umschlag4b_Umschlag 05.07.2011 14:36 Seite 1

Fraunhofer IKTS www.ikts.fraunhofer.de 2010/2011 Annual Report FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS FRAUNHOFER 2011 2010 ANNUAL REPORT ANNUAL ANNUAL REPORT 2010 2011

Fraunhofer Institute for Ceramic Technologies and Systems IKTS

Dresden branch of the institute Winterbergstrasse 28, 01277 Dresden, Germany Phone +49 351 2553-7700 Fax +49 351 2553-7600

Hermsdorf branch of the institute Michael-Faraday-Strasse 1, 07629 Hermsdorf, Germany Phone +49 36601 9301-0 Fax +49 36601 9301-3921

[email protected] www.ikts.fraunhofer.de

1 FOREWORD

Dear friends of the IKTS,

We are glad to report that we – now jointly – were able to that we can rely on closed added value and technological continue our successful development at our institute branches chains – from materials to components or systems – and that in Hermsdorf and Dresden. The figures presented on the fol- we can produce larger quantities. This helps us to make head- lowing pages speak for themselves: with an operating budget way in research fields that are new to us, such as storage of about 32 million euros (without investments) we earned technologies. Besides lithium ion batteries we also deal with 27 million euros in external funds, mainly from direct industry NaS and redox flow batteries. Ceramic cathode materials and revenues. Our total profit rate is once again well above manufacturing technologies are in the focus of our activities 80 percent – at both branches! in the field of lithium ion batteries. Especially plant engineer- ing is a field in the European market which shows significant As in previous years, last year was marked by special chal- deficits and we would like to help close the gaps. lenges, not least because of the integration activities at both branches. The cooperation in form of joint projects is well on In addition to further investments in our technological equip- its way and very promising in all research fields. Our estab- ment and plants we also expanded our modeling activities. lished site-spanning organization structures significantly con- Now, we are able to simulate complete fuel cell systems in tribute to this process. The process of growing together will real time, allowing for a further acceleration of our develop- of course continue to be a priority, as it holds a great poten- ments. We currently work on the completion of different fuel tial from which our customers can benefit. cell systems of various power classes of a few watts for portable applications, e.g., 1 kW for decentralized combined We have consequently kept on developing our competencies heat and power generation, and 5 to 20 kW for biogas con- in the fields of structural and functional ceramics. In our proj- version. We have also reached a top position in membrane ects and partnerships we particularly benefit from the fact technology where we cover the complete spectrum of mixed

2 conducting, high-density and porous membranes. Various The present report summarizes some of our highlights. Enjoy demonstration systems for liquid filtration or oxygen produc- reading our annual report. tion run in our laboratories or have already been transferred to the customer’s site.

In addition to the research fields of energy and environmental technologies, which keep rapidly growing, our project activi- ties in the field of mechanical, electrical, medical and automo- tive engineering continue to increase. Thus, we serve a broad range of markets and look optimistically into the future. Our Alexander Michaelis Bärbel Voigtsberger competent and highly motivated staff is our most important success factor. We cannot thank them enough for their con- tribution. Keep up the good work! Of course, we would also March 2011 like to give a special thanks to our partners for their confi- dence in us. We will continue with our efforts to achieve opti- mal project results and to support our partners in developing new innovations. As always, we would like to invite you to make use of our outstanding services and to continue the col- laboration.

3 TABLE OF CONTENTS

2 FOREWORD

4 TABLE OF CONTENTS

FRAUNHOFER IKTS PROFILE

6 BRIEF PORTRAIT 8 ORGANIZATIONAL CHART 10 FRAUNHOFER IKTS IN FIGURES 12 BOARD OF TRUSTEES 13 THE FRAUNHOFER-GESELLSCHAFT

RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

14 RESEARCH FIELD: MATERIALS 16 DEVELOPMENT OF LARGER IR TRANSPARENT ALUMINA DOMES 18 THERMOELECTRIC GENERATORS BASED ON CERAMIC TECHNOLOGIES

20 RESEARCH FIELD: PROCESSES AND COMPONENTS 22 HIGH-PERFORMANCE COMPONENTS FOR AUTOMOBILES – CERAMIC EXHAUST FLAP 24 VENEERING OF ZIRCONIUM OXIDE WITH LITHIUM DISILICATE GLASS CERAMICS 26 LARGE-SIZED PLASMA-SPRAYED CFRP/GFRP COMPONENTS 28 HIGH-STRENGTH AND NON-AGEING ZTA CERAMICS FOR IMPLANT APPLICATIONS 30 FUNCTIONALLY MODIFIED INORGANIC-ORGANIC COMPOSITE MATERIALS 32 CERAMIC FILTERS FOR CLEANING LPG

34 RESEARCH FIELD: ENVIRONMENTAL ENGINEERING AND BIOENERGY 36 EVALUATION OF MIXING PROCESSES BY MEANS OF PROCESS TOMOGRAPHY 38 CERAMIC MEMBRANES FOR EMISSION-FREE POWER PLANTS 40 CERAMIC NF MEMBRANES FOR WASTE WATER TREATMENT AND PRODUCT SEPARATION

42 CATALYST AND O2 CARRIER SYSTEM FOR THE PROCESSING OF TAR-CONTAINING GASES 44 EFFICIENT PRODUCTION OF BIOETHANOL USING ZEOLITE MEMBRANES 46 NANOSIZED ZEOLITES AS HOSTS FOR PHOTOCHROMIC DYES 48 ADSORPTION-SELECTIVE CARBON MEMBRANES FOR BIOGAS APPLICATION

4 50 RESEARCH FIELD: SINTERING AND CHARACTERIZATION 52 QUANTIFICATION OF INTERNAL STRUCTURES OF CERAMIC SPRAY-DRIED GRANULES

54 RESEARCH FIELD: MICROSYSTEMS AND ENERGY SYSTEMS 58 PORTABLE ENERAMIC® SOFC SYSTEM 60 LITHIUM ION BATTERY: MATERIAL DEVELOPMENT, CHARACTERIZATION AND TESTING 62 MATERIALS AND TECHNOLOGIES FOR HIGH-EFFICIENCY SOLAR CELLS: FROM LAB TO FAB 64 DEVELOPMENT OF A LAMINATED SILICON-CERAMIC SUBSTRATE 66 DEVELOPMENT OF GREEN TAPES FOR LEAD- FREE PIEZOELECTRIC MULTILAYER ACTUATORS

68 RESEARCH FIELD: SMART MATERIALS AND SYSTEMS 70 CARBON NANOTUBES AS ELECTRODE MATERIAL FOR ENERGY STORAGE 72 PIEZOSYSTEMS – AN INTEGRATED APPROACH

RETROSPECTIVE

74 EVENTS, EXHIBITIONS 78 PARTICIPATION IN TRADE FAIRS AND EXHIBITIONS 80 COOPERATION IN GROUPS, ALLIANCES AND NETWORKS 86 NAMES, DATES, EVENTS

117 EVENTS AND TRADE FAIRS 2011 118 INFORMATION SERVICE 119 HOW TO REACH US

5 HERMSDORF

FRAUNHOFER IKTS PROFILE

BRIEF PORTRAIT

The work of the Fraunhofer Institute for Ceramic Technologies Fraunhofer IKTS possesses a number of unique capabilities: and Systems IKTS covers all aspects of technical ceramics from preliminary basic research to application. More than 140 well- equipped laboratories and pilot-scale facilities on nearly 20,000 Complete production lines from material to prototype square meters of usable floor space at the two locations Dres- den and Hermsdorf are available for this. At Fraunhofer IKTS, All standard processes for mix preparation, shaping, heat treat- high-performance ceramics know-how forms the basis of de- ment, and finishing of structural and functional ceramics are velopment work spanning the entire value chain up to proto- available. A key area of expertise in functional ceramics is paste type manufacture. With threefold expertise – in materials and film technology. We manufacture functional ceramic proto- know-how, production technologies, and system/product inte- types using the hybrid and multilayer ceramics lines in our in- gration – chemists, physicists, and materials scientists are sup- house clean rooms. ported by experienced research engineers and technicians in activities focused equally on structural and functional ceramics technology platforms. Multiscale development

Project partners are found among both manufacturers and Developments can be scaled up from laboratory to pilot scale. users of ceramics. With extensive expertise and numerous con- In our technological production chains, we can manufacture tacts, Fraunhofer IKTS serves as a “one-stop shop“ for all the quantities required for market introduction. Thus, we can ceramics-related problems. Our mission is to bring together minimize retention cost risks and time to market. different technology worlds to give our customers access to the entire range of innovative solutions provided by ceramics.

6 DRESDEN

Synergies between structural and functional ceramics The Fraunhofer IKTS as “one-stop shop” for ceramics

By combining different technology platforms, we enable inno- Material vative ceramic products with extended functions and consider-  able added value to be manufactured. Component 

Module  System/Product Network formers Ceramic expertise System expertise We are currently collaborating in projects with more than 450 national and international partners. Fraunhofer IKTS is also active in numerous networks and alliances, within the Fraunhofer-Gesellschaft, for example, in the Fraunhofer Group for Materials and Components – MATERIALS. We bring worlds together

In addition, the role of spokesperson for the Fraunhofer High- Performance Ceramics Alliance, made up of seven institutes specialized in ceramics, is held by Fraunhofer IKTS. We facili- tate network formation to drive product development and ob- tain the necessary external expertise.

This pioneering work is made possible by a wealth of experi- ence, extensive knowledge, and constant focus on the inter- ests of our partners.

7 ORGANIZATIONAL CHART

Institute Director Deputy Institute Directors Head of Administration

Prof. Dr. habil. Alexander Michaelis Dr. Bärbel Voigtsberger Dr. Michael Zins Staff, Internal Services and Facility Man- Secretary: Maria Kirschner Dr. Michael Zins agement, Controlling and Finances, IT Management, Press and Public Rela- tions, Marketing, Quality Management

Materials Sintering and Characterization Micro and Energy Systems

Dr. habil. Andreas Krell Dr. habil. Mathias Herrmann Dr. Mihails Kusnezoff - Oxide Ceramics - Thermal Analysis and Thermal Materials and Components - Hardmetals and Cermets Physics* - Joining Technology - Heat Treatment - High Temperature Electrochemistry Dr. Hagen Klemm - Ceramography and Phase Analysis and Catalysis - Nitride Ceramics - Powder and Suspension Characteri- - Ceramic Energy Converters - Carbide-, Filter Ceramics and zation* Biogenic Ceramics - Quality Assurance Laboratory* and Dr. Matthias Jahn - Precursor-Derived Ceramics Mechanics Laboratory Modules and Systems - Chemical and Structural Analysis - Modeling and Simulation - Mechanical Testing - Energy Conversion and Storage * accreditation in accordance with DIN EN - Energy Process Engineering ISO/IEC 17025 - Electrochemistry

Dr. Uwe Partsch Processes and Components Environmental Engineering and Hybrid Microsystems Bioenergy - Thick Film Technology and Photo- Dr. Michael Stelter Dr. Ingolf Voigt voltaics - Powder Technology - Water Technology - Microsystems, LTCC and HTCC - Shaping - Bioenergy - Ceramic Tapes and Functionalized - Component Development - Mixed Conductors and Catalysis Multilayers - Finishing - Nanoporous Membranes - Systems Integration - Thermal Spraying - Process Technology and Modeling - Pilot Manufacturing High-Purity Ceramics - Oxide and Polymer-Ceramic TU Dresden, Smart Materials and Systems Components Institute for Materials Science - Process Technology and Silicate Dr. Andreas Schönecker Ceramics Inorganic-Nonmetallic Materials - Dielectric Ceramics and Composites, Piezoceramics Prof. Dr. habil. Alexander Michaelis - Functional Layers for Micro- - Instrumented Powder Compaction electronics and Wear Protection - Combinatorial Microelectrochemis- - Piezosystems try on Ceramic Surfaces

Friedrich Schiller University of Jena

8 Institute Director Deputy Institute Director Deputy Institute Director Prof. Dr. habil. Alexander Michaelis Dr. Bärbel Voigtsberger Head of Administration Phone +49 351 2553-7512 Phone +49 36601 9301-3902 Dr. Michael Zins [email protected] [email protected] Phone +49 351 2553-7522 [email protected]

Materials Sintering and Characterization Micro and Energy Systems Oxide Ceramics Dr. habil. Mathias Herrmann Materials and Components Dr. habil. Andreas Krell Phone +49 351 2553-7527 Dr. Mihails Kusnezoff Phone +49 351 2553-7538 [email protected] Phone +49 351 2553-7707 [email protected] [email protected]

Materials Environmental Engineering and Micro and Energy Systems Nonoxide Ceramics Bioenergy Modules and Systems Dr. Hagen Klemm Dr. Ingolf Voigt Dr. Matthias Jahn Phone +49 351 2553-7553 Phone +49 36601 9301-2618 Phone +49 351 2553-7535 [email protected] [email protected] [email protected]

Processes and Components Smart Materials and Systems Micro and Energy Systems Dr. Michael Stelter Dr. Andreas Schönecker Hybrid Microsystems Phone +49 351 2553-7648 Phone +49 351 2553-7508 Dr. Uwe Partsch [email protected] andreas.schoenecker@ Phone +49 351 2553-7696 ikts.fraunhofer.de [email protected] FRAUNHOFER IKTS IN FIGURES

Revenue developments (in thousands of euros) at Operating budget and figures Fraunhofer IKTS for the budget years 2005-2010

2010 is the first year in which the operating budget comprises the figures of both institute branches. For this reason, all graphs show a significant growth. 21.5 million euros of the operating budget of 31.7 million euros fall to the Dresden branch, and 10.2 million euros to the Hermsdorf branch. Addi- tionally, 3.3 million euros were invested in the expansion of laboratories and pilot plants at both sites. Together we earned 27.1 million euros from customers. As the year before, the in- dustrial revenues constitute 45 % of this sum. With a revenue of 4.9 million euros, the Hermsdorf branch has significantly contributed to this success.

