33 a.1.1. Introduction . 33 a.1.2. Observations . 34 a.1.3. Results . 34 a.1.4. Discussion . 35 a.1.5. Summary and conclusions . 37 a.1.6. References . 38 a.2. Intergalactic magnetic fields in Stephans Quintet . 39 a.2.1. Introduction . 39 a.2.2. Observations and data reduction . 40 a.2.3. Results . 41 a.2.4. Discussion . 43 a.2.5. Conclusions . 46 a.2.6. Acknowledgements . 47 a.2.7. References . 47 a.3. Discovery of a tidal dwarf galaxy in the Leo Triplet . 49 a.3.1. Introduction . 49 a.3.2. Observations and data reduction . 50 a.3.3. Results . 50 a.3.4. Discussion . 51 a.3.5. Summary . 53 a.3.6. Acknowledgements . 53 a.3.7. References . 53 a.4. Multiwavelength study of the radio emission from a tight galaxy pair Arp 143 ................. 55 a.4.1. Introduction . 55 a.4.2. Observations and data reduction . 56 a.4.3. Results . 56 a.4.4. Discussion . 59 a.4.5. Conclusions . 62 a.4.6. Acknowledgements . 63 a.4.7. References . 63 a.5. Probing the magnetic field of the nearby galaxy pair Arp 269 ............................ 65 a.5.1. Introduction . 66 a.5.2. Observations and data reduction . 67 a.5.3. Results . 69 a.5.4. Analysys and discussion . 70 a.5.5. Conclusions . 77 a.5.6. Acknowledgements . 77 a.5.7. References . 77 bibliography 79 xii ACRONYMS AGN Active Galactic Nuclei DSS Digitized Sky Survey HCG Hickson Compact Group IGM Intergalactic medium ISM Interstellar medium JVLA Karl G. Jansky Very Large Array, the name for the modernised VLA FGC Flat Galaxies Catalogue by Karachentsev et al. 1993, a catalogue of 4455 flat, edge-on galaxies GMRT Giant Metrewave Radio Telescope near Pune, India MHD Magneto-Hydrodynamics NGC New General Catalogue – Dreyer’s catalogue of 7840 nebulae, from 1881 NVSS The NRAO VLA Sky Survey, a 1.4 GHz continuum survey of the entire radio sky north of -40 deg declination, published by Condon et al. in 1998 POSS Palomar Observatory Sky Survey RGB Red, Green, and Blue colour model RVB Red, Visible, and Blue bands of the Johnson’s UBVRI system SDSS Sloan Digital Sky Survey TDG Tidal Dwarf Galaxy UGC Uppsala General Catalogue of 12921 galaxies, first published by Nilson in 1973 VATT Vatican Advanced Technology Telescope VLA the Very Large Array radio interferometer near Socorro, USA The term inter- refers to the matter and structures outside of an object, whereas the term intra- refers to matter and structures inside it.
Recommended publications
  • Hubble Space Telescope Images of Stephan's Quintet
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Hubble Space Telescope Images of Stephan's Quintet: Star Cluster Formation in a Compact Group Environment1;2 Sarah C. Gallagher, Jane C. Charlton3, Sally D. Hunsberger Department of Astronomy and Astrophysics The Pennsylvania State University University Park PA 16802 gallsc, charlton, [email protected] Dennis Zaritsky Steward Observatory University of Arizona Tucson, AZ 85721 [email protected] and Bradley C. Whitmore Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 [email protected] ABSTRACT Analysis of Hubble Space Telescope/Wide Field Planetary Camera 2 images of Stephan’s Quintet, Hickson Compact Group 92, yielded 115 candidate star clusters (with V I<1:5). Unlike in merger remants, the cluster candidates in Stephan’s Quintet are not clustered in the inner− regions of the galaxies; they are spread over the debris and surrounding area. Specifically, these sources are located in the long sweeping tail and spiral arms of NGC 7319, in the tidal debris of NGC 7318B/A, and in the intragroup starburst region north of these galaxies. Analysis of the colors of the clusters indicate several distinct epochs of star formation that appear to trace the complex history of dynamical interactions in this compact group. Subject headings: galaxies: interactions | galaxies: individual (NGC 7318A, NGC 7318B, NGC 7319) | galaxies: star clusters | intergalactic medium 1. Introduction the central regions of mergers (Holtzman et al. 1992; Whitmore et al. 1993; Schweizer et al. 1996; Miller et al. The interactions of galaxies trigger bursts of star for- 1997; Whitmore et al.
