First Record of the Slug Species Semperula Wallacei (Issel, 1874) (Gastropoda: Eupulmonata: Veronicellidae) in Japan

Total Page:16

File Type:pdf, Size:1020Kb

First Record of the Slug Species Semperula Wallacei (Issel, 1874) (Gastropoda: Eupulmonata: Veronicellidae) in Japan BioInvasions Records (2019) Volume 8, Issue 2: 258–265 CORRECTED PROOF Research Article First record of the slug species Semperula wallacei (Issel, 1874) (Gastropoda: Eupulmonata: Veronicellidae) in Japan Takahiro Hirano1,*, Daishi Yamazaki2, Shota Uchida2, Takumi Saito2 and Satoshi Chiba2,3 1Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA 2Graduate school of Life Sciences, Tohoku University, Miyagi, Japan 3Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan Author e-mails: [email protected] (TH), [email protected] (DY), [email protected] (SU), [email protected] (TS), [email protected] (SC) *Corresponding author Citation: Hirano T, Yamazaki D, Uchida S, Saito T, Chiba S (2019) First record of Abstract the slug species Semperula wallacei (Issel, 1874) (Gastropoda: Eupulmonata: In this study, we focus on veronicellid slugs in the Ryukyu and Ogasawara Islands Veronicellidae) in Japan. BioInvasions of Japan. We conducted phylogenetic analyses of these slugs, incorporating GenBank Records 8(2): 258–265, https://doi.org/10. data from several veronicellid species. A molecular phylogeny based on the 3391/bir.2019.8.2.07 mitochondrial COI gene revealed that three clades inhabit these islands. We report Received: 18 June 2018 here the first record of Semperula wallacei in Japan, which represents an introduced Accepted: 18 September 2018 species in this region. Published: 16 October 2018 Key words: introduced species, terrestrial mollusc, Ryukyu Islands, Ogasawara Handling editor: April Blakeslee Islands, phylogeny Copyright: © Hirano et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Introduction OPEN ACCESS. The Veronicellidae is a family of terrestrial slugs (Barker 2001). There are currently 23 recognized genera in this family, and they are globally distributed throughout the tropics and subtropics (Gomes et al. 2010). Veronicellid slugs have also been introduced outside of their native range for example oceanic islands (Brodie and Barker 2011; Kim et al. 2016). Some veronicellid slugs are known to be a medium to high risk pest to humans and feed on the leaves and stems of young dry-bean plants, defoliating and often killing crops (Rueda et al. 2001; Brodie and Barker 2011). In addition, veronicellid slugs are considered to be major intermediate hosts of Angiostrongylus nematodes (Brodie and Barker 2011; Kim et al. 2014), which causes the disease angiostrongyliasis (Kim et al. 2014) or rat lung worm. In the worst cases, angiostrongyliasis can result in death in humans. The Ryukyu Islands and Ogasawara Islands of Japan are hotspots of land snail species diversity (Kameda et al. 2007; Chiba et al. 2009; Hoso et al. 2010; Hirano et al. 2014; Ministry of Environment 2014; Chiba and Cowie 2016). However, many introduced species of snails have been recorded on Hirano et al. (2019), BioInvasions Records 8(2): 258–265, https://doi.org/10.3391/bir.2019.8.2.07 258 First record of Semperula wallacei in Japan Figure 1. Images of representative individuals of lineages. A. Laevicaulis alte (Okinawa Island; photograph by H. Fukumori). B. Semperula wallacei (Chichijima Island, photo by T. Hirano). C. Veronicellidae sp. (Ishigaki Island, photo by T. Hirano). Scale bar indicates 10 mm. both island groups (Chiba et al. 2009; Chiba and Cowie 2016; Nature Conservation Division, Department of Environmental Affairs, Okinawa Prefectural Government 2017). For example, Laevicaulis alte (Férussac, 1822) was introduced on the Ryukyu Islands (Azuma 1982) and more recently in mainland Japan (Nishi and Matsuoka 2007). Here, we focus on veronicellid slugs on the Ryukyu Islands and Ogasawara Islands that differ from L. alte based on their external morphology (Figure 1). Compared with L. alte, these individuals differ in their ochre or brown body color and small body size. According to Schilthuizen and Liew (2008), L. alte is generally recognized by its dark gray or almost black body with a thin pale median dorsal line in contrast to the other slugs, which do not have this dorsal line. But, identifications of this family by external morphology are difficult (Cowie 1997; Kim et al. 2016). In particular, several veronicellid worms are similar to one another in external morphology, including Sarasinula plebeia (Fischer, 1868), Semperula wallacei (Issel, 1874), and Veronicella cubensis (Pfeiffer, 1840). Previous molecular studies have been useful for identifying and clarifying the phylogenetic relationships within the family (Gomes et al. 2010; Kim et al. 2016). However, the phylogenetic position Hirano et al. (2019), BioInvasions Records 8(2): 258–265, https://doi.org/10.3391/bir.2019.8.2.07 259 First record of Semperula wallacei in Japan among veronicellid species of the Ryukyu Islands and Ogasawara Islands is unclear. Therefore, we reconstructructed the molecular phylogeny of these slug species and report, for the first time a species of Veronicellidae other than L. alte in Japan. Materials and methods We collected five individuals of unidentified Veronicellidae species (Table 1) from the Ryukyu Islands and Ogasawara Islands (Figure 2) and a single individual of L. alte from Amami Island in the Ryukyu Islands. We also obtained sequence data of 25 individuals of 14 veronicellid species from GenBank (Table 1). We used two individuals from Onchidiid genera as outgroups (Dayrat et al. 2011). A fragment of the foot muscle of each living individual was stored in 99.5% ethanol for DNA extraction. Total DNA from the six individuals was extracted using a NucleoSpin Tissue Kit (Macherey-Nagel), following the manufacturer’s standard protocol. To estimate the phylogenetic relationships among the collected slugs, we sequenced fragments of the Cytochrome oxidase I (COI) mitochondrial gene. Polymerase chain reaction (PCR) conditions and the primers used are listed in Table 2. The PCR products were purified using Exo-SAP-IT (Amersham Biosciences, UK). The sequencing was performed using the BigDye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems) and electrophoresed using an ABI 3130xl sequencer (Applied Biosystems). The newly generated sequences have been deposited in the DDBJ/EMBL/GenBank databases (Table 1). The COI sequences were aligned using MUSCLE v3.8 (Edgar 2004), and summarized to limit node density artifacts (Fitch and Bruschi 1987; Fitch and Beintema 1990). Three individuals from the Ogasawara and Miyako Islands, and Semperula wallacei from GenBank (DQ897673) shared the same haplotype. Based on 470 bp of the sequence, we generated a maximum likelihood (ML) phylogenetic tree using MEGA6 (Tamura et al. 2013). Prior to the ML analysis, we selected the appropriate model (HKY+G+I) for sequence evolution also using MEGA6. Nodal support for the ML analysis was assessed using bootstrap analysis with 1000 replications. Only bootstrap values higher than 75% were considered to be strongly supported. Results The phylogenetic analysis recovered seven major clades (Figure 3). Clades A, B, and D only included one genus each (Colosius, Veronicella, and Sarasinula, respectively). Clade C was composed of the genera Phyllocaulis and Vaginulus. Semperula wallacei from the GenBank data (2 individuals), and four individuals from Okinawa Island (1), the Ogasawara (1) and Miyako Islands (2) constituted a well-supported clade F. However, the lone Hirano et al. (2019), BioInvasions Records 8(2): 258–265, https://doi.org/10.3391/bir.2019.8.2.07 260 First record of Semperula wallacei in Japan Table 1. Slug sampling sites and GenBank accession number of DNA sequences. Sampling site Accession