The infrastructure in Dresden has been improved using funds of an economic stimulus package. Thus, we can facilitate new work-places which are essential for 2011.

Expansion of research basis

Through investments in the “Development Center for Energy Efficiency Systems”, Fraunhofer IKTS was able to strengthen its position in the fields of fuel cells, thin-film photovoltaics,

Developments of operating budget (in thousands of euros) at biomass conversion, thermoelectric generators (TEG) and stor- Fraunhofer IKTS for the budget years 2005-2010 age technologies (Lithium ion batteries). Using alliances with strategic partners the offered services have been extended from powders to systems. The integration of existing test equipment of the “Environmental Engineering and Bioenergy” research field into a biogas plant in Pöhl helps us to test ceramic technologies and components. Fraunhofer's research programs significantly facilitate the generation of its own IP rights and thus, the long-term opportunity to acquire new in- dustry projects.

At Fraunhofer IKTS new technologies for the characterization of battery materials and components have been developed

10 Personnel developments at Fraunhofer IKTS and introduced to different industry consortia. As Fraunhofer Number of employees 2005-2010, full-time equivalents IKTS has pilot scale competencies in battery powder prepara- Personnel structure on December 31 of each year tion and processing technologies it becomes more and more attractive to industry partners in this sector. The institute in- creasingly acts as a network builder between industry part- ners, and thus contributes to Fraunhofer’s electromobility systems research project.

Personnel development

The integration of the Hermsdorf branch results in a signifi- cant increase of staff including scientists, employees with uni- versity degree and technicians. With more than 400 full-time positions, Fraunhofer IKTS further increased its special status in the field of technical ceramics. Compared to 2009, the number of employees in Dresden remained almost constant, whereas the number in the Hermsdorf branch slightly in- creased. The activities at the cooperating chair of IfWW, Insti- tute for Materials Science at TU Dresden, were significantly expanded. In the long term, this alliance will secure the strategic expansion of workforce. Currently, 50 doctoral the- ses are supervised.

In 2010, 15 apprentices were trained. As before, all appren- tices who finished their apprenticeship could continue their employment at the Fraunhofer IKTS. By training apprentices the quality of our laboratory work will be further improved, and knowledge transfer between the working groups is sup- ported. Regular exchange between the institute branches is an increasingly important factor.

11 BOARD OF TRUSTEES

The president of the Fraunhofer-Gesellschaft has appointed the following people to the board of trustees at Fraunhofer IKTS:

Dr. G. Gille Dr. R. Metzler Chairman of board of trustees Rauschert GmbH, Judenbach-Heinersdorf H.C. Starck GmbH & Co. KG, Goslar Managing director Manager of central department research and development Dipl.-Ing. P. G. Nothnagel Dr.-Ing. S. Blankenburg Saxony Economic Development Corporation, Dresden Hermes Schleifkörper GmbH, Dresden Managing director CEO Dipl.-Ing. M. Philipps Dr. J. Damasky Endress+Hauser GmbH & Co. KG, Maulburg Webasto AG Stockdorf Head of business sector sensor technology Board of directors Dr. W. Rossner Prof. Dr.-Ing. J. Huber Siemens AG, CeramTec AG, Plochingen Central department technology, ceramics Board of directors Department head

Prof. C. Kaps Dr. K. R. Sprung Bauhaus-Universität Weimar German Federation of Industrial Research Associations Chair of building chemistry CEO

Dr. C. Lesniak Dr.-Ing. G. Uhlmann ESK Ceramics GmbH & Co. KG, Kempten Dresden Research and development Prof. Dr. P. Woditsch Dr. F. Lindner Solar World Innovations GmbH, Freiberg Robert Bosch GmbH, Gerlingen Board spokesperson Department head corporate research and development Advanced functional and sintered materials

Dr. H.-H. Matthias Tridelta GmbH, Hermsdorf Managing director

12 THE FRAUNHOFER-GESELLSCHAFT

Research of practical utility lies at the heart of all activities pur- Locations in Germany sued by the Fraunhofer-Gesellschaft. Founded in 1949, the re- search organization undertakes applied research that drives economic development and serves the wider benefit of society. Its services are solicited by customers and contractual partners in industry, the service sector and public administration.

At present, the Fraunhofer-Gesellschaft maintains more than 80 research units in Germany, including 60 Fraunhofer Insti- tutes. The majority of the more than 18,000 staff are qualified scientists and engineers, who work with an annual research budget of €1.65 billion. Of this sum, more than €1.40 billion is generated through contract research. More than 70 percent of the Fraunhofer-Gesellschaft’s contract research revenue is de- rived from contracts with industry and from publicly financed research projects. Almost 30 percent is contributed by the Ger- man federal and Länder governments in the form of base funding, enabling the institutes to work ahead on solutions to problems that will not become acutely relevant to industry and society until five or ten years from now.

Affiliated international research centers and representative of- fices provide contact with the regions of greatest importance to present and future scientific progress and economic develop- ment. As an employer, the Fraunhofer-Gesellschaft offers its staff the With its clearly defined mission of application-oriented research opportunity to develop the professional and personal skills that and its focus on key technologies of relevance to the future, will allow them to take up positions of responsibility within the Fraunhofer-Gesellschaft plays a prominent role in the Ger- their institute, at universities, in industry and in society. Stu- man and European innovation process. Applied research has a dents who choose to work on projects at the Fraunhofer Insti- knock-on effect that extends beyond the direct benefits per- tutes have excellent prospects of starting and developing a ceived by the customer: Through their research and develop- career in industry by virtue of the practical training and experi- ment work, the Fraunhofer Institutes help to reinforce the ence they have acquired. competitive strength of the economy in their local region, and throughout Germany and Europe. They do so by promoting in- The Fraunhofer-Gesellschaft is a recognized non-profit organi- novation, strengthening the technological base, improving the zation that takes its name from Joseph von Fraunhofer (1787– acceptance of new technologies, and helping to train the ur- 1826), the illustrious Munich researcher, inventor and gently needed future generation of scientists and engineers. entrepreneur.

13 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD MATERIALS

Department head: Dr. habil. Andreas Krell, Dr. Hagen Klemm

Profile Services offered

The core competency of the “Materials” research field lies - Integrated materials and process development for novel in the development of new or modified ceramic materials high-performance ceramics and hardmetals and ceramic-metal composites (hardmetals and cermets) - Development and supply of raw materials, trial parts, and with the use and generation of state-of-the-art technolo- complex components gies. - Expert opinions on production and application problems - Materials testing (mechanical, tribological, electrical, and Our offering ranges from targeted synthesis of raw materi- corrosive properties at room and high temperatures) als from ceramic precursors or renewable raw materials - Damage and failure analysis of components and tools and application-oriented materials development to techno- - Evaluation of safety and health risks from use of fine pow- logical trials and manufacture of prototype parts and ders and materials systems, including characterization and testing. Material- - Characterization of wetting behavior of coatings and surface specific and technological aspects for industrial applica- tension of liquids tions and safety-/health-related aspects are considered. - Characterization of corrosion behavior under realistic appli- cation conditions (hot gas corrosion) One focus of materials qualification is the development of low-defect and low-cost processes. Our wide range of ca- pabilities encompasses powder processing technologies for simply structured ceramic materials as well as fiber pro- cessing and coating technologies for composite materials and functional coatings for solar applications.

The successful development of new application fields through targeted combination of structural and functional properties in ceramics and ceramic-metal composites is re- flected, for example, in the development of high-tempera- ture materials, electrically conducting ceramics, thermoelectric materials, forming tools, transparent com- ponents, functional ceramic coatings, and filters.

14 Oxide Ceramics Dr. habil. Andreas Krell Phone +49 351 2553-7538 [email protected]

Nitride Ceramics Dr. Hagen Klemm Phone +49 351 2553-7553 [email protected]

Hardmetals and Cermets Dr. Volkmar Richter Phone +49 351 2553-7614 [email protected]

Carbid-, Filter Ceramics and Biogenic Ceramics Dipl.-Krist. Jörg Adler Phone +49 351 2553-7515 [email protected]

Precursor-Derived Ceramics Dr. Isabel Kinski Phone +49 351 2553-7560 [email protected]

15 1 1 μm 2

DEVELOPMENT OF LARGER IR TRANS- PARENT ALUMINA DOMES

Dr. Jens Klimke, Dr. Andreas Krell

Motivation High IR transmission

Ceramic materials are commonly being used in areas subjected A special treatment of the corundum powder and a low-de- to extremely high mechanical stress like in aerospace industry. fect ceramic technology result in a nearly defect-free micro-

So far, single-crystalline Al2O3 (sapphire) has been the preferred structure. Thus, light scattering at pores and grain boundaries material for infrared-transmittant windows subjected to ther- can be largely prevented. In the IR region of 4 to 5 μm wave- mal stress. In addition to suitable IR transmittance, sapphire ex- length, interesting for sensor applications, the transparency of hibits an excellent resistance against erosion by rain or sand the ceramics is near the theoretical maximum (diagram below) combined with high thermal shock resistance. However, the as reflection at the surfaces reduces maximum transmission by sapphire single-crystals have to be grown as boules in a time- about 11 % in this spectral range. The spectra show the in- consuming process. Final machining of the massive sapphire line transmission of samples of different wall thickness pol- boules is complex and expensive because of their high hard- ished on both sides. ness.

Better material properties of ceramics

Fraunhofer IKTS developed IR transparent polycrystalline IR transmission spectra of sub-μm corundum ceramics corundum as ceramic alternative to sapphire. Unlike the single (polished on both sides) crystalline corundum, the polycrystalline corundum exhibits no anisotropy of the material properties. Figure 1 shows an elec- tron micrograph of a crystalline sub-μm microstructure. Top values of the mechanical properties were achieved thanks to the low mean grain size of the virtually pore-free dense-sin- tered microstructure. Compared with the mean values of sap- phire, the IKTS corundum ceramics have a higher fracture toughness of 3.5 MPa√m (sapphire: 2.4 MPa√m), a higher hardness HV10 of > 20 GPa (sapphire: 14 to 15 GPa) and an improved strength (four point bending) of > 650 MPa (sap- phire: 400 MPa; ±100 MPa orientation dependent).

16 125 mm

3

Cost-effective production Three-dimensional size parameters of a sintered hemisphere

Ceramics, in contrast to single crystal, can be manufactured “near to netshape”. For that reason, liquid corundum slurry is poured into a specific mold, polymerized and then de- D 127.920 molded. Figure 2 shows the demolded ceramic hemisphere S 1.041 with a diameter of about 160 mm (left) and the reduced translucent hemisphere (right) caused by sintering shrinkage. 1 If needed, a machining of the unsintered body by e.g. grind- ing or milling is possible. The opposite diagram shows the 3 + three dimensional size parameter plot of the sintered unpol- ished hemisphere with a wall thickness of about 4 mm (figure 3). The deviation of the circularity without any post- processing is < 1 %. The IR transparent corundum ceramics Y Z offer improved mechanical properties and cost advantages as X compared with sapphire. The ceramic processing is particu- larly suited for small scale production.

Services offered

- Production of test samples and small-scale production - Development of materials - Optimization of material properties - Measurement of optical transmission

1 Sub-μm corundum micro- structure. 2 Ceramics before and after sintering. 3 Corundum dome (unpolished).

17 1 2 10 μm

THERMOELECTRIC GENERATORS BASED ON CERAMIC TECHNOLOGIES

Dr. Hans-Peter Martin, Dr. Isabel Kinski, Dr. Jochen Schilm

In many technical processes only half of the applied primary to combine their thermopower. Such modules need to be inte- energy is directly used. The waste energy typically occurs as grated efficiently into a host system (waste heat source) in peripheral heat. Thermoelectric generators (TEG) are able to terms of thermal and electrical boundary conditions in order to transform thermal energy into electrical energy. This con- generate a significant economic benefit. tributes to a favorable energy balance of processing. The operation of TEG is based on a solid state physics effect, A technological and economic solution for thermoelectric sys- named after Seebeck. Due to this effect energy transformation tems requires the interdisciplinary approach of materials sci- by TEG does not produce vibrations or emissions and therefore ence (material synthesis and design), materials technology, requires only a minimum of maintenance. joining technology, module mounting technology, thermal management, electrical engineering and finally the integration Optimized materials in combination with a temperature gradi- in existing systems. Competencies in materials science, com- ent allow to use the Seebeck effect for converting thermal en- ponent manufacturing, joining technology and energy systems ergy into electrical energy. The energetic efficiency of a TEG are interlinked between the different departments of Fraun- depends on process temperature and TEG properties such as hofer IKTS to solve the complex and interdisciplinary chal- materials efficiency, contact losses, electronic components and lenges of thermoelectrics. system integration aspects. The influence of the process tem- perature results from the Carnot efficiency meaning that the Fraunhofer IKTS is focused on its own core competencies efficiency of energy conversion increases with process tem- within the field of thermoelectrics, e.g. ceramic thermo- perature. The efficiency of the material can be calculated from electrics like titanium suboxides, mixed oxides, carbides and the Seebeck coefficient (S), the electrical conductivity (σ) and non-oxide mixed compounds are developed and optimized. the thermal conductivity (κ) resulting in Z which is multiplied Their good availability, low material costs and suitability for by temperature T to obtain the dimensionless figure of merit. high-temperatures make them attractive for such applications.