    [Show full text]
  • The Leo-I Group: New Dwarf Galaxy and UDG Candidates Oliver Müller1, Helmut Jerjen2, and Bruno Binggeli1
    Astronomy & Astrophysics manuscript no. aanda c ESO 2018 February 26, 2018 The Leo-I group: new dwarf galaxy and UDG candidates Oliver Müller1, Helmut Jerjen2, and Bruno Binggeli1 1 Departement Physik, Universität Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland e-mail: [email protected] 2 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Received XX, 2018; accepted TBD ABSTRACT Context. The study of dwarf galaxies and their environments provides crucial testbeds for predictions of cosmological models and insights on the structure formation on small cosmological scales. In recent years, many problems on the scale of groups of galaxies challenged the current standard model of cosmology. Aims. We aim to increase the sample of known galaxies in the Leo-I group, containing the M 96 subgroup and the Leo Triplet. This galaxy aggregate is located at the edge of the Local Volume at a mean distance of 10.7 Mpc. Methods. We employ image enhancing techniques to search for low-surface brightness objects in publicly available gr images taken by the Sloan Digital Sky Survey within 500 square degrees around the Leo-I group. Once detected, we perform surface photometry and compare their structural parameters to other known dwarf galaxies in the nearby universe. Results. We found 36 new dwarf galaxy candidates within the search area. Their morphology and structural parameters resemble known dwarfs in other groups. Among the candidates 5 to 6 galaxies are considered as ultra diffuse galaxies candidates. If confirmed, they would be some of the closest examples of this galaxy type.
    [Show full text]
  • MESSIER 15 RA(2000) : 21H 29M 58S DEC(2000): +12° 10'
    MESSIER 15 RA(2000) : 21h 29m 58s DEC(2000): +12° 10’ 01” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Pegasus BEST VIEW: Late October DISCOVERY: Jean-Dominique Maraldi, 1746 DISTANCE: 33,600 ly DIAMETER: 175 ly APPARENT MAGNITUDE: +6.2 APPARENT DIMENSIONS: 18’ FOV:Starry 1.00Night FOV: 60.00 Vulpecula Sagitta Pegasus NGC 7009 (THE SATURN NEBULA) Delphinus NGC 7009 RA(2000) : 21h 04m 10.8s DEC(2000): -11° 21’ 48.6” Equuleus Pisces Aquila NGC 7009 FOV: 5.00 Aquarius Telrad Capricornus Sagittarius Cetus Piscis Austrinus NGC 7009 Microscopium BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Aquarius Sculptor BEST VIEW: Early November DISCOVERY: William Herschel, 1782 DISTANCE: 2000 - 4000 ly DIAMETER: 0.4 - 0.8 ly Grus APPARENT MAGNITUDE: +8.0 APPARENT DIMENSIONS: 41” x 35” Telescopium Telrad Indus NGC 7662 (THE BLUE SNOWBALL) RA(2000) : 23h 25m 53.6s DEC(2000): +42° 32’ 06” BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Andromeda BEST VIEW: Late November DISCOVERY: William Herschel, 1784 DISTANCE: 1800 – 6400 ly DIAMETER: 0.3 – 1.1 ly APPARENT MAGNITUDE: +8.6 APPARENT DIMENSIONS: 37” MESSIER 52 RA(2000) : 23h 24m 48s DEC(2000): +61° 35’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Cassiopeia BEST VIEW: December DISCOVERY: Charles Messier, 1774 DISTANCE: ~5000 ly DIAMETER: 19 ly APPARENT MAGNITUDE: +7.3 APPARENT DIMENSIONS: 13’ AGE: 50 million years FOV:Starry 1.00Night FOV: 60.00 Auriga Cepheus Andromeda MESSIER 31 (THE ANDROMEDA GALAXY) M 31 RA(2000) : 00h 42m 44.3Cassiopeias DEC(2000): +41° 16’ 07.5” Perseus Lacerta AndromedaM 31 FOV: 5.00 Telrad Triangulum Taurus Orion Aries Andromeda M 31 Pegasus Pisces BASIC INFORMATION OBJECT TYPE: Galaxy CONSTELLATION: Andromeda Telrad BEST VIEW: December DISCOVERY: Abd al-Rahman al-Sufi, 964 Eridanus CetusDISTANCE: 2.5 million ly DIAMETER: ~250,000 ly* APPARENT MAGNITUDE: +3.4 APPARENT DIMENSIONS: 178’ x 63’ (3° x 1°) *This value represents the total diameter of the disk, based on multi-wavelength measurements.
    [Show full text]
  • Radio Continuum Observations of the Leo Triplet at 2.64
    Astronomy & Astrophysics manuscript no. leo264-9 c ESO 2018 June 15, 2018 Radio continuum observations of the Leo Triplet at 2.64 GHz∗ B. Nikiel-Wroczy´nski1, M. Soida1, M. Urbanik1, M. We˙zgowiec2, R. Beck3, D. J. Bomans2,4, and B. Adebahr2 1 Obserwatorium Astronomiczne Uniwersytetu Jagiello´nskiego, ul. Orla 171, 30-244 Krak´ow, Poland 2 Astronomisches Institut, Ruhr-Universit¨at Bochum, Universit¨atsstrasse 150, 44780 Bochum, Germany 3 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany 4 Research Department “Plasmas with Complex Interactions”, Ruhr-Universit¨at Bochum, Universit¨atsstrasse 150, 44780 Bochum, Germany Received 11 January 2013/ Accepted 15 March 2013 ABSTRACT Context. The Leo Triplet group of galaxies is best known for the impressive bridges of neutral gas that connect its members. One of the bridges forms a large tidal tail extending eastwards from NGC 3628 that hosts several H i plumes and carries the material from this galaxy to the intergalactic space. Aims. The magnetic fields of the member galaxies NGC 3628 and NGC 3627 show morphological peculiarities, suggesting that inter- actions within the group may be caused by stripping of the magnetic field. This process could supply the intergalactic space with magnetised material, a scenario considered as a possible source of intergalactic magnetic fields (as seen eg. in the “Taffy” pairs of galaxies). Additionally, the plumes are likely to be the tidal dwarf galaxy candidates. Methods. We performed radio continuum mapping observations at 2.64 GHz using the 100-m Effelsberg radio telescope. We obtained total power and polarised intensity maps of the Triplet.
    [Show full text]
  • Observers' Forum
    Observers’ Forum find M66 much the easier of the two Messier From the deep sky: the Leo Triplet galaxies in which to see detail, the bright north/south oval halo containing a condensed core which brightens gradually to the centre. Some of the detail that can be suspected visu- ally is shown in glorious detail in the image of M66 by Adrian Catterall, who observes from Royston in Hertfordshire. In addition to these Messier galaxies, Leo contains numerous other delights, in par- ticular a galaxy that Messier and his co- workers missed, the Sb/Sc spiral NGC 2903. This galaxy, which lies 1.5° south of magnitude 4.3 star λ Leo at the top of the ‘Sickle’ asterism, is a visual beauty. Dis- covered by William Herschel in November 1784 – presumably near the end of an all night observing session – it is visible in al- most any size of telescope and shows tre- mendous detail in a large aperture. It also images particularly well. The Director would be delighted to receive images and observations of NGC 2903, or of any of the other galaxies in Leo. Stewart L. Moore, Director, Deep Sky The Leo Triplet, M65, M66 & NGC 3628. TVNP101 APO refractor + Starlight Xpress Section HX916 CCD camera with ST4 autoguider. IDAS LPR filter & True Tech RGB colour filters. Image by Peter Carson. Lying due south around 21:00 UT in April, 3628 was discovered by the constellation of Leo is a recognisable William Herschel in 1783. grouping of stars even to people with only a These three galaxies all fit passing interest in astronomy.
    [Show full text]
  • AYOSH Demo Chapter
    DEMO CHAPTER Winter - January We start the year of Star Hopping at its beginning, in chilly January. By this point, I was 14 episodes into the Star Hopping series on YouTube, which was started in September. So that’s why we’re starting with Episode 14. We’ll roll over to Episode 1, nine months from now; in September. The months of Winter give rise to the brightest stars in the sky, anchored in the constellations of Orion, Canis Major, Canis Minor, and Gemini. In the northern climes, the weather may be frigid, but on those cold, clear nights, the stars shine more steadily, as the cold dry air makes for spectacular “seeing”. Chapter 4 - Leo We’ll be looking into the constellation of Leo for our Star Hopping targets in this chapter. I’ll be keeping you up a little later to around 11:30 PM, to see Leo the Lion appearing up over the eastern horizon. Even though we’re in January, we are A YEAR OF STAR HOPPING DAVID HEARN PAGE !1 OF !7 DEMO CHAPTER starting to get hints of the constellations of Spring starting to appear late in the evenings. This begins the time to see galaxies! The constellation of Leo portrays the great Lion, with the head of the lion appearing as a very recognizable backwards question mark, and the tail shaped like a large triangle. Leo rises with the head of the lion facing straight up, and within it’s borders lie many deep sky objects, most of which are as I mentioned, galaxies.
    [Show full text]
  • Paired and Interacting Galaxies: Conference Summary
    1- PAIRED AND INTERACTING GALAXIES: CONFERENCE SUMMARY Colin A. Norman Department of Physics and Astronomy, Johns Hopkins University and Space Telescope Science Institute 1. INTRODUCTION This has been an excellent conference with a very international component and a rich and wide ranging diversity of views on the topical subject of paired and interacting galaxies. The southern hospitality shown to us by our hosts Jack Sulentic and Bill Keel has been most gracious and the general growth of the astronomy group at the University of Alabama is most impressive. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation us- ing analytic techniques, simula+tionsand general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference I had written down the three questions concern- ing pairs, groups and interacting galaxies that I hoped would be answered at the meeting: (1) How do they form? including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups;’(2) How do they evolve? including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important? including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges etc., and in the formation and evolution of active galaxies.
    [Show full text]
  • May 2019 OBSERVER
    THE OBSERVER OF THE TWIN CITY AMATEUR ASTRONOMERS Volume 44, Number 5 May 2019 INSIDE THIS ISSUE: 1«Editor’s Choice: Image of the Month – Leo Triplet 2«President’s Note 3«Calendar of Celestial Events – May 2019 3«New & Renewing Members/Dues Blues/E-Mail List 4«This Month’s Phases of the Moon 4«This Month’s Solar Phenomena 4«AstroBits – News from Around the TCAA 5«E/PO for April 2019 5«TCAA Image Gallery 9«WentZel and Wenning at NEAF 11«May 2019 with Jeffrey L. Hunt 12«Throwback Thursday 16«Public Viewing Sessions Schedule for 2019 17«TCAA Calendar of Events for 2019 18«TCAA Treasurer’s Report as of April 29, 2019 19«Renewing Your TCAA Membership 19«TCAA Active on Facebook IMAGE OF THE MONTH: EDITOR’S CHOICE – LEO TRIPLET This month’s image was produced by Tim Stone. Tim writes: This famous triplet of galaxies is known as ‘The Leo Trio,’ a catchy name for a wildly unlikely group of three large galaxies: M65, M66, and NGC 3628. All three are interacting with each other, and are quite close to each other, at least as far as large galaxies go. M65 and 66 are about 160,000 light years apart, about the same as the distance between us and the Magellanic Clouds. Imagine the view of each other these two galaxies enjoy! NGC 3628 is a bit farther from the two, about 300,000 years. If we think our view of M31 is unbelievable, suitably positioned astronomers in these galaxies enjoy a vastly superior view of their neighbors! M66 has been deeply disrupted by the interactions with its two neighbors.
    [Show full text]
  • The $-12$ Mag Dip in the Galaxy Luminosity Function of Hickson
    Draft version August 16, 2021 Typeset using LATEX twocolumn style in AASTeX63 The −12 mag dip in the galaxy luminosity function of Hickson Compact Groups∗ Hitomi Yamanoi,1, 2 Masafumi Yagi,2, 3 Yutaka Komiyama,2, 4 and Jin Koda5 1Center for Information and Communication Technology, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan 2Subaru Telescope, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 3Department of Advanced Sciences, Hosei University, 3-7-2 Kajinocho, Koganei, Tokyo 184-8584, Japan 4Department of Astronomical Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA (Received March 10, 2020; Revised June 29, 2020; Accepted July 1, 2020) Submitted to AJ ABSTRACT We present the galaxy luminosity functions (LFs) of four Hickson Compact Groups using image data from the Subaru Hyper Suprime-Cam. A distinct dip appeared in the faint-ends of all the LFs at Mg ∼ −12. A similar dip was observed in the LFs of the galaxy clusters Coma and Centaurus. However, LFs in the Virgo, Hydra, and the field had flatter slopes and no dips. As the relative velocities among galaxies are lower in compact groups than in clusters, the effect of galaxy-galaxy interactions would be more significant in compact groups. The Mg ∼ −12 dip of compact groups may imply that frequent galaxy-galaxy interactions would affect the evolution of galaxies, and the dip in LF could become a boundary between different galaxy populations.
    [Show full text]
  • Hubble Snaps Heavyweight of the Leo Triplet EMBARGOED UNTIL 16:00 (CEST)/10:00 Am EDT 08 Apr, 2010
    Hubblecast Episode 34: Hubble snaps heavyweight of the Leo Triplet EMBARGOED UNTIL 16:00 (CEST)/10:00 am EDT 08 Apr, 2010 00:00 [Visual starts] 00:00 [Narrator] 1. Hubble has snapped a spectacular view of the largest “player” in the Leo Triplet, a galaxy with an unusual anatomy: it displays asymmetric spiral arms and an apparently displaced core. The peculiar anatomy is most likely caused by the gravitational pull of the other two members of the trio. 00:36 [Woman] This is the Hubblecast! News and images from the NASA/ESA Hubble Space Telescope. 1 00:51 [Narrator] 2. The unusual spiral galaxy, Messier 66, is located at a distance of about 35 million light-years in the constellation of Leo. Together with Messier 65 and NGC 3628, Messier 66 is one third of the Leo Triplet, a trio of interacting spiral galaxies, part of the larger Messier 66 group. Messier 66 wins out in size over its fellow triplets — it is about 100 000 light-years across. Messier 66 is the proud owner of exclusive asymmetric spiral arms which seem to climb above the galaxy’s main disc and an apparently displaced nucleus. This asymmetry is unusual; most often, dense waves of gas, dust and newly born stars wind about the galaxy’s centre in a symmetric way. Astronomers believe that Messier 66’s once orderly shape has most likely been distorted by the gravitational pull of its two neighbours. [Narrator] 01:59 3. Hubble has imaged Messier 66’s striking dust lanes and bright star clusters along the spiral arms in fine detail.
    [Show full text]
  • Prime Focus (05-18)
    Highlights of the May Sky - - - 2nd - - - DUSK: Aldebaran and Venus, separated by about 6°, set together in the west-northwest. - - - 4th - - - AM: A waning gibbous Moon, Saturn, and Lambda Sagittarii (top star of the Teapot asterism in Sagittarius) form a triangle. - - - 7th - - - KAS Last Quarter Moon 10:09 pm EDT General Meeting: Friday, May 4 @ 7:00 pm - - - 8th - - - Jupiter is at opposition. Kalamazoo Area Math & Science Center - See Page 4 for Details - - - 15th - - - New Moon Observing Session: Saturday, May 5 @ 9:00 pm 7:48 am EDT Venus, Jupiter & Spring Galaxies - Kalamazoo Nature Center - - - 17th - - - DUSK: Only 6° separate a thin Observing Session: Saturday, May 19 @ 9:00 pm crescent Moon and Venus. Moon, Venus & Jupiter - Kalamazoo Nature Center - - - 19th - - - PM: The Moon is 6° below the Board Meeting: Sunday, May 20 @ 5:00 pm Beehive Cluster (M44). Sunnyside Church - 2800 Gull Road - All Members Welcome - - - 20th - - - DUSK: Venus is less than 1° right of the open cluster M35 in Gemini. - - - 21st - - - Inside the Newsletter. PM: The Moon and Regulus are less than 1° apart. April Meeng Minutes....................... p. 2 First Quarter Moon 11:49 pm EDT Board Meeng Minutes..................... p. 2 - - - 25th - - - Observaons...................................... p. 3 PM: Spica, in Virgo, and a waxing gibbous Moon are only NASA Space Place.............................. p. 3 6° apart. General Meeng Preview.................. p. 4 - - - 26th - - - PM: The Moon, Jupiter, and Counng Stars.................................... p. 5 Spica form a long triangle. The King of Spring.............................. p. 6 - - - 29th - - - May Night Sky.................................... p. 12 Full Moon 10:20 am EDT KAS Board & Announcements............ p. 13 - - - 31st - - - Miller Planisphere.............................
    [Show full text]
  • Environmental Influences on Dwarf Galaxy Evolution: the Group Environment
    ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Sabrina Renee Stierwalt February 2010 c 2010 Sabrina Renee Stierwalt ALL RIGHTS RESERVED ENVIRONMENTAL INFLUENCES ON DWARF GALAXY EVOLUTION: THE GROUP ENVIRONMENT Sabrina Renee Stierwalt, Ph.D. Cornell University 2010 Galaxy groups are a rich source of information concerning galaxy evolution as they represent a fundamental link between individual galaxies and large scale structures. Nearby groups probe the low end of the galaxy mass function for the dwarf systems that constitute the most numerous extragalactic population in the local universe [Karachentsev et al., 2004]. Inspired by recent progress in our understanding of the Local Group, this dissertation addresses how much of this knowledge can be applied to other nearby groups by focusing on the Leo I Group at 11 Mpc. Gas-deficient, early-type dwarfs dominate the Local Group (Mateo [1998]; Belokurov et al. [2007]), but a few faint, HI-bearing dwarfs have been discovered in the outskirts of the Milky Way’s influence (e.g. Leo T; Irwin et al. [2007]). We use the wide areal coverage of the Arecibo Legacy Fast ALFA (ALFALFA) HI survey to search the full extent of Leo I and exploit the survey’s superior sensitivity, spatial and spectral resolution to probe lower HI masses than previous HI surveys. ALFALFA finds in Leo I a significant population of low surface brightness dwarfs missed by optical surveys which suggests similar systems in the Local Group may represent a so far poorly studied population of widely distributed, optically faint yet gas-bearing dwarfs.
    [Show full text]