Specimen ID No. Name number Samples collected by authors Laevicaulis alte 1 Amami, Kagoshima, Japan HC2445 LC415570 Semperula wallacei 2 (Miyako Islands) Taira, Miyakojima, Okinawa, Japan HC6220 LC415572 3 (Miyako Islands) Irabuikemasoe, Miyakojima, Okinawa, Japan HC6221 LC415573 6 (Chichijima Island) Chichijima, Ogasawara, Tokyo, Japan HC7454 LC415571 5 (Okinawa Island), Naha, Okinawa, Japan HC7455 LC415574 Veronicellidae sp. 4 (Ishigaki Island) Nagura, Ishigaki, Okinawa, Japan HC7456 LC415569 GenBank Colosius propinquus Imbabura, Ecuador JX532115 C. pulcher Pichincha, Ecuador JX532116 Napo, Ecuador JX532117 Colosius sp.1 Colombia JX532113 Napo, Ecuador JX532114 L. alte India KY774830 L. natalensis Natal, South Africa JX532110 L. sp. South Africa HQ660052 Phyllocaulis boraceiensis Sao Paulo, Brazil JX532111 Sarasinula linguaeformis Minas Gerais, Brazil JX532108 S. plebeia Iquitos, Loreto, Peru KM489401 Hawaii, USA KM489499 El Hatillo, Venezuela KM489393 S. sp. 1 Chapeco, Santa Catarina, Brazil KM489501 Sao Paulo, Sao Paulo, Brazil KM489446 Pinhalzinho, Sao Paulo, Brazil KM489448 S. sp. 2 Jatai, Goias, Brazil KM489452 Jatai, Goias, Brazil KM489454 Jatai, Goias, Brazil KM489456 Semperula wallacei Sabah, Malaysia DQ897673 Tutuila, American Samoa JX532109 Vaginulus taunaisii Brazil HQ660056 Veronicella cubensis Hawaii, USA HQ660057 St. Paul Parish, Antigua and Barbuda JX532112 Winfried Gibbons Nature Reserve, Devonshire Parish, South Road Bermuda KC206184 Outgroups Onchidella floridana HQ660035 Onchidium vaigiense HQ660040 Hirano et al. (2019), BioInvasions Records 8(2): 258–265, https://doi.org/10.3391/bir.2019.8.2.07 261 First record of Semperula wallacei in Japan Figure 2. Map of the veronicellid sampling sites. Site 1–5 are in the Ryukyu Islands, and 6 is in the Ogasawara Islands. The numbers correspond to the site number in
Recommended publications
  • Universidade Federal De Juiz De Fora Pós-Graduação Em Ciências Biológicas Mestrado Em Comportamento E Biologia Animal
    UNIVERSIDADE FEDERAL DE JUIZ DE FORA PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS MESTRADO EM COMPORTAMENTO E BIOLOGIA ANIMAL Camilla Aparecida de Oliveira Estratégia de história de vida e recaracterização morfológica Sarasinula linguaeformis (Semper, 1885) (Eupulmonata, Veronicellidae) Juiz de Fora 2019 Camilla Aparecida de Oliveira Estratégia de história de vida e recaracterização morfológica Sarasinula linguaeformis (Semper, 1885) (Eupulmonata, Veronicellidae) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas, área de concentração: Comportamento e Biologia Animal da Universidade Federal de Juiz de Fora, como requisito parcial para obtenção do título de Mestre. Orientadora: Prof.ª. Drª. Sthefane D’ávila Juiz de Fora 2019 A todos que estiveram ao meu lado me apoiando e incentivando diante das dificuldades da carreira acadêmica, e incentivaram minha formação pessoal, profissional e dando-me suporte emocional. A vocês o meu eterno agradecimento! AGRADECIMENTOS Agradeço primeiramente a Deus por abençoar o meu caminho durante esse trabalho. A fé que tenho em Ti alimentou meu foco, minha força e minha disciplina. Depois aos meus amigos da Ciências Biológicas: Alexssandra Silva, Flávio Macanha, Isabel Macedo, Sue-helen Mondaini, Tayrine Carvalho, Kássia Malta e Yuri Carvalho meu eterno agradecimento, pois fizeram uma contribuição valiosa para a minha jornada acadêmica com seus conselhos, auxílio, palavras de apoio e risadas. Também agradeço a todos aqueles amigos que de forma direta ou indireta estiveram ajudando e torcendo por mim, em especial a Ana Claudia Mazetto, Ana Clara Files, Tamires Lima, Lígia Araújo, Raquel Seixas, Natália Corrêa e Carlota Augusta. Vocês foram fundamentais para minha formação. Agradeço à minha orientadora Sthefane D' ávila, que acompanhou meu percurso ao longo dos últimos anos e ofereceu uma orientação repleta de conhecimento, sabedoria e paciência.
    [Show full text]
  • (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf
    Zootaxa 4758 (3): 501–531 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4758.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:2F2B0734-03E2-4D94-A72D-9E43A132D1DE Description of a new Peronia species (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf FATEMEH MANIEI1,3, MARIANNE ESPELAND1, MOHAMMAD MOVAHEDI2 & HEIKE WÄGELE1 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2Iranian Fisheries Science Research Institute (IFRO), 1588733111, Tehran, Iran. E-mail: [email protected] 3Corresponding author Abstract Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).
    [Show full text]
  • Intrusion Pathway of Invasive Asian Subterranean Termite, Coptotermes Gestroi (Wasmann) from the Neotropics Into the Indian Ma
    RESEARCH COMMUNICATIONS Intrusion pathway of invasive Asian Southeast Asia. In the Neotropical region, C. gestroi was first described as C. vastator and then under the name C. subterranean termite, Coptotermes havilandi Holmgren it spread from Asia to Brazil in gestroi (Wasmann) from the 1936, into the Caribbean4, and into peninsular Florida, Neotropics into the Indian mainland USA5. Along with the junior synonyms for C. gestroi, such as 6 1, 2 the destructive C. heimi (Wasmann) , confusion and T. Venkatesan *, C. M. Kalleshwaraswamy , misidentification with other valid species of the genus 1 1 Ankita Gupta and T. R. Ashika have also commonly occurred. In Southeast Asia, C. ge- 1ICAR-National Bureau of Agricultural Insect Resources, Post Box No. stroi was sometimes wrongly identified as C. travians 2491, H.A. Farm Post, Hebbal, Bengaluru 560 024, India (Haviland), whereas the true C. travians was also misi- 2 Department of Entomology, College of Agriculture, University of dentified as C. havilandi in peninsular Malaysia7. In the Agricultural and Horticultural Sciences, Shivamogga 577 204, India Pacific Islands, C. gestroi was mistakenly identified as C. 8,9 10 Coptotermes is one of the most widespread subterra- formosanus in Guam . As described by Li et al. , the nean termite genus of economic significance with few following are all now considered as junior synonyms of species considered as truly invasive. Coptotermes C. gestroi: C. havilandi Holmgren, C. heimi (Wasmann), gestroi (Wasmann) is also known to be invasive and C. javanicus Kemner, C. obliqus Xia and He, C. pacificus has taxonomic confusion on its correct identity. Origi- Light, C.
    [Show full text]
  • Revision of the Systematic Position of Lindbergia Garganoensis
    Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eikenboom, 2006, with reassignment to Vitrea Fitzinger, 1833 (Gastropoda, Eupulmonata, Pristilomatidae) Gianbattista Nardi Via Boschette 8A, 25064 Gussago (Brescia), Italy; [email protected] [corresponding author] Antonio Braccia Via Ischia 19, 25100 Brescia, Italy; [email protected] Simone Cianfanelli Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] & Marco Bodon c/o Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] Nardi, G., Braccia, A., Cianfanelli, S. & Bo- INTRODUCTION don, M., 2019. Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eiken- Lindbergia garganoensis Gittenberger & Eikenboom, 2006 boom, 2006, with reassignment to Vitrea Fitzinger, is the first species of the genus, Lindbergia Riedel, 1959 to 1833 (Gastropoda, Eupulmonata, Pristilomatidae). be discovered in Italy. The genus Lindbergia encompasses – Basteria 83 (1-3): 19-28. Leiden. Published 6 April 2019 about ten different species, endemic to the Greek mainland, Crete, the Cycladic islands, Dodecanese islands, northern Aegean islands, and southern Turkey (Riedel, 1992, 1995, 2000; Welter-Schultes, 2012; Bank & Neubert, 2017). Due to Lindbergia garganoensis Gittenberger & Eikenboom, 2006, lack of anatomical data, some of these species remain ge- a taxon with mainly a south-Balkan distribution, is the only nerically questionable. Up to now, L. garganoensis was only Italian species assigned to the genus Lindbergia Riedel, 1959. known by the presence of very fine spiral striae on the tel- The assignment to this genus, as documented by the pecu- eoconch and by the general shape of its shell.
    [Show full text]
  • Malacologia Vol. 56, No. 1-2 2013 Contents Full Papers
    MALACOLOGIA VOL. 56, NO. 1-2 MALACOLOGIA 2013 http://malacologia.fmnh.org CONTENTS World’s Leading Malacological Journal FULL PAPERS Journal Impact Factor 1.592 (2012) Suzete R. Gomes, David G. Robinson, Frederick J. Zimmerman, Oscar Obregón & Nor- Founded in 1961 man B. Barr Morphological and molecular analysis of the Andean slugs Colosius confusus, n. sp., a newly recognized pest of cultivated flowers and coffee from Colombia, Ecuador and EDITOR-IN-CHIEF Peru, and Colosius pulcher (Colosi, 1921) (Gastropoda, Veronicellidae) ..... 1 GEORGE M. DAVIS Eva Hettenbergerová, Michal Horsák, Rashmi Chandran, Michal Hájek, David Zelený & Editorial Office Business & Subscription Office Jana Dvořáková Malacologia Malacologia Patterns of land snail assemblages along a fine-scale moisture gradient .... 31 P.O. Box 1222 P.O. Box 385 Nicolás Bonel, Lía C. Solari & Julio Lorda West Falmouth, Massachusetts 02574, U.S.A. Haddonfield, New Jersey 08033, U.S.A. Differences in density, shell allometry and growth between two populations of Lim- [email protected] [email protected] noperna fortunei (Mytilidae) from the Río de la Plata basin, Argentina ..... 43 Mariana L. Adami, Guido Pastorino & J. M. (Lobo) Orensanz Copy Editor Associate Editor Phenotypic differentiation of ecologically significant Brachidontes species co- EUGENE COAN JOHN B.BURCH occurring in intertidal mussel beds from the southwestern Atlantic ........ 59 Santa Barbara Museum of Natural History University of Michigan Santa Barbara, California, U.S.A. Ann Arbor, Michigan, U.S.A. Moncef Rjeibi, Soufia Ezzedine-Najai, Bachra Chemmam & Hechmi Missaoui [email protected] [email protected] Reproductive biology of Eledone cirrhosa (Cephalopoda: Octopodidae) in the northern and eastern Tunisian Sea (western and central Mediterranean) ..
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • Gastropoda: Pulmonata: Achatinellidae) 1
    Published online: 29 May 2015 ISSN (online): 2376-3191 Records of the Hawaii Biological Survey for 2014. Part I: 49 Articles. Edited by Neal L. Evenhuis & Scott E. Miller. Bishop Museum Occasional Papers 116: 49 –51 (2015) Rediscovery of Auriculella pulchra Pease, 1868 (Gastropoda: Pulmonata: Achatinellidae) 1 NORINe W. Y eUNg 2, D ANIel CHUNg 3 Bishop Museum, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected] DAvID R. S ISCHO Department of Land and Natural Resources, 1151 Punchbowl Street, Rm. 325, Honolulu, Hawai‘i 96813, USA; email: [email protected] KeNNetH A. H AYeS 2,3 Howard University, 415 College Street NW, Washington, DC 20059, USA; email: [email protected] Hawaii supports one of the world’s most spectacular land snail radiations and is a diversity hotspot (Solem 1983, 1984, Cowie 1996a, b). Unfortunately, much of the Hawaiian land snail fauna has been lost, with overall extinction rates as high as ~70% (Hayes et al ., unpubl. data). However, the recent rediscovery of an extinct species provides hope that all is not lost, yet continued habitat destruction, impacts of invasive species, and climate change, necessi - tate the immediate development and deployment of effective conservation strategies to save this biodiversity treasure before it vanishes entirely (Solem 1990, Rég nier et al . 2009). Achatinellidae Auriculella pulchra Pease 1868 Notable rediscovery Auriculella pulchra (Fig. 1) belongs in the Auriculellinae, a Hawaiian endemic land snail subfamily of the Achatinellidae with 32 species (Cowie et al . 1995). It was originally described from the island of O‘ahu in 1868 and was subsequently recorded throughout the Ko‘olau Mountain range.
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • A New Meghimatium Species from Vietnam (Gastropoda, Pulmonata, Philomycidae)
    MALAKOLÓGIAI TÁJÉKOZTATÓ MALACOLOGICAL NEWSLETTER 2011 29: 51–54 A new Meghimatium species from Vietnam (Gastropoda, Pulmonata, Philomycidae) A. Varga Abstract: The author describes a new species of Philomycidae, from the rain forest of Northern Vietnam. Keywords: Gastropoda, Pulmonata, terrestrial slugs, Philomycidae, taxonomy, Vietnam. Introduction Coloration of live Meghimatium species is diverse and attractive (Schilthuizen, M. & Liew, T. S. 2008). The colour of alcohol-preserved specimens, however, fades and changes within a short period of time. Early authors have described numerous species of the genus found in Asia. These descriptions were based only on external characteristics, especially the coloration of pre- served slugs, leaving the examination of genitalia out of consideration (Collinge, 1901, 1903; Cockerell, 1890; Simroth, 1902). It was Hoffmann (1924) who critically revised and syn- onymized many of the described species.. Wiktor et al. (2000) followed the same principles. Meghimatium lucyenensis n. sp. (figs. 1–5) Material: Vietnam, Yên Bái Province, Luc Yen (Lu. c Yên) (Map. 1), fringe of the rain for- est next to a stream, from underneath stones, 05 December, 1971., leg. István Matskási & Map 1. Locality of Meghimatium lucyenensis n. sp. in Vietnam 51 György Topál. Holotype HNHM 92601/1, Paratype HNHM 92602/1 (Hungarian Natural History Museum, Budapest). Diagnosis: – Animal small-sized, genital system with large atrium, short and thick penis, short and thin vas deferens, short and thick-set vagina. Description (alcohol-preserved) (figs 1–2): The sexually mature slug is very small: the length of the preserved specimens are 23 (HT) and 22 (PT) mm. The colour of the body of the alcohol-preserved specimens is creamy.
    [Show full text]
  • (5 Classes) Polyplacophora – Many Plates on a Foot Cephalopoda – Head Foot Gastropoda – Stomach Scaphopoda – Tusk Shell Bivalvia – Hatchet Foot
    Policemen Phylum Censor Gals in Scant Mollusca Bikinis! (5 Classes) Polyplacophora – Many plates on a foot Cephalopoda – Head foot Gastropoda – Stomach Scaphopoda – Tusk shell Bivalvia – Hatchet foot foot Typical questions for Mollusca •How many of these specimens posses a radula? •Which ones are filter feeders? •Which have undergone torsion? Detorsion? •Name the main function of the mantle? •Name a class used for currency •Which specimens have lungs? (Just have think of which live on land vs. in water……) •Name the oldest part of a univalve shell? Bivalve? Answers…maybe • Gastropods, Cephalopoda, Mono-, A- & Polyplacophora • Bivalvia (Scaphopoda….have a captacula) • Gastropods Opisthobranchia (sea hares & sea slugs) and the land slugs of the Pulmonata • Mantle secretes the shell • Scaphopoda • Pulmonata – their name gives this away • Apex for Univalve, Umbo for bivalve but often the terms are used interchangeably Anus Gills in Mantle mantle cavity Radula Head in mouth Chitons radula, 8 plates Class Polyplacophora Tentacles (2) & arms are all derived from the gastropod foot Class Cephalopoda - Octopuses, Squid, Nautilus, Cuttlefish…beak, pen, ink sac, chromatophores, jet propulsion……….dissection. Subclass Prosobranchia Aquatic –marine. Generally having thick Apex pointed shells, spines, & many have opercula. Gastropoda WORDS TO KNOW: snails, conchs, torsion, coiling, radula, operculum & egg sac Subclass Pulmonata Aquatic – freshwater. Shells are thin, rounded, with no spines, ridges or opercula. Subclass Pulmonata Slug Detorsion… If something looks strange, chances are…. …….it is Subclass Opisthobranchia something from Class Gastropoda Nudibranch (…or your roommate!) Class Gastropoda Sinistral Dextral ‘POP’ Subclass Prosobranchia - Aquatic snails (“shells”) -Have gills Subclass Opisthobranchia - Marine - Have gills - Nudibranchs / Sea slugs / Sea hares - Mantle cavity & shell reduced or absent Subclass Pulmonata - Terrestrial Slugs and terrestrial snails - Have lungs Class Scaphopoda - “tusk shells” Wampum Indian currency.
    [Show full text]
  • Gastropoda, Pulmonata, Ferussaciidae)
    BASTERIA, 64: 99-104, 2000 Nomenclatural notes on a Cecilioides species of the Italian and Swiss Alps (Gastropoda, Pulmonata, Ferussaciidae) R.A. Bank Graan voor Visch 15318, NL 2132 EL Hoofddorp, The Netherlands G. Falkner Raiffeisenstrafie 5, D 85457 Horlkofen, Germany & E. Gittenberger Nationaal Natuurhistorisch Museum, P.O. Box 9517, NL 2300 RA Leiden, The Netherlands has It is argued that the name Cecilioides veneta (Strobel, 1855) to be used for a species which has in the past been referred to as C. aciculoides or C. janii. Key words: Gastropoda, Pulmonata,Ferussaciidae, Cecilioides, Italy, Switzerland, nomenclature DATA AND DISCUSSION In northern Italy and the southernmost part of Switzerland (Tessin) two species of the Cecilioides A. The genus Ferussac, 1814, occur (Ferussaciidae Bourguignat, 1883). most C. acicula is well-known common one, (O.F. Miiller, 1774), and wide-spread throughout Europe (with the exception of Scandinavia, where it is living only in the southern tip of Norway and Sweden). The nomenclature of the second, far more local species has been the subject of much dispute. This species has a shell similar to that of C. acicula, but and broader instead of larger relatively (5-7 x 1.9 mm 4.5-5.5 x 1.2 mm), and with the about half instead of about third of the total In aperture forming a height. addition, the columella is clearly more truncate at the base (figs 1-2; Kerney & Cameron, 1979: 149-150; Falkner, 1990: 169, figs 1, 5; Turner et al., 1998: 237-238). In the more recent literature this species is known under the names C.
    [Show full text]
  • Biodiversidad De Gasterópodos Terrestres (Mollusca) En El Parque Biológico Sierra De San Javier, Tucumán, Argentina
    Biodiversidad de gasterópodos terrestres (Mollusca) en el Parque Biológico Sierra de San Javier, Tucumán, Argentina María José Miranda & María Gabriela Cuezzo CONICET-Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 251, 4000 Tucumán, Argentina; [email protected], [email protected] Recibido 08-III-2009. Corregido 12-III-2010. Aceptado 08-IV-2010. Abstract: Biodiversity of land gastropods (Mollusca) in Sierra de San Javier Park, Tucumán, Argentina. Studies related to land mollusk diversity in tropical and subtropical forests are scarce. To assess this, a study on land snail diversity of subtropical cloudforest (Yungas) and dry forest (Chaco) areas of Sierra de San Javier Park, Tucumán, Argentina, was carried out. Taxonomic identifications were performed to species level and built a species per stations data matrix to analyze diversity patterns on qualitative and quantitative samples processed from 10x10m quadrates in altitudinal transects. Non parametric analysis (ICE, ACE, Chao 1 and Chao 2) were used to estimate the true diversity of the area, as well as the degree of undersampling and spatial aggregation of the data. Diversity was also calculated using Shannon, Simpson, Whittaker and Jaccard indices. The richness of the San Javier Park was estimated to be 32 species distributed into 13 families and 21 genera. From the total number of species collected, a single one belongs to Caenogastropoda, while the rest of the species are classified into Pulmonata Stylommatophora and Systellommatophora. The most representative family was the micromol- lusc Charopidae, while the most relatively abundant species was another micromollusc snail, Adelopoma tucma. Richness and diversity were slightly more elevated in dry forest areas of the Chacoan Ecoregion than in cloud forest areas of Yungas.
    [Show full text]