The thermopower (S) may be increased without decreasing the electrical conductivity if titanium suboxides are produced from Electrical voltage which is generated by thermoelectric materi- precursors. A defined nanostructuring of the material enables als is fairly small since the best thermoelectrics deliver a ther- the decoupling of these related properties (figure 2). A signifi- mopower between 100 and 300 μV/K within their optimal cant increase of the electrical conductivity up to a range that is temperature range. As a consequence thermoelectric elements usual for thermoelectrics may be achieved with super stoichio- (legs) are sequentially mounted in modules to generate higher metric boron carbide. The thermopower of boron carbide voltages. n-doped and p-doped legs are alternately connected stays on an extraordinarily high level because of the nano-

18 3 4

structural nature of the stoichiometric modification. To catch Thermal and electrical conductivity of B C and super stoichio- up with the established thermoelectrica it is the goal to reach 4 metric B4C a ZT value of 1 for ceramic thermoelectrics. It is evaluated how sintering processes such as gas pressure assisted sintering, inert gas sintering, hot pressing and spark plasma sintering in- fluence relevant materials properties. To reach high-level ZT values it is necessary to make high-temperature assembly and joining technologies available. The suitability of technologies is always related to the specific properties of the used materials. Established joining technologies are fitted to titanium subox- ides and carbide type materials for thermoelectric applications. Preliminary test samples have already been manufactured from titanium suboxide as n-doped legs and B4C/SiC as p-doped legs. Substrates have been prepared from metalized AlN plates (figure 3).

The integration of TEG modules is supported by the “Simula- tion” and “Energy Systems” research groups. Additionally, Fraunhofer IKTS cooperates with external partners of the Fraunhofer-Gesellschaft as well as research institutions in the region of Dresden in the fields of material synthesis and sys- tem integration.

Services offered

- Manufacture and characterization of ceramic thermoelectric materials (bulk and layers) - Design of thermoelectric properties in materials - Characterization of assembly and joining technologies for 1 Temperature gradient simu- ceramic und metallic materials lation of a TE leg pair. - Simulation of material and system performance of TEG 2 Nanostructured texture of a precursor-derived titanium suboxide. 3 Pair of legs produced by Fraunhofer IKTS in 2010. 4 Test stand for TEG characteri- zation up to 600°C.

19 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD PROCESSES AND COMPONENTS

Department head: Dr. Michael Stelter

Profile Services offered

The research field “Processes and Components” encompasses - Development of ceramic processes, components and systems manufacturing processes for ceramic components and assem- on a pilot scale blies. Prototype solutions are generated on laboratory and - Contract research and joint projects pilot scale, small batches are produced and, if required, - Services related to manufacturing processes scaled up to pilot technologies. The value chain ranges from - Technology transfer modification of commercial powders and raw materials to - Design of scientific equipment shaping, sintering, machining (green and sintered bodies), and - Feasibility studies to joining and integration technologies. The equipment en- - Consulting and training courses ables scale-up of all individual technological processes to in- dustrial standards, readily transferrable to the customer’s site. In conjunction with other research fields at Fraunhofer IKTS, namely materials development and simulation, we offer com- Design of ceramic and metallic materials as well as composite petent advice and excellent R&D to our partners. We can draw materials and their precursor products form the heart of our on the expertise of other institutes in the Fraunhofer High-Per- powder technology. Silicate and polymer ceramics are addi- formance Ceramics Alliance to extend our scope. The Fraun- tional core areas of materials expertise. Our component design hofer Demonstration Center AdvanCer provides a wide range group employs a broad range of plastic and thermoplastic of services. shaping and casting technologies as well as powder pressing. Component surfaces are treated using plasma spray processes. www.advancer.fraunhofer.de

The technology chains are completed with a capable and inno- vative green machining and finishing center. Our high standard of quality is supported by a first-class QM system and numerous certifications and expert audits.

Overall, the research unit offers outstanding possibilities for component manufacturing, system integration, and advanced materials. Prototypes and small batches can be delivered quickly, reliably, and cost effectively. We offer a flexible handling and rapid response in order to help our customers to reduce the time to market.

20 Powder Technology Pilot Manufacturing High-Purity Dr. Manfred Fries Ceramics Phone +49 351 2553-7810 Dipl.-Chem. Frank Kastner [email protected] Phone +49 36601 9301-4300 [email protected]

Shaping Oxide and Polymer-Ceramic Dr. Tassilo Moritz Components Phone +49 351 2553-7747 Dipl.-Ing. Henry Ludwig [email protected] Phone +49 36601 9301-4968 [email protected]

Component and Development Process Technology and Silicate Dipl.-Ing. Jens Stockmann Ceramics Phone +49 351 2553-7561 Dipl.-Chem. Gundula Fischer [email protected] Phone +49 36601 9301-1850 [email protected]

Finishing Mst. Matthias Nake Phone +49 351 2553-7586 [email protected]

Thermal Spraying Dipl.-Ing. (FH) Bernd Gronde Phone +49 36601 9301-4758 [email protected]

21 1 2

HIGH-PERFORMANCE COMPONENTS FOR AUTOMOBILES – CERAMIC EXHAUST FLAP

Dipl.-Ing. Jens Stockmann

State-of-the-art Testing of assemblies

Since a few years metal exhaust flaps have been used for At a test stand at Boysen 5·105 switching functions were real- noise reduction in automotive exhaust systems. Such elements ized during a test period of 305 h within 1100 temperature can also be used to reduce emissions. Materials which with- cycles, i.e. heating from < 100 to 875°C and cooling. A burner stand high temperatures and corrosive environments occurring was used to generate high temperatures. The gas throughput close to the engine are a prerequisite. Technical ceramics with was around 450 kg/h. The assemblies withstood the tests their outstanding properties are perfectly suited for such re- without damage. Depending on the ground-in clearance – in quirements. the range from 0.05 to 0.1 mm – leakage losses between 10 and 40 l/min were measured. With similar assemblies made of steel the leakage flow rates are significantly higher than Development of ceramic prototypes 100 l/min.

On behalf of Friedrich Boysen GmbH & Co. KG, a leading de- veloper and manufacturer of exhaust systems, all-ceramic ex- Prospects haust flap prototypes were developed at Fraunhofer IKTS consisting of a baffle plate with bearing pin, adjusting lever With the ceramic exhaust flap system NOx catalysts can reli- and a two-part bearing ring. It was the aim of the project to ably be used to store nitrogen oxides when the combustion develop a nearly gas-tight, controllable bypass to protect cat- engine is operated in partial load. However, these catalysts alytic components having a lower thermal stability. Silicon ni- may not be used at temperatures above 650°C. Operating at tride was chosen as material on account of its very good higher revs the exhaust gas mixture is passed through a bypass mechanical and thermal properties. Prototypes were manufac- to the three-way catalyst by actuating the exhaust flap. In fu- tured by isostatic pressing, green machining (milling) and gas ture, diesel engines can also be equipped with this efficient pressure sintering. It was a specific challenge to grind the system for NOx reduction. outer contour of the baffle plate (spherical washer) and the inner contour of the two-part bearing ring (spherical) with high precision in order to guarantee the smallest possible gap for minimal leakage losses when closed.

22 3 4

Services offered

- Consulting on materials as well as ceramic-aware design - Development of prototypes and small batches for functional tests and sampling - Support in setting-up large-scale ceramic production lines

Temperature-time curve during functional tests (source: Friedrich Boysen GmbH & Co. KG)

1 Ceramic assembly, ground. 2 3D sectional view through as- sembly (source: Friedrich Boysen GmbH & Co. KG). 3 Test stand for functional test with integrated exhaust flap (source: Friedrich Boysen GmbH & Co. KG). 4 Ceramic assembly after tes- ting (source: Friedrich Boysen GmbH & Co. KG).

23 1 2

VENEERING OF ZIRCONIUM OXIDE WITH LITHIUM DISILICATE GLASS CERAMICS

Dipl.-Chem. Martina Johannes, Dr. Roland Ehrt

Motivation Crystallization behavior of the veneering system

Yttrium stabilized zirconium oxide has become more and more Lithium disilicate (Li2Si2O5) is the main crystal phase of the important for dentistry in recent years. High mechanical veneering system. Lithium metasilicate (Li2SiO3) crystallized in strength, fracture toughness and a good translucency make the temperature range from 760 up to 800°C, and cristobalite the material suitable for crown and bridge substructures. On crystallized up to 840°C as shown in the diagram below. account of beauty aspects a veneering of the ceramic sub- structure is required. The weak points are both, the poor The ceramic veneering system can be applied as powder or mechanical strength of the ceramic veneering system and pos- suspension. It is assumed that nucleation is controlled by the sible edge chipping on the veneering system when the layer grain boundaries of the glass ceramic powder and not by the thickness becomes too large. By increasing the bending zirconium oxide crystals. By adding niobium oxide the surface strength as well as improving the bonding between ceramic quality of the veneering system can be improved. substructure and ceramic veneering system, edge chipping can be avoided.

Approach Cristallization behavior of the ceramic veneering system The combination of a crown substructure with an anatomically reduced tooth shape made of yttrium stabilized zirconium oxide with a lithium disilicate glass ceramic veneering system could be an attractive approach for restorative dentistry. Lithium disilicate glass ceramics have very good esthetic as well as mechanical, chemical and optical properties. The repre- sented ceramic veneering system corresponds to the system I III I M 2O-M 2O3-Nb2O5-ZrO2-SiO2. M 2O applies to lithium oxide III and sodium oxide, and M 2O3 applies to boric oxide and alu- minium oxide.

24 3 30 μm

Interface between substructure and veneering system Line scan of interface between ceramic substructure and veneering system

The bonding between substructure and veneering system was ZrO2 VBK examined by means of SEM microscopy in combination with EDX (linescan). After annealing at 800°C the crystalline phase of the veneering system is grown to the substructure interface. At 890°C a zirconia rich glassy phase is formed at this inter- face resulting in an intensive bond between substructure and veneering system. The thickness of the intermediate phase may reach 4 μm and the zirconium content increases up to a Li Si O factor of 4. 2 2 3 The reasons for the formation of the glassy interface may be the crystal growth of lithium disilicate and the diffusion behav- ior of the lithium ions. kV: 15.00 Mag: 10000x

Surface of the veneering system

During the formation of lithium disilicate crystallites the nio- bium oxide is forced into the glass matrix phase. The Nb2O5- content in the glass phase is increased by a factor of 1.5. The increased niobium oxide content provides the formation of a thin glass layer on the surface of the veneering glass ce- ramics during the process of controlled crystallization.

Acknowledgments

The Federal Ministry of Economy and Technology is gratefully acknowledged for supporting this project.

1 SEM structure of a yttrium Services offered stabilized zirconium oxide. 2 Crown substructure with an - Development of glass ceramic materials including customiza- anatomically reduced tooth tion and characterization of oxide ceramic components shape. - Shaping of oxide ceramics, e.g. slip casting 3 SEM image of substructure and veneering interface.

25 1 2

LARGE-SIZED PLASMA-SPRAYED CFRP/GFRP COMPONENTS

Dipl.-Ing. (FH) Bernd Gronde

Motivation between light, high-strength components and high surface stability as well as surface quality. Energy-efficient light-weight construction with carbon or glass-fiber reinforced plastics (CFRP, GFRP) is of increasing im- In practice, the weight was reduced by a factor of ten by using portance for many industry sectors such as automotive indus- CFRP components with ceramic sprayed coatings. try or mechanical engineering.

CFPR and GFPR components are produced by near-net-shape Results techniques as complex parts or as laminated semi-finished products such as cylinders, plates or molded paddings. They Adhesion between ceramics and plastics plays a decisive role are high-strength and light components, but less stable for many coating systems. The ALBOCER® adhesion system de- against chemical and tribological stress. veloped at Fraunhofer IKTS allows one to apply coatings on CFRP and GFRP surfaces having an adhesive strength of up to Ceramic coatings can significantly improve surface stability 25 N/mm². and quality of CFPR and GFPR components. This includes: This adhesive strength may be realized for sample surfaces as - Wear protection of components subjected to frictional and well as for very large-sized components. In the development sliding stress period the adhesive strength of 25 N/mm² was measured at - Non-stick effect against liquids and solids an alumina coated cylinder with a diameter of 380 mm and a - Resistance against environmental influences length of 4000 mm. No deviations from the sample compo- - Electric insulation (also in combination with improved wear nents were detected. protection) - Thermal insulation The layer thickness ranges from 0.01 to several millimeters. The layer formation rate may amount up to 40 g/min with an The surfaces are coated by atmospheric plasma spraying (APS). economically attractive adhesive rate of up to 80 %. As we have many years of experience in this field, we suc- ceeded in holding the thermal stress at a subcritical level. A In the future, even components with complex geometries can number of ceramic and metallic materials as well as cermets be coated. For the first time an inside coating was realized on can be applied on the surface without additional heat treat- GFRP bushings at Fraunhofer IKTS. ment. The resulting material composites solve the conflict

26 3 4

Serives offered

- Coating of prototypes with ceramic protective and func- tional layers - Development and characterization of coatings in terms of morphology, physical and mechanical properties as well as life tests - Coating of small components (5 to 120 mm in diameter, 10 to 300 mm in length) - Coating of medium-sized components with standard geometries (max. 500 mm in diameter, max. 2400 mm in length, with a max. weight of 1 t) - Coating of large-sized components, specialization on rota- tion symmetrical components and flat components (max. 700 mm in diameter, max. 5000 mm in length, with a max. weight of 1 t)

1 CFRP cylinder after coating. 2 CFRP cylinder for corona ap- plication. 3 Ring made of DoTherm® with ceramic coating. 4 Sleeves with ceramic coating.

27 1 2 1 μm

HIGH-STRENGTH AND NON-AGEING ZTA CERAMICS FOR IMPLANT APPLICATIONS

Dipl.-Ing. Henry Ludwig, Dr. Uwe Reichel, Dipl.-Ing. Uta Oberbach

Initial situation Approach

Due to the excellent mechanical qualities and the unique bio- By mixing high-purity alumina powders of different qualities compatibility in particular, the interest in ceramic materials (d50 = 0.7 and 0.15 μm) with unstabilized nano zirconia pow- permanently grows in the field of medical engineering. Alu- ders (d50 < 30 nm) dispersion ceramics were prepared. One mina and zirconia ceramics have successfully been used as bio- method starts with a standard powder mixture, another one materials for joint endoprosthesis for many years. The uses co-precipitation (mixing of alumina slurries with zirconia advantages of the single-phase ceramic materials Al2O3 and precursors) and slip casting. The doping content was between

ZrO2 can be combined by producing a dispersing ceramic ma- 2.5 and 15 wt% of zirconia. Both methods resulted in dense, terial. So, the particular disadvantages of both individual ma- highly disperse microstructures. The homogeneous microstruc- terials can be compensated. Here it is important to distinguish ture was free of pores. Using 15 wt% of ZrO2 the Al2O3 grain mixtures with a higher alumina amount (zirconia toughened size was reduced by 70 % compared with the state-of-the-art alumina, ZTA) from dispersions with a higher zirconia amount (diagram on the right). The bending strength was > 1000 MPa (alumina toughened zirconia, ATZ). (4-point bending test) depending on the used alumina powder

quality and the ZrO2 content. The highest Vickers hardness Our materials developments for hard-hard implants (combina- (HV2) values were achieved with mixtures produced through tion ceramic/ceramic) currently focus on using dispersion ce- co-precipitation. The ageing behavior of the dispersion ce- ramics. It is the aim to develop high-strength ceramic materials with strength properties that are better than these of pure alu- Low temperature degradation (LTD) of Y-TZP/ATZ (Vapor water 134°C, 2 bar) mina ceramics. Unfortunately, the conventional dispersion ce- ramics ZTA and ATZ as well as the pure yttrium stabilized zirconia show an ageing tendency reducing the mechnical properties in vivo (diagram on the right). This ageing described as low temperature degradation (LTD) primarily depends on the zirconia content of the used dispersion ceramics and on the stabilization component as well. The higher the zirconia content in the material, the higher are mechanical strength and fracture toughness of the material, but the lower is the ageing resistance.

28 3 1 μm

ramics is investigated by determining the bending strength be- Grain size of Al O depend on ZrO content fore and after treating the samples in the autoclave (134°C, 2 3 2 2 bar) as well as by phase analysis (XRD). Once a favored ma- terial composition has been found (fulfillment of the target criteria/material characteristics) a manufacturing method in- cluding granulation and cold isostatic pressing (CIP) is devel- oped. Wear tests were carried out in the hip joint simulator for commercially available standard ZTA ceramics. The tests will be continued with the newly developed material.

Acknowledgments

The introduced work is result of a current joint project with Mathys Orthopädie GmbH Mörsdorf. The project is funded by the Federal Ministry of Economics and Technology (No. IW 091081).

Services offered

- Development of oxide and dispersion ceramics - Slip casting of ceramic components - Development of ZTA or ATZ granules - CAD/CAM process chain for manufacturing of medical im- plants

1 Parts of ceramic hip joints. 2 Microstructure of ZTA (Al2O3

with 5 wt% ZrO2 ). 3 Microstructure of ZTA (Al2O3

with 15 wt% ZrO2 ).

29 1 2

FUNCTIONALLY MODIFIED INORGANIC- ORGANIC COMPOSITE MATERIALS

Dipl.-Chem. Ralph Schubert

Materials with distinctive functional properties such as high Adjustment of thermal conductivity electrical or thermal conductivity or adjustable dielectric con- ductivity are required for the production of powerful compo- System Thermal conductivity/W·m-1·K-1 nents used in e.g. sensor technology, mechanical egineering, Foamed polysiloxane/SiO2 0.2 - 0.7 communication technology, or power engineering. Further- Polysiloxane/Al2O3 1.1 - 3.8 more, these materials should exhibit flexible processing prop- Polysiloxane/BN 5.0 - 12.0 erties including complex plastic shaping techniques or the Polysilazane/AlN 2.2 - 8.5 potential of integration into composites.

A concept of an inorganic-organic composite material based whereas the application of nonconductive fillers like SiO2 re- on filled silicium-organic polymers was developed at Fraun- sulted in insulating materials even at temperatures up to hofer IKTS. These composites combine ceramic-like properties 1000°C (table on the left). (e.g. high thermal stability) and plastic-like properties (e.g. sim- ple processing including plastic shaping techniques such as in- Using thermoconductive fillers as well as polysilazanes as ma- jection molding and no need of high-temperature treatment). trix forming polymers and applying a heat treatment process causing a partial ceramization of the composite matrix the The results of current investigations reveal that functionalized thermal conductivity of the composite could be increased sig- composites can be realized using special filler systems, and ad- nificantly. In contrast thermally insulating materials can be pro- ditional thermal treatment in a temperature range between duced by foaming the composite matrix in plastic state during 200 and 900°C, if necessary. Applying electrically conductive processing (table above). Applying fillers with high dielectric fillers electroconductive composites could be produced, conductivity composites with adjustable dielectric constants could be manufactured (figure 1).

Adjustment of electrical conductivity Ongoing investigations are targeting the examination of the System Electrical conductivity/S·cm-1 application potential of the newly developed functionalized

-12 -15 Polysiloxane/SiO2 10 - 10 composite materials. The composites with modified electrical Polysiloxane/Al 4 - 6 conductivity are to be tested as sensor housings, electrodes, Polysiloxane/Cu 23 - 55 bipolar plates in fuel cells, and components for electro- Polysiloxane/TiC 13 - 17 magnetic shielding. Heat-conductive materials may be used in Polysiloxane/C 10 - 12 components of metal processing (e.g. wire drawing nozzels) or as joining systems in heating units. Composites with adjusted

30 3

dielectric constants are used in miniature high-frequency an- Dielectric properties of functionally filled composite materials tennas. based on polysiloxane matrix

Acknowledgments

The presented results have been particularly obtained within the funded R&D projects INNOWATT IW070216 and INNO- KOM VF090024.

Services offered

- Development of functionalized composite materials and appropriate processing technologies - Supply of composite materials - Development of application samples

1 Temperature sensor with thermally stable composite hou- sing. 2 Bipolar plates made of elec- troconductive composite mate- rial. 3 Miniature HF antenna made of HDK composite.

31 1 2 100 μm

CERAMIC FILTERS FOR CLEANING LPG

Dipl.-Ing. Steffen Lauenroth

Initial situation Requirements on filter porosity

LPG (liquefied petroleum gas) is a mixture of propane and bu- The structure of the pore system must fulfill two main require- tane liquefied under pressure which is generated during oil ments: On the one hand, a high open porosity with compara- and natural gas production as well as in oil refineries. Due to tively large pores is necessary to prevent gas flow limitations in its chemical composition LPG can be used as alternative fuel the filter. On the other hand, long-chained hydrocarbons are for gasoline engines. The different gas qualities, particularly to be separated selectively by a labyrinth-like pore system and as far as unwanted components are concerned, cause techni- fine-structured pore surfaces. cal problems when used in gasoline engines. In measure- ments up to 200 different organic compounds (with trace level) were identified in the LPG. The accumulation of long- Results chained hydrocarbons in conventional paper filters is prob- lematic as a swelling up followed by obstruction of the gas Particularly good results can be obtained with a cordierite sys- flow may result in a reduced operability or in filter failure. tem. By using combustible natural (classified nutshell flours) and synthetic pore forming agents (waxes, graphite) the exist- ing porosity of this material can be increased. The pore size and open porosity can be changed in a wide range by varying type, shape, size and quantity of the pore forming agents. The Pore size distribution of selected test filters developed filters offer open porosities of up to 75 % and mean pore sizes > 100 μm.

32 3 4

Application Exhaust emissions with selected filters

Two identically constructed cars of type VW Caddy from Autogastechnik Triptis GmbH were used for testing the filters. Performance tests realized by the TÜV Thüringen on test stands at the University of Applied Sciences Zwickau led to the selection of filters without influence on engine perfor- mance. The selected filters were analyzed in terms of their in- fluence on exhaust emission.

Since October 2010 the filters have been tested in traffic. After completing a defined road performance the filters are removed and the filter residue will be examined by IR spec- troscopy.

Acknowledgments

The presented results were obtained within a publically funded project (BMWi, FKZ. IW090053).

Services offered

- Development of ceramic elements for filtration applications or as carrier for microorganisms or catalysts - Manufacturing and analysis of test samples and small batches

1 Conventional paper filter, fil- ter housing, ceramic filter (from right to left). 2 SEM image of the pore structure of a ceramic LPG filter. 3 Test stand at the University of Applied Sciences Zwickau. 4 Instantaneous display during performance test.

33 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD ENVIRONMENTAL ENGINEERING AND BIOENERGY Department head: Dr. Ingolf Voigt

Profile Services offered

The research field “Environmental Engineering and Bio- The services we offer range from development, optimization, energy” encompasses the development of materials, tech- and planning to scientific support in the installation of nologies, and systems for the efficient, safe, economical facilities and transfer to continuous industrial operation. generation, conversion, transportation, storage, and utiliza- Innovative treatment technologies and extensive know-how in tion of energy, especially bioenergy. Technologies and pro- ultrasonic treatment, biological catalysis, and fermentation are cesses are also being developed for water and air used to enable highly efficient use of natural raw materials purification. and biogenic waste materials.

At the core of the research activities are ceramic membra- - Situation and systems analysis at customer site and in nes for liquid filtration, pervaporation, vapor permeation, laboratory and gas separation as well as catalysts for exhaust gas pu- - Innovative process development and specification for rification and wet chemical catalysis. Powerful process biomass treatment technologies for comminution and disintegration of bioge- - Determination of gas potential of biogenic substrates nic substrates as well as membrane modules and systems - Optimization of reaction kinetics for anaerobic breakdown for substance separation and reaction are also being deve- processes loped. The integration of these technologies into existing - Processes for wastewater purification and water treatment in technologies (e.g., for biogas and bioalcohol generation) municipal and industrial plants results in a significant increase in efficiency and offers new - Ultrasonic application for degassing and disintegration approaches for process development. - Energy optimization of stirring processes - Membrane development and testing For environmental protection and resource conservation, - Application and piloting of membrane processes innovative solutions for substitution or economical use of - Catalyst development and testing chemical additives are designed and efficient technologies - Supply of samples of ceramic membranes and catalysts for for recovery and reuse of resources developed. pilot and demonstration systems - Membrane system development and prototype manufacture - Engineering of biogas plants using new, innovative process steps - Provision of expert opinions and reports

34 Water Technology Dr. Burkhardt Faßauer Phone +49 351 2553-7667 burkhardt.fassauer@ ikts.fraunhofer.de

Bioenergy Dr. Eberhard Friedrich Phone +49 351 2553-7826 eberhard.friedrich@ ikts.fraunhofer.de

Mixed Conductors and Catalysis Dr. Ralf Kriegel Phone +49 36601 9301-4870 [email protected]

Nanoporous Membranes Dr. Hannes Richter Phone +49 36601 9301-1866 [email protected]

Membrane Process Engineering Dr. Marcus Weyd Phone +49 36601 9301-3937 [email protected]

35 1 2

EVALUATION OF MIXING PROCESSES BY MEANS OF PROCESS TOMOGRAPHY

Dr. Eberhard Friedrich, Dr. Karin Jobst, Dipl.-Wirt.-Ing. Annett Lomtscher

Initial situation Mixing quality of biogas digesters

Despite progress in dimensioning stirring systems using com- Considering the reactor geometry of large-scale biogas plants putational fluid dynamics (CFD) the requirements for mixing the mixing of pretreated straw into digester effluent using techniques are only partially fulfilled in many industry sectors. horizontal propeller mixers was evaluated by process tomogra- Particularly for highly viscous, non-Newtonian fluids previously phy. Previously conducted studies show that the reactor vol- used models for CFD lead to incorrect interpretation. This can ume, which is actively stirred, is only between 60 and 85 %. be referred to insufficient consideration of the real existing properties as well as the lack of an experimental evaluation of mixing and flow processes. Thus, for example, the efficiency of Effect of particle size distribution biogas reactors is limited. Besides dead storages floating and sinking layers inhibit an optimal biogas production. The mixing quality and the energy required for mixing are sig- nificantly influenced by the substrate pretreatment and the resulting particle size distribution of the biogenic substrates. Approach The reduction of viscosity due to the pretreatment improves mass transport. Using process tomography existing at Fraunhofer IKTS, a visu- alization and quantitative evaluation of mixing processes of opaque substances can be realized for the first time.

Visualization of mixing processes

PC Operating principle

By applying a defined current between a pair of electrodes on each level a potential field is built up which is influenced by the different electrical conductivities of the multiphase system. As a result, the distribution of conductivity and the volume concentration of the disperse phase in the reactor system can DAS be determined. For further evaluation of mixing and flow Stirred tank reactor with processes the mixing quality is calculated and the velocity pro- electrodes file is determined.

36 3 4

Prospects Change in electrical conductivity due to mixing in pretreated wheat straw

Continuing these studies significant statements for design and operation of stirring systems especially being used for highly concentrated, non-Newtonian fluids can be derived.

Services offered

- Evaluation of mixing processes for Newtonian and non-New- tonian fluids - Evaluation of mixing processes for opaque substances Before addition of substrate Mixing time 30 min - Aeration of liquid

Effect of the reduction ratio of wheat straw on mixing quality (MQ) and the required electrical power of the stirrer

1 Mixing of maize silage. 2 Arrangement of the stirring system. 3 Process tomography test stand. Finanziert aus Mitteln der Europäischen Union und des Freistaates Sachsen. 4 Formation of sinking layers.

37 1 2 3

CERAMIC MEMBRANES FOR EMISSION-FREE POWER PLANTS

Dr. Ingolf Voigt, Dr. Ralf Kriegel

Membranes for gas separation portable stand-alone device firstly presented at the Achema trade fair and Hannover Messe in 2009 (figure 3). Despite of the planned increase of renewable energy sources a considerable part of electrical power production has still to be realized by the combustion of fossil fuels in the near future. Results

For CO2 separation in power plants different process routes called pre-combustion, oxyfuel and post-combustion are used. The demonstration unit generates 170 l (STP) oxygen per hour 2 The separation of H2/CO2, O2/N2 and CO2/N2 is an essential ele- at 850°C using a membrane surface of 0.2 m . Cyclic opera- ment in these processes shown in figure 1. In general, mem- tion for 27 heating and cooling cycles as well as long-term op- brane separation processes are characterized by lower energy eration for more than 1700 hours at 800°C and 850°C were consumption as compared to thermal processes or gas scrub- completed without failures of the membrane components or bers, but membranes suited for gas separation in fossil power peripheral device parts. Continuous acquisition of operation plants are currently not available. Therefore, the development data provides useful insights on the behavior of the mem- of such membranes is the target of the Helmholtz Alliance branes used. Correspondingly, a reliable data base for scaling Mem-Brain where Fraunhofer IKTS plays a decisive role. up the oxygen membrane separation process is available. The electrochemical separation process uses the combined trans- port of oxide ions and charge carriers within the mixed con-

Demonstration unit for O2/N2 separation ducting membrane material BSCF (Ba0.5Sr0.,5Co0.8Fe0.2O3-δ). Therefore, a very high selectivity is reached. In addition to the development and characterization of mem- brane materials as well as the preparation of membrane com- ponents, the focus of Fraunhofer IKTS was on building up a Oxyfuel with CO2 sweep demonstration unit proving the technical feasibility of gas membrane separation. O2/N2 separation was selected as an en- Production of oxygen using mixed conducting membranes at ergy-efficient alternative to conventional techniques for O2 high temperature is schematically drawn in figure 4. The use production. Based on previous, substantial developments for of oxygen separated in an oxyfuel power plant can be realized the production and optimization of mixed conducting mem- with or without flue gas sweeping. The first route results in a brane components shown in figure 2, a device concept was lower oxygen partial pressure at the permeate side followed developed and discussed with the project partners. Afterwards by a higher driving force for the oxygen transport. According the demonstration unit was designed and built up as a to that, the energy consumption of the process using flue gas sweeping is decreased as compared to a process without flue

38 4 5 30 μm

gas sweeping. Mixed conducting membrane materials with Services offered high oxygen permeation are mainly based on earth alkaline cobaltites belonging to the perovskite type like - Characterization of oxygen permeable membranes

Ba1-xSrxCo1-yFeyO3-δ, BaCo1-yFeyO3-δ and SrCo1-yFeyO3-δ with Co - Production and supply of membrane samples for testing and Fe partly substituted by further elements. As expected, - Consulting for the design of membrane plants on cus- the high earth alkaline content and CO2 sweep operation re- tomized specifications sults in the formation of blocking carbonate layers. Therefore, membrane materials stable in CO2 will be developed within Oxygen permeability of Ti substituted SCF and the joint research project MEM-OXYCOAL using the following Ce0.8Sm0.2O1.9/Ag composite (air/CO2, 850°C) main routes:

- Protection of known, CO2 instable materials with high O2 permeation by coating and chemical substitution

- Increase of O2 permeation of known CO2 stable materials by chemical substitution and preparation of asymmetric mem- branes (thin separation layer on porous support)

- Development of new materials stable in CO2 with high O2 permeation

Selected results are shown in the opposite diagram containing the oxygen permeability for SCFT (SrCo0.72Fe0.18Ti0.10O3-δ,

SrCo0.48Fe0.12Ti0.40O3-δ) and a ceramic metal composite

(Ce0.8Sm0.2O1.9/Ag) operating in air/CO2.

Obviously, the oxygen permeability of SCFT described as stable in CO2 decreases with increasing Ti substitution. In addition, a steep drop of the oxygen permeability with time is observed. 1 By contrast, the composite based on ceria with approx. Process routes for CO2 emis- 20 vol% silver (comparable to figure 5) shows a stable behavior. sion-free coal power plants. 2 Oxygen-permeable membra- It has to be kept in mind that an economic operation needs nes for demonstration unit. higher oxygen fluxes, e.g. by minimization of the membrane 3 Demonstration unit for oxy- thickness. Furthermore, a substitution of the noble metal elec- gen separation. tron conductor by an oxide semiconductor seems to be mean- 4 Principle of oxygen mem- ingful. brane separation with CO2 sweep. 5 CSFM5528/Ag composite, SEM, polished section.

39 W & Au TiO2 ZrO2 TiO2

1 2 100 nm

CERAMIC NF MEMBRANES FOR WASTE WATER TREATMENT AND PRODUCT SEPARATION

Dr. Ingolf Voigt, Dr. Hannes Richter, Dipl.-Chem. Petra Puhlfürß

Initial situation Application

Water will become much more important in the future as a re- Ceramic NF membranes with a cut-off of 450 D have proven source for industrial processes as well as a basis for human life successful in many applications. The first plant was built by due to the climatic changes. Waste water treatment will be Andreas Junghans in 2002. With a membrane area of 25 m2 it applied as process-integrated treatment, partial flow treat- was used for the decoloring of textile waste water at Riedel ment and implementation of closed water cycles. Process inte- Textil GmbH. In 2005, this plant was expanded to 62 m2 be- gration also means high temperature as well as higher cause of the increased amount of waste water. The complete concentration of aggressive substances. In case of membrane plant has been running up to now without replacing the technology ceramic membranes are advantageous. In addition membranes. Permeate fluxes of 100 to 200 l/(m2h) are ob- to waste water treatment effective separation processes are tained at a transmembrane pressure of 10 to 20 bar. required for product separation and product cleaning. Besides waste water treatment ceramic NF membranes are successfully applied to clean products by diafiltration. One ex- Membrane development ample is the cleaning of inutec® at BENEO-Orafti, which is

Ceramic nanofiltration membranes (NF membranes) enable Retention of ceramic NF membranes in comparison to UF mem- the filtration of soluble substances as well as salts. They are branes applied as thin layers on top of a porous ceramic substrate using the polmeric sol-gel technique. The layer thickness is only about 50 nm, so that a high-quality support as well as defined intermediate layers are needed to adjust the pore size as well as the surface roughness step by step to the re- quirements of the NF membrane. The last two intermediate layers consist of TiO2 with a pore size of 5 nm and ZrO2 with a pore size of 3 nm. Both layers can also be used as ultrafiltra- tion membranes (UF). The NF membrane layer consists of amorphous TiO2 with a pore size of 0.9 nm and a molecular weight cut-off (MWCO) of 450 D (corresponding to 450 g/mol). In contrast to the UF membrane layers, the pores have a cylindrical shape showing a lower blocking tendency.

40 3 4

Decoloring of textile waste water by nanofiltration using Services offered ceramic NF-membranes

- Development of application-specific membranes - Supply of membranes for testing - Customer-specific testing of membranes in our laboratory and pilot plants - Execution of field tests - Production of membranes for pilot and demonstration plants

formed by transformation of inulin in NMP (n-methylpyrroli- done). During the diafiltration process NMP is replaced by water and the product is concentrated. In this case, a stability against NMP is required as well as a high retention to prevent product losses. Today, ceramic NF membranes are commer- cially produced by our cooperation partner Rauschert under the brand name inopor® membranes.

Further development of ceramic NF membranes is focused on an application-specific surface modification as well as the re- duction of the cut-off. Correspondingly, the wetting by or- ganic solvents can be improved by coupling silanes to the membrane surface. This is the basis for the application of ce- ramic NF membranes in chemical processes.

Within the “Nanomembrane“ project (BMBF, FKZ: 03X0080L) 1 Module with ceramic mem- the molecular weight cut-off of the ceramic NF membrane is branes. to be further reduced down to 200 D. 2 TEM cross section of a cera- mic NF membrane. 3 62 m2 NF membrane plant for the cleaning of textile waste water. 4 37 m2 NF membrane plant for diafiltration.

41 Inlet untreated gas

Sight glas Spout catalyst

Thermowell Catalyst bed

Sampling nozzle Pressure measurement Outlet 1 2 nozzle cleaned gas

CATALYST AND O CARRIER SYSTEM FOR THE 2 PROCESSING OF TAR-CONTAINING GASES

Dr. Jörg Richter, Dr. Ralf Kriegel

Initial situation the tar components, while the components of the fuel gas contributing to the heating value of the gas remain unaf- The gasification of biomass allows the combined generation of fected. electricity and heat with high overall efficiencies in small, de- centralized systems which can provide a significant contribu- tion to the realization of local supply structures. Particularly Development of oxygen storage materials (OSM) during the one-step gasification in small-scale plants hydrocar- bons with high boiling points (e.g. tars) are generated which Perovskite materials are preferably used as OSM since their seriously limit the utilization of these gases in combined heat oxygen exchange properties (uptake and release) can be ad- and power plants. Currently, the required gas quality cannot justed to the expected process conditions. Potential candidate or can only be achieved by installing additional technical OSM have been characterized by O2 TPD (temperature pro- equipment and costly process steps, e.g. by catalytic oxidation grammed desorption) and TG (thermogravimetry). Selected with air or by methanol washing. The applied catalysts tend to materials have been shaped to mini-honeycombs (miniliths) by coking and the introduction of nitrogen decreases the heating extrusion and can be used as packed bed for future pilot plant value. Furthermore, the handling of toxic solutions and by- scale tests. products places high demands on the plant safety.

Temperature programmed desorption: Comparison of two oxygen storage materials Approach

At Fraunhofer IKTS ceramic oxygen storage materials (OSM), which are covered with ceramic catalysts, are used. Thus, the necessary oxygen for partial oxidation of tar is released exactly at the location of its demand. Hence, the additional introduc- tion of nitrogen and the decrease of the heating value can be avoided. Due to the time-dependent depletion of the OSM the process is cyclically run using parallel reactors. The partial oxi- dation of tar occurs in the first reactor, while the oxygen de- pleted OSM will be recovered by purging the second reactor with air. Modeling shows that tar components condense at the material surface. The released oxygen primarily oxidizes

42 3 4 2 μm

Development of catalyst materials Services offered

Perovskite catalysts have already proved to be the appropriate - Development of oxygen storage materials solution for miscellaneous oxidation reactions. Their catalytic - Development of ceramic catalysts for total and partial oxida- activity can be adjusted in a certain range. Naphthalene tion

(C10H8) was chosen as model substance for tar. - Characterization of the oxygen storage behavior

The conversion of naphthalene was recorded by FTIR (Fourier Naphthalene conversion of a LaCoO3-δ catalyst transformed infrared spectroscopy) and MBMS (molecular (characterized by molecular beam mass spectrometry) beam mass spectroscopy) for different oxidation catalysts.

A catalyst made of LaCoO3-δ has already shown naphthalene conversions of more than 80 % at 500°C. The naphthalene conversion increases to 90 % at 600°C and to 100 % at 700°C.

Development of the catalyst and O2 carrier system

Miniliths of a chosen OSM were coated with a perovskite cata- lyst material. In this process the fine-grained catalyst granules infiltrate into the pores of the OSM. No reactions between these two materials were observed during the necessary an- nealing process. Further coatings of oxygen storage materials with different catalyst are prepared for technical tests on the pilot plant of the Technical University of Dresden.

Acknowledgments

This project was funded by Deutsche Bundesstiftung Umwelt 1 Reactor for biogas pro- (AZ 27087). duction at TU Dresden. 2 Diagram of a reactor with ca- talyst bed. 3 Miniliths of an oxygen sto- rage material. 4 SEM image of a minilith with catalyst coating.

43 1 10 μm 2

EFFICIENT PRODUCTION OF BIOETHANOL USING ZEOLITE MEMBRANES

Dr. Hannes Richter, Dr. Marcus Weyd, Dipl.-Ing. Jan-Thomas Kühnert

Bioethanol is made of renewable resources and is deemed to vacuum on the outside of the tubes only water can permeate be carbon-neutral. By using domestic resources the energy through the nanopores of the zeolite layer. Thus, the ethanol balance of bioethanol is only slightly positive on account of is dewatered. This filtration process can be applied in liquid high energy demanding processes. Besides distillation concen- state (pervaporation) as well as in vapor state (steam or vapor tration of ethanol from 10 to 96 % (azeotropic point) the fur- permeation) and with ethanol at temperatures up to 140°C. ther drying of ethanol up to 99.5 % requires huge amounts of energy by using conventional technologies such as adsorption Membrane synthesis was scaled up to tubes having a 4-chan- and azeotropic distillation. nel geometry and a length of 1.2 m. A sample production line in industrial scale was built up at the Hermsdorf branch of Membrane processes with zeolite membranes are an energy Fraunhofer IKTS. The GFT Membrane Systems GmbH investi- saving alternative. Zeolite A is characterized by small pores gated the application of the zeolite membranes in the indus- (pore diameter of 0.4 nm) and a hydrophilic surface. At Fraun- trial bioethanol production. The whole process line of hofer IKTS a process was developed to prepare a thin and de- bioethanol production was adapted to the potentialities of fect-free layer of zeolite A inside the channels of ceramic membrane technology. Using zeolite membranes for ethanol supports of high open porosity. By streaming ethanol-water dewatering, the ethanol has only to be concentrated by distil- mixtures through the channels of the membrane and applying lation (rectification) to 85 %.

Thus, the process offers the following advantages: Dewatering of ethanol by steam permeation at 125°C - Columns with a lower number of separating stages running with lower reflux ratio can be applied in newly constructed bioethanol plants using membrane drying. - An existing rectification unit can be operated with a higher throughput after retrofitting a membrane drying unit. - The membrane drying unit can be operated directly coupled with the rectification in vapor permeation. Vapor compres- sion and heat recovery are advantageous. - After the energetic optimization of the whole ethanol pro- duction process the energy demand for ethanol drying can be reduced by up to 90 % as compared to conventional techniques.

44 3 4

A first demonstration plant for industrial bioethanol drying Convential drying by pressure swing adsorption equipped with a membrane surface of 25 m² was started up in November 2007. A large-scale demonstration plant with a membrane surface of 120 m² started operation in February 2009. Currently, approx. 100,000 l/d ethanol are dried by zeo- lite membranes of Fraunhofer IKTS. Further plants are under construction.

Finally, the membranes also can be used for the efficient dry- ing of several organic solvents from different industries like chemistry and pharmaceutics. The membranes have already showed convincing results in the dewatering of other solvents (e.g. methanol, tetrahydrofuran and 2-propanol), esters (ethyl- acetate) and various organics. A first pilot plant is at the plan- ning stage.

Drying by vapor permeation with vapor compression and heat recovery Services offered

- Dewatering and separation tests with customer-specific mix- tures in laboratory and pilot plant scale and on-site - Engineering, construction and equipment of membrane plants

1 Cross section of zeolite mem- brane (SEM). 2 Membranes in stainless steel module. 3 Pilot plant for bioethanol drying. 4 Porous ceramic supports

made of Al2O3.

45 1 100 nm 2 100 nm

NANOSIZED ZEOLITES AS HOSTS FOR PHOTOCHROMIC DYES

Dipl.-Ing. Oliver Tröber, Dr. Hannes Richter

For a long time, architects have been in search of homoge- Zeolite Y and MCM-41/48 were chosen as stabilizing cages. neous photoswitchable window fronts which change their The inner room of these silicates has a pore width of 1.2 and color quickly and reliably. The present systems are expensive 3 nm. Template-assisted hydrothermal synthesis led to milky and have a limited range of colors. Furthermore, the photo- suspensions with particle diameters from 0.5 to 1.1 μm. switchable behavior is influenced by temperature. Pho- Improving the reaction conditions the particle diameter was tochromic dyes embedded in a polymer foil of a laminated reduced to 40 to 80 nm. glass seem to be an alternative. So it was possible to produce lucent nanosized suspensions of Window switching behavior under UV radiation zeolite Y and the MCM materials. However, the crystalline cav- ities of the as-synthesized zeolites were blocked with organic templates after synthesis. The hosts were treated by a multi- level extraction process to obtain a template free cage for the dye molecules. This process resulted in no significant coars- ening of the nanoparticles.

Because of the narrow pores in the zeolite Y the dyes had to be synthesized inside the cages. The dyes were successfully prepared using a “ship-in-bottle” reaction (SIBOR), but steric hindrance and high polarity limited the photochromic behavior inside the zeolite Y. Because of the large pores of mesoporous Photochromic dyes, however, have a limited chemical stability. materials it was possible to synthesize the dye outside the For this reason, embedding of dyes in the cages of zeolites is a promising approach to stabilize the pigments. The zeolite Schematic structure zeolite Y, MCM-41 and MCM-48 hosts have to fulfill the following requirements: (www.iza-structure.org, Nature 359 and 441)

- Sufficient space for the dyes in the pores - Sufficient polarity for dye-cage connection - Polarity and space should not affect the switching behavior of the pigments - Host-guest hybrids must be dispersible in polymers - Particle diameter less than 150 nm for good transparency

46 3 4 200 nm

sibility of low-cost and fast photoswitchable windows with a Zeolite Y with filled and empty pores (www.iza-structure.org) broad range of colors was demonstrated.

Long-term studies, substitution of alternative dyes and an im- proved anchoring of the guests inside the cages are subject of current research.

Acknowledgments pores and to bring them into the cages by diffusion. The nitro- gen-sorption measurement indicated that the dye molecules The presented results are a part of a joint project with TU were located inside the pores of the mesoporous material. The Chemnitz and Innovent e.V. The DFG is acknowledged for fi- host-guest hybrid showed the desired photochromic behavior nancial support (RI930/2-1). and testified to a successful development.

The next step aimed on the embedding of the host-guest hy- Services offered brid in a polymer matrix and the extrusion of the polymer (polyetylene) composite. It was necessary to functionalize the - Development and production of template-free, micro and particles to disperse them homogenously in polyethylene. The mesoporous nanoparticles in form of suspensions and dis- extruded composite films showed the same photochromic re- persible powders action as the single host-guest hybrid. The color of the dye- - Functionalization of different nanoparticles MCM-48 composites intensified immediately through - Embedding, segregation and shaping in different matrices ultraviolet radiation and discolored after exposing. So, the fea-

Particle size distribution via laser diffraction

1 SEM image of zeolite Y nanoparticles. 2 SEM image of MCM-48 nanoparticles. 3 Photo-switchable polymeric foils after partial UV irradiation. 4 SEM cross section of photo- switchable polymer foil.

47 0,72 μm 1,02 μm

1 1 μm 2 5 nm

ADSORPTION-SELECTIVE CARBON MEMBRANES FOR BIOGAS APPLICATION

Dr. Nadine Kaltenborn, Dipl.-Ing. Susanne Müller, Dr. Hannes Richter

After synthesis biogas consists of up to 55 % CO2. For using In cooperation with DBI GUT GmbH membranes for CO2/CH4 biogas as a fuel or feeding in natural gas pipes it has to be separation were found which showed sufficiently high CO2 purified. For this treatment adsorption and wash processes are permeation in a wide range of gas compositions and pressure usually used. ratios. The relation of CO2 to CH4 permeances varied between 15 and 14,000 as a function of test conditions. In any case

Membrane processes have the advantage of a continuous pro- CO2 rich or pure CO2 could be delivered from different cessing as well as a simple, modular and flexible plant design, CO2/CH4 mixtures. which means low cost and low energy demand. Within a proj- ect, funded by Deutsche Bundesstiftung Umwelt (AZ 26357- CO2 and CH4 permeances as a function of CO2 concentration of the feed 31), ceramic membranes for CO2 separation from biogas were developed. As membrane material for CO2/CH4 separation ad- sorption-selective carbon membranes were found to be useful. They are formed by deposition of a polymeric precursor mate- rial on the inner surface of a porous, ceramic tube and by sub- sequent pyrolysis. After pyrolysis a paracrystalline or pyrolytic carbon is obtained deviating from the ideal crystal structure. Because of its high open porosity it is suitable for adsorbent as well as membrane material. The disordered aromatic domains in the amorphous matrix cause the free volume and its ultra- microporosity. The mostly slit-shaped pores have pore dimen- sions between 0.3 and 0.7 nm which is in the range of small gaseous molecules. Adsorption-selective carbon membranes separate gases because of selective adsorption and surface dif- fusion of one component. So, free valences of carbon atoms The membrane preparation was scaled up to a length of 0.5 m. can interact with polar molecules like CO2. In a mixture with In single gas permeation experiments an adsorption-selective less polar molecules, like CH4, CO2 permeates through the behavior with CO2 permeances of up to 24 m³/(m²hbar) was nanopores when creating a concentration gradient between determined. the front and backside of the membrane (feed and permeate side). The membranes were tested in a pilot plant of DBI GUT GmbH near a biogas plant working with real biogas. Under different

operating conditions concentrated CO2 was separated from

48 3 4

CO2 concentration in the permeate as a function of feed com- Services offered position

- Manufacturing and characterization of carbon membranes in single and gas mixture permeation measurements - Optimization and development of molecular as well as ad- sorption-selective carbon membranes for specific applica- tions - Engineering and equipment of pilot plants

biogas over a period of several weeks. The membranes were very robust when using disturbing gases like H2O and H2S. As the varying parameters were limited on the pilot plant, the membranes were again measured in the laboratory after the tests with real biogas. Here, conditions were found under which synthetic 0.5 CO2/0.5 CH4 mixtures were concentrated to approx. 95 % CH4 applying just one membrane step.

Single gas permeances of adsorption-selective carbon membra- nes with a length of 0.5 m as a function of the kinetic diameter of the molecules

1 Cross section of a carbon membrane (SEM). 2 Microstructure of nanopo- rous carbon (TEM). 3 Carbon membrane (0.5 m) before installation. 4 Pilot plant (container) near biogas plant.

49 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD SINTERING AND CHARACTERIZATION

Department head: Dr. habil. Mathias Herrmann

Profile Services offered

Extensive sintering and analysis know-how in this research Development projects and individual contracts for characteri- field is concentrated at both the Hermsdorf and the Dres- zation of powder metallurgical and ceramic feedstocks and den location. With diverse characterization methods, ther- materials as well as for heat treatment of materials and com- modynamic and kinetic modeling, and extensive furnace ponents: equipment from the laboratory to the pilot scale as a basis, targeted development of materials, components, and pro- - Particle characterization from micro- to nanoscale cesses is possible. - Application-specific suspension characterization for all con- centrations Existing methods range from particle and suspension cha- - Determination of thermoanalytical and thermophysical char- racterization and ceramographic sample preparation using acteristics conventional and ion beam-based techniques to quantita- - Investigation of sintering behavior of materials and compo- tive phase and microstructural analysis. In addition, a wide nents range of thermoanalytical and thermophysical characteri- - Design, execution, and optimization of heat treatments, in- zation techniques and methods for tribological, mechani- cluding scale-up to industrial scale cal, and electrical characterization are available. Mastery - Characterization of materials and components in terms of of these sophisticated analytical methods is coupled to microstructure, phase composition, and mechanical and tri- detailed process know-how as well as materials and scien- bological properties tific knowledge, enabling well-founded interpretation of - Testing of electrical devices and equipment (CE and GS results. marks, in cooperation with TÜV and VDE) - Simulation of environmental effects (temperature, climate, We also test electrical devices and equipment in accordance mechanical loads, corrosion) with national and international standards as well as custo- - Component failure analysis and consulting on use of mer-specific requirements and possess a wide range of ceramic materials possibilities for environmental simulation and calibration of - Calibration of measuring devices (length, temperature, elec- measurement systems. trical measurement parameters) - Consulting on quality and environmental management sys- tems

50 Thermal Analysis and Quality Assurance Laboratory Thermophysics and Mechanics Laboratory Dr. Tim Gestrich Dipl.-Ing. Roy Torke Phone +49 351 2553-7814 Phone +49 36601 9301-1918 [email protected] [email protected]

Ceramography and Phase Chemical and Structural Analysis Analysis Dr. habil. Mathias Herrmann Dipl.-Phys. Jochen Mürbe Phone +49 351 2553-7527 Phone +49 36601 9301-4946 mathias.herrmann@ jochen.muerbe@ ikts.fraunhofer.de ikts.fraunhofer.de

Heat Treatment Dipl.-Ing. Gert Himpel Phone +49 351 2553-7613 [email protected]

Powder and Suspension Characterization Dr. Annegret Potthoff Phone +49 351 2553-7761 annegret.potthoff@ ikts.fraunhofer.de

51 1 Macroscopic level 50 μm Microscopic level 500 nm

QUANTIFICATION OF INTERNAL STRUCTURES OF CERAMIC SPRAY-DRIED GRANULES

Dipl.-Ing. Sören Höhn, Dipl.-Ing. Susanna Eckhard, Dr. Manfred Fries, Dr. habil. Mathias Herrmann

During processing of ceramic or metallic powders the materi- ternal structure of batch A and B. It can be seen that batch A als are homogenized and milled in aqueous or organic solvents mainly consists of homogeneous granules whereas batch B and spray dried after adding pressing agents. The spray-dried contains a high number of hollow granules. Furthermore, it granules need to fulfill specific requirements that are defined becomes clear that the intragranular porosity, the pore struc- by the end-use application. The internal granule structure is an ture as well as the position of primary particles can be well vi- important property. It determines the quality and influences sualized without infiltrating the samples with epoxy resin. the processing properties of the granule bulk as well as the failure distribution within the resulting compact. For the devel- The structure was quantified on a microscopic and macro- opment of well-founded scientific correlations between scopic level (figures 1 and 2). The determined parameters on process parameters, granule structure and product or process- the macroscopic level (table below) include average shell thick- ing properties appropriate characterization methods are essen- ness S, macroporosity Pmacro and an amount of homogeneous tially based on a gentle and reproducible sample preparation (Mhomo), hollow (Mhollow) and intersection granules (Minter) within as well as structure quantification through image analysis. the batch.

Using ion beam sputtering techniques, it is possible to prepare Macroscopic structure parameters samples without inducing mechanical stress resulting in dam- Sample M M M P S age. The broad ion beam technique with argon ion beam is an hollow inter homo macro [%] [%] [%] [%] [μm] ideal method for preparing comparatively large sample sur- A 5.7 12.3 82.0 0.2 23.5 faces for structure quantification. This method enables the si- B 46.1 27.9 25.9 2.2 19.5 multaneous exposure of hard ceramic particles and soft organic components. By means of high resolution visualization using a scanning electron microscope (SEM), it is possible to To determine possible gradients in the microstructure (table on characterize the granule structure up to nanometer scale. the right) various sample positions within the granule cross Model granules with defined varied structures are the basis for section were analyzed (figure on the right). In addition to mi- the development and validation of quantification algorithms. croporosity Pmicro, a local determination of primary particle size

Below they are called batch A and batch B. For the investiga- dP is possible. From microporosity and macroporosity values, a tions a standard ceramic material (Al2O3, Nabaltec AG, Al2O3 total porosity Ptotal can be calculated. Pore space and particle content of 99.7 %) was used. All analytic investigations were neighborhood relationship are quantitatively described by ana- done with granules having a size fraction of 45 to 63 μm lyzing the primary particle surface distances DOF. These dis- ∼ ( d50). The granule cross section was prepared in the granule tances are calculated on the basis of an algorithm following center (±10 %). Figures 1 and 2 show SEM images of the in- Voronoi tesselation und Delaunay triangulation. From the re-

52 2 Macroscopic level 50 μm Microscopic level 500 nm

sults the subjective impression of loosely packed microstruc- Analysis positions in the granule cross section tures within batch A can be quantitatively confirmed (DOF and

Pmicro). Mobile primary particles, as can be found in batch B, are able to move to the shell during the evaporation process. Therewith more hollow granules and more densely packed areas at the shell are formed as can be proven with the quan- tification results.

Besides the described microstructural and macrostructural pa- rameters the distribution of organic additives within the gran- ule structure shows a strong influence on the resulting EDX line scan at a granule of batch B processing parameters. The diagram on the right documents an inhomogeneous distribution of organics within an example granule of batch B. The visualization of gradients of the addi- tive concentration within the granule cross section is possible using EDX analysis on ion-beam polished sample surfaces. 10 μm

On basis of these results it is possible to develop correlations between process functions, granule structures and resulting product properties.

Microscopic structure parameters and P total Services offered

Sample Analysis dP DOF Pmicro Ptotal position [nm] [nm] [%] [%] - Development of customized spray-dried granules A 0 166 115 44.0 - Development of adapted preparation and quantification 1/2R 166 118 45.2 methods for granules, green and sintered objects R 172 114 44.7 - Preparation and quantification on demand ∅ 170 115 44.8 44.9 B 1/2R 169 96 37.6 3/4R 176 86 34.6 R 149 90 34.8 ∅ 162 90 35.3 36.7

1 Macrostructure and micro- structure, batch A. 2 Macrostructure and micro- structure, batch B.

53 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD MICROSYSTEMS AND ENERGY SYSTEMS

Department head: Dr. Mihails Kusnezoff, Dr. Matthias Jahn, Dr. Uwe Partsch

DEPARTMENT MATERIALS AND COMPONENTS

Profile Services offered

The “Materials and Components” department is involved - Development and preparation of pastes for printing and in the development and preparation of functional ceramic overlay techniques materials and their application in functional elements. - Development and preparation of sealing glasses and elements as well as solders Traditional fields are thick film technology, glass develop- - Development of electrode materials and coatings for ment, high-temperature fuel cells (SOFCs), and high-tem- Li-ion batteries and supercaps perature chemical sensors. Extensive experience and - Testing and inspection capacity for components (gas sensors, outstanding technical equipment allow complex require- gas chromatography, cells for SOFCs and SOECs) ments and interactions in sophisticated applications such - Development, manufacture, and testing of SOFC stacks as fuel cells, sensors, microsystems, and packaging in - Packaging for ceramic systems complex materials systems to be controlled. - Consulting and materials analysis

Close meshing with the “Modules and Systems” and “Hybrid Microsystems” departments ensures the practical relevance of the results. This allows us to give our custo- mers attractive offers for materials, prototypes, and ser- vices along the entire process chain.

54 DEPARTMENT MODULES AND SYSTEMS

Profile Services offered

The working groups of the “Modules and Systems” de- - Component and system layout partment cover all subareas required for development of - Design and construction of systems energy systems with their defined core research areas. - Investigation of reactions in reactors Systems for the efficient provision of electricity and heat - Catalyst development are designed, constructed, and tested under realistic con- - Test bench construction according to customer’s require- ditions. ments specifications - Battery development and characterization A core technical aspect is formed by concepts utilizing - Functional oxide and metallic coatings for dielectrics, photo- high-temperature fuel cells (SOFCs) as energy converters voltaics, fuel cell technology, and corrosion protection with electrical outputs of approx. 100 W to several kW. - Developments for high-throughput screening for applica- In addition, batteries and supercaps for storage of electri- tions in chemical and biochemical analysis cal energy are investigated. Apart from implementation of - Investigations on electrochemical machining (ECM) new materials and manufacturing technologies, characte- rization and modeling are additional focal points of the work.

The methodical basis for this is formed by extensive activi- ties in the fields of multiphysics modeling and simulation of applications (SOFCs, heterogeneous catalysis) as well as electrochemistry and spectroelectrochemistry.

55 Research field Microsystems and Energy Systems

DEPARTMENT HYBRID MICROSYSTEMS

Profile Services offered

The department “Hybrid Microsystems” is focused on the - Development, preparation, and characterization of applica- development of thick-film and multilayer compatible tion-specific functional ceramic materials functional ceramic materials, miniaturized components - Component design, development, and characterization and systems. Fields of applications are electronics packa- - Electrical systems integration of ceramic components ging, high-power electronics, sensors, and energy techno- - Development of technologies and assessment of scalability logy (e.g. micro-fuel cells and photovoltaics).

For the deposition of functional layers, both classic screen printing technology and additional mask-based (stencil and gravure printing) and digital printing processes (aero- sol and inkjet printing) can be used, depending on the ap- plication requirements. In addition, a complete ceramic multilayer technology line (LTCCs, HTCCs) is available at Fraunhofer IKTS to manufacture 3D-structured compo- nents.

We also offer our customers a wide range of technologies for electrical contacting (soldering, gluing, bonding) and for mechanical and microstructural characterization of electrical connections.

56 Joining Technology Electrochemistry Dr. Jochen Schilm Dr. Michael Schneider Phone +49 351 2553-7824 Phone +49 351 2553-7793 [email protected] michael.schneider@ ikts.fraunhofer.de

High Temperature Electro- Thick Film Technology and chemistry and Catalysis Photovoltaics Dr. Nikolai Trofimenko Dr. Markus Eberstein Phone +49 351 2553-7787 Phone +49 351 2553-7518 nikolai.trofimenko@ markus.eberstein@ ikts.fraunhofer.de ikts.fraunhofer.de

Ceramic Energy Converters Microsystems, LTCC and HTCC Dr. Stefan Megel Dr. Steffen Ziesche Phone +49 351 2553-7505 Phone +49 351 2553-7875 [email protected] steffen.ziesche@ ikts.fraunhofer.de

Modeling and Simulation Ceramic Tapes and Dr. Wieland Beckert Functionalized Multilayers Phone +49 351 2553-7632 Dr. Stefan Barth wieland.beckert@ Phone +49 36601 9301-1868 ikts.fraunhofer.de [email protected]

Energy Conversion and Storage Systems Integration Dr. Mareike Schneider Dr. Lars Rebenklau Phone +49 351 2553-7971 Phone +49 351 2553-7986 mareike.schneider@ [email protected] ikts.fraunhofer.de

Energy Process Engineering Dr. Matthias Jahn Phone +49 351 2553-7535 [email protected]

57 1 2

PORTABLE ENERAMIC® SOFC SYSTEM

Dr. Wieland Beckert, Dr. Matthias Jahn, Dr. Stefan Megel, Dr. Mihails Kusnezoff, Dipl.-Ing. Andreas Pönicke, Dipl.-Ing. (FH) Sebastian Reuber, Dr. Mareike Schneider, Dr. Michael Stelter

Based on almost 20 years of experience, Fraunhofer IKTS is de- concept, current densities of up to 375 mA·cm-2 were veloping high-temperature fuel cells and systems in various achieved. The long-term stability as well as a power of more power classes (Pel = 10 W to 1 kW) which can be powered by than 160 W have been experimentally proven. different fuels (biogas, natural gas, camping gas). Such com- plex development tasks require numerous interdisciplinary The high mechanical and thermal level of integration resulting competencies which have been established within the “Micro from a small reactor volume and the compact packaging con- and Energy Systems” research field allowing us to provide cept is a main challenge of system development. Because of complete solutions for SOFC systems. that the system components such as reformer and burner can- not be considered separately. It is rather necessary to consider It was the aim of the eneramic® project to develop a portable the interaction of the components in an early stage of the de- system which works on the basis of a commercially available sign process. For this purpose, extensive stationary and dy- fuel such as LPG. The eneramic® SOFC system is intended as a namic simulations at the system level were performed taking remote power supply device for camping and outdoor applica- the thermal interaction as well as fluidic influences into con- tions requiring a robust and reliable concept: sideration. These investigations were validated by means of numerous component and system tests at specifically con- - Net power 100 W at 12 V structed test stands. As a result of this work a system was de- - Volume 8 l, weight 8 kg - Durability 3000 h and 300 start/stop cycles - Start up time 30 min Flow diagram for system development

The eneramic® system was developed within the framework of one of the first projects financed by the Fraunhofer Future Foundation. After important technical milestones have already been reached successfully, first steps for commercialization are taken.

A newly developed stack concept based on electrolyte sup- ported SOFC cells is the heart of the eneramic® system. Here, we were successful in reducing the complexity of the stack using a multilayer design for the bipolar plate. Thus, it was possible to reduce the production costs. By means of this new

58 3 4

Performance of e100 eneramic stack under simulated system Services offered conditions, 140 W at 29 V

Operation with reformate equivalent, 40 cells at 852°C, - Process and component design 70 % fuel utilization rate, 300 mA·cm-2 - Design, construction and test of systems - Investigations at reactors - Test stand development - Catalyst development - Lifetime analysis

Please find further information on www.eneramic.de.

Influence of fuel utilization rate in the stack on temperature and system performance

veloped that is extensively tested at present. Some test results which prove a gross efficiency of 33 % are summarized in the diagram above. Now, the independent and secure operation is 1 eneramic® system. to be guaranteed based on a robust, fail-safe operating con- 2 Cutaway model. cept which is realized by a specially developed system control. 3 Stack test. Its reliability and realization are currently studied. 4 Thermal simulation.

59 1 2 2 μm

LITHIUM ION BATTERY: MATERIAL DEVELOP- MENT, CHARACTERIZATION AND TESTING

Dr. Mihails Kusnezoff, Dr. Mareike Schneider, Dr. Wieland Beckert, Dr. Michael Schneider, Dr. Manfred Fries, Dr. Michael Stelter

Li-ion batteries are an integral part of future, sustainable en- of lithium intercalation or deintercalation. In addition to elec- ergy supply. Although they are mainly used in consumer de- trochemical methods such as cyclic voltammetry and imped- vices at present, where a high energy density has priority, ance spectroscopy, vibration spectroscopy methods (Raman Li-ion batteries will be of great importance for e-mobility and and IR spectroscopy) are used. Furthermore, comprehensive stationary storage of electric energy in the future. Here, ce- experience in sample preparation for scanning electron mi- ramic materials and technologies play a crucial role since the croscopy allows to analyze the electrode structures over the active electrode materials as well as the separators mainly con- whole life cycle of the battery. sist of ceramicsˇ determining power, reliability and costs of a battery system. For this reason, Fraunhofer IKTS follows an in- Modern test stands allow to test and characterize commercial tegral approach comprising material and technology develop- cells up to a capacity of 40 Ah. Thus, information about tem- ment, suitable characterization methods as well as productions perature dependence of electrical characteristics, self-heating and application aspects. The relevant process chains can be re- and cell ageing can be obtained using current-voltage mea- produced in laboratory and pilot scale to support the direct surements and impedance spectroscopy. In addition, tests can technology transfer to mass production. So, active materials be performed using application-specific load cycles. Aside from 10 g to 100 kg batches are synthesized, characterized and applied. In this way, for example, granulation methods for cathode powders were developed by means of which the mor- Ion conductivity of lithium-based glasses for separator manu- facturing phology and size of the active agglomerates can be adjusted. Particle size and packing density can be effectively controlled by the calcination temperature. To improve the safety and ion conductivity Li-ion conducting glasses were successfully devel- oped (diagram on the right).

Ceramic technologies are also used for the preparation of powders, pastes, slurries and extrusion masses as well as for the deposition of electrodes. For this purpose, the active mate- rials are mixed with solvent, carbon particles and binder, and the flow behavior of the suspension is adjusted to the particu- lar deposition process. The electrodes manufactured this way are analyzed using electrochemical methods. The focus is on capacity and cyclability as well as structural changes as a result

60 3 4

from statements on performance and stability of the cells the Raman spectroscopy on cathode material for deintercalation of experimental results form the basis for further modeling activi- lithium ions with increasing state of charge ties. It is the goal to support model-based battery manage- ment or the thermal design of battery systems.

Services offered

- Development and characterization of battery powders - Electrode manufacturing - Electrochemical investigations - Testing of batteries and post-mortem analysis - Multiphysics simulation of electrical and thermal battery be- havior

Variation of charging voltage and available capacity of a com-

mercial lithium ion battery (10 Ah, LiFePO4 cathode) with tem- perature

1 Spray dryer for powder pro- cessing. 2 Powder microstructure of a 10 kg batch; micrograph of cath- ode microstructure. 3 Layer deposition. 4 Battery test container.

61 1 2

MATERIALS AND TECHNOLOGIES FOR HIGH- EFFICIENCY SOLAR CELLS: FROM LAB TO FAB

Dr. Uwe Partsch, Dr. Markus Eberstein, Dr. Lars Rebenklau

The growing market for renewable energies led also to an ex- Paste and technology development for crystalline solar traordinary expansion of the manufacturing capacities for PV cells modules wordwide. Being able to compete with convention- ally generated electric current, a PV module prize of < 1€/Wpeak Screen printing is the current standard deposition technology must be achieved. According to that, it is a main requirement for front and back side metallization of crystalline solar cells. for PV cell and module manufacturers to redefine volume and After printing, the metallization structures are fired very rap- manufacturing cost goals. This implicates that very large quan- idly. For optimal cell characteristics, optimized paste rheologies tities of high-efficiency PV modules must be offered for a as well as contact forming mechanisms are required. The emit- significantly lower price. Besides cost aspects the quality and ter with a thickness of only 200 nm must be optimally con- long life cycle of the PV modules have a special relevance for tacted to prevent electrical losses. Paste rheology is strongly customers. affected by the interactions of organic and inorganic paste constituents. Actual projects deal with tailor-made paste com- Fraunhofer IKTS research activities focus on the mentioned positions for different printing technologies. Besides standard aims and are contributed to the optimization of mono-crys- screen printing, ultra high definition screen and stencil printing talline and multi-crystalline solar cells, in particular. In addition (also double and dual printing) as well as inkjet and aerosol to efficiency optimization of standard solar cells (reduction of printing are investigated. The microstructure and functional shading or electrical losses) or high-efficiency cell concepts (se- properties of the contact fingers can be controlled by the lective emitter, local back side contacts), options for a cost re- particle size distribution of the contained metal particles as duction (e.g. by noble metal substitution) are investigated. Contact finger of a crystalline solar cell, fine-line-double print Environmentally friendly materials and processes play an im- portant role regarding a medium-term RoHS or REACH con- formity of the solar cell manufacturing process. In this context lead-free (also heavy-metal-free) pastes for the front side met- allization of crystalline solar cells as well as lead-free soldering technologies for PV module assembling (laser, infrared, induc- tion brazing) are developed at Fraunhofer IKTS.

62 3 4

well as the composition of the used glasses. Current research for every single wafer process data can be collected for all of Fraunhofer IKTS is focused on the increase of solids con- process steps. tents in pastes as well as on lead-free glasses.

Fraunhofer IKTS provides numerous possibilities to benchmark Services offered the processability of the pastes as well as to characterize the full-processed cells. Thermal analyses (shrinkage, DTA, - Development of optimized pastes for front and back side DTG/MS) characterize e.g. the burn out of organic paste com- metallization of crystalline cells ponents (solvents, binders), the sintering and densification of - Process optimization in laboratory scale as closed loop with the metallic fingers as well as the mechanism of contact for- paste development mation. Different analyzing methods (SEM, XRD, FIB) can be - Characterization of pastes and solar cells used to evaluate the microstructure of the front and back side - Process scale-up into pilot plant scale metallization as well as the quality of the emitter contact. Completely processed metallization layers as well as solar cells I-U characteristic curve (standard wafer) can be characterized using different measurement sites (Rk,

Rsqr, I-U characteristic curve).

Technology evaluation at pilot line scale

In spring 2010 a pilot line for the manufacturing of mono- crystalline and multi-crystalline solar cells, co-operated by Roth & Rau AG and Fraunhofer IKTS, started running in Hohenstein-Ernstthal. The pilot line allows the complete indus- try-oriented processing of solar cells starting with the removal of saw damages and texture etching. Further processing steps include doping, anti-reflex coating, metallization and firing, 1 Paste development at a etch isolation and test/sorting. The concept of the pilot line is three-roll mill. modular. So, it is possible to interrupt the process flow for 2 Screen printing of front side necessary characterizations before and after every processing metallization. step. Furthermore, different technology steps e.g. for the pro- 3 Opening of the new photo- cessing of high-efficiency cells (selective emitter, MWT, EWT, voltaics pilot production line in local back side contacts, hetero junction) can be implemented Hohenstein-Ernstthal in pres- in the standard solar cell process flow. ence of the Saxon state minister Prof. von Schorlemer. In comparison with state-of-the-art PV production lines, the 4 Screen printing production pilot line is equipped with an extensive instrumentation. Using line for front and back side met- a MES (Machine Executing System) with virtual wafer tracking allization.

63 Argon etch

1 2 μm 2 1 μm

DEVELOPMENT OF A LAMINATED SILICON- CERAMIC SUBSTRATE

Dipl.-Chem. Beate Pawlowski

Introduction terms of morphology and needle geometry. Using a standard etching process, black silicon needles with a length of 2.5 μm In close cooperation with the Institute for Micro and Nanotech- can be realized. The needle density providing space for the nologies of the Ilmenau University of Technology a new inte- powder particles cannot be changed, whereas the length of gration concept was developed to join a LTCC substrate (Low the needles can be modified. The nanostructured silicon sur- Temperature Cofired Ceramics) and a nanostructured wafer face is generated by a modified reactive ion etching process

(black silicon). This new technique benefits from the advan- using SF6/O2 plasma. The needle geometries have to be ad- tages of silicon and ceramic technologies. Present concepts re- justed to the powder morphology of the BGK (particle size quire joining materials such as glass frits, solders or other and distribution) and optimized for the lamination process adhesives. The anodic bonding technique is an alternative (length stability). Therefore, an additional plasma treatment method to combine a silicon wafer and a special LTCC sub- with argon is performed to cut and thin out the needles. The strate (BGK tape) with matched thermal expansion behavior. resulting optimized needle geometry is about 1.5 μm in However, this process requires an expensive polishing step of length, the diameter varies between 100 nm to 400 nm from the ceramic surface which is not necessary when using the de- top to bottom. The main constituents of the bondable LTCC scribed joining technique. tape are borosilicate glass, two ceramic components and a polymer binder. The ceramic components as well as the glass

The new concept is based on a standard lamination process in are fine-milled to a grain size of about d50 = 400 nm. which the prestructured silicon wafer or wafer components are joined with a green ceramic substrate without additional inter- mediate layers before sintering. The wafer is joined with a ce- Tape casting ramic green tape by isostatic or uniaxial lamination, and then densified by pressure-assisted sintering. The resulting compo- In preparation of the tape casting process, the rheological site (SiCer) with a nanoscale interface has an extremely high properties of the slurry were analyzed. To optimize the casting bonding strength exceeding the strength of an anodically behavior, a dispersant based on phosphoric ester was used. bonded composite. The powder components and the phosphoric ester were dis- persed in organic solvents for 24 hours. Afterwards, binder and plasticizer were added and the slurry was further homog- Adaption of bonding components enized for 24 hours. The resulting green tapes were analyzed with regard to cracks, separation behavior, wettability, and Before joining the bonding components to a monolithic com- flatness. posite, both substrates have to be adjusted to each other in

64 LTCC

Fluid channels Nanostructured Ceramic layer with conductor HPLC fittings silicon surface path and fluid channels

Etched silicon chip with hea- PEEK connector ter and sensor structure

3 Silicon 5 μm 4

Processing of the single substrates Acknowledgments

The adapted LTCC tape is processed by standard LTCC tech- This work was funded by the Federal Ministry of Education nologies such as punching, via filling, screen printing of con- and Research and was supported by the Thuringian Ministry of ductive, resistance or insulation pastes and lamination. Then, Education, Science and Culture within the framework of the the nanotextured silicon wafer and the prelaminated LTCC “Mikro-Nano-Integration” project (15SV3566) and the multilayer are laminated by isostatic pressing. The needles “SiCeram“ research project (B514-09026). penetrate into the polymer matrix of the green tape and get into contact with the solid particles. Lamination parameters such as pressure, time, temperature and pressure ramp signifi- Services offered cantly determine the joining process. By pressure-assisted fir- ing a hermetically tight and extremely strong joint is realized. - Preparation of anodic bondable LTCC tapes - Design of test layouts - Preparation of functional samples Results

The functionality of the silicon-ceramic substrate was demon- strated with a fluidic system. The substrate was characterized by mechanical, fluidic and electrical methods. The excellent bonding strength is an outstanding property of this substrate. To determine the bonding strength, the bonded silicon- ceramic substrate was separated, and the test chips were fixed onto a test specimen. Then, a modified pull test was per- formed. The samples exhibited an average bonding strength of 5474 N/cm². In order to characterize the tightness of the bond interface, test structures consisting of a microfluidic vacuum chamber with different bonding frames mounted onto an adapted vacuum flange were used. Helium leak rates down to 1.1·10-8 mbarl/s were measured for bonding frames starting from 1.5 mm. Electrical functionality is achieved by penetrating metalized black silicon needles into metal-filled LTCC vias to form interconnects between the two layers. The 1 Optimized powder morphol- transfer resistance at the Au (via)/Pt (needle) metallization was ogy. determined with 3.3 Ω. 2 Standard (left) and opti- mized (right) black silicon. 3 REM image of a fluidic chan- nel at the silicon/LTCC interface. 4 Fluidic system.

65 1

DEVELOPMENT OF GREEN TAPES FOR LEAD- FREE PIEZOELECTRIC MULTILAYER ACTUATORS

Dipl.-Chem. Beate Pawlowski

Motivation Objectives

The application of piezoelectric actuators for diesel and petrol It is the aim of the “RealMak” research project to develop a re- fuel injection plays an important role to achieve novel exhaust liable, high-efficient and long-term stable multilayer actuator emission standards. This is caused by the excellent properties based on lead-free piezoelectric ceramics. Multilayer compo- of the new actuators, e.g. precise microposition, high blocking nents of lead-free piezoelectric ceramics in combination with force as well as high dynamics. Other application fields of thin metallic inner electrodes are to be manufactured by co-fir- piezoelectric actuators can be found in telecommunication, ing. The subproject of Fraunhofer IKTS aims at developing an precision machining and scientific instrumentation. optimized tape casting technology to produce lead-free, cofire- able piezoelectric green tapes. The lead-free piezoelectric tapes Growing environmental awareness has led to the restriction of are optimized with respect to homogeneity, binder burnout lead-containing materials to be used in automotive applica- and sintering behavior, lamination behavior, shrinkage, thermal tions. The interest in lead-free alternatives for non-automotive expansion coefficient, compatibility to inner electrode pastes, applications, as well, has not only sharply increased in Ger- co-firing process as well as ageing behavior and long-term many and Europe, but also in the USA. degradation.

It is an ambitious aim: It is planned to develop a high-efficient, reliable and long-term stable multilayer actuator based on Results lead-free piezoelectric ceramics with a piezoelectric strain higher than 300 pm/V at 2 kV/mm and an operation tempera- First, different green tape compositions based on two model ture ranging from 20 to 150°C. It is to be produced as multi- substances, potassium-sodium niobate (KNN) and bismuth- layer component in combination with thin metallic inner sodium titanate (BNT), were developed. Different dispersing electrodes by co-firing. Thus, simple systems could be realized. agents were characterized in terms of their efficiency by streaming potential measurements. After an algorithm for the The breakthrough in the development of an efficient, high- measurement and the interpretation of the streaming poten- precise actuator on the basis of environment-friendly, lead- tial in organic solvents has been developed, information about free materials would significantly contribute to expand the type, concentration and efficiency of the dispersing agents for excellence platform of German research institutes and to pro- the systems BNT and KNN were extracted. mote Germany as a business location. In a second step, different binders and plasticizers were tested and evaluated. The slurry composition was finally optimized

66 2 10 μm 3 1 μm

with the aim to get green tapes which show no drying effects Measurement of the streaming potential of BNT with different (segregation, cracks), can easily be removed from the carrier dispersants tape, have a good lamination behavior as well as a homoge- nous microstructure after sintering. To achieve the targeted functional parameters, it is necessary to prepare textured green tapes. Different seed crystals were tested. To prepare the seeds-containing slurry, a new gentle processing technology was developed. The textured green tapes were characterized by scanning electron microscopy, thermogravimetric methods, dilatometric measurements and sintering experiments.

Acknowledgments

This work was funded by the German Federal Ministry of Edu- cation and Research (BMBF) within the “RealMak” project TG/DTA measurement of a textured green tape (03X4007E).

Services offered

- Preparation of lead-free piezoelectric materials in laboratory scale - Development of slurry composition for tape casting of lead-free piezoelectric materials

1 Tape casting equipment at Fraunhofer IKTS Hermsdorf. 2 REM image of seed crystals. 3 REM image of a textured green tape.

67 RESEARCH ACTIVITIES AT FRAUNHOFER IKTS

RESEARCH FIELD SMART MATERIALS AND SYSTEMS

Department head: Dr. Andreas Schönecker

Profile Services offered

Engineering and scientific processes are applied to develop - Studies and concept developments for high-performance and integrate dielectric functional ceramics into devices, dielectric ceramics in the form of powders, components, and microsystems and active structures. integrated functional elements - Development of materials and technologies Complex, interdisciplinary problems are solved in optimization - Development and integration of components cycles covering all aspects of the value chain from materials - Manufacture of prototypes synthesis to functional verification in prototype systems. - Supply of key materials and components Functional optimization is accordingly performed on several - Characterization of dielectric, piezoelectric, and ferroelectric scales, through functional consolidation in materials, utiliza- functional properties tion of property combinations of composites, and adaptation - Vibration and sound field measurements of components to the system environment. Special materials - Modeling and simulation for systems design for sensors, expertise exists in the field of complex perovskites, which, as actuators, and ultrasonic transducers high-performance piezoceramic or dielectric ceramics, provide - Scientific instrument design, electronics, and software devel- sensing, actuating, and electronic functions in monolithic com- opment ponents and composites with polymers, metals, glasses, and other ceramics.

Thick film, multilayer, and piezocomposite technologies are available as closed technology chains. Combination with unique design and characterization tools enables innovative developments in piezotechnology, adaptronics, and mecha- tronics as well as microsystems technology and microenergy technology. This also includes in-house systems developments (especially in piezotechnology).

Preparation of thin film structures is done by CVD, PVD, and sol-gel processes in combination with reactive ion etching for structuring. With this technology portfolio, we offer new ma- terials solutions for semiconductor technology and wear pro- tection.

68 Dielectric Ceramics and Composites, Piezoceramics Dr. Andreas Schönecker Phone +49 351 2553-7508 andreas.schoenecker@ ikts.fraunhofer.de

Functional Layers for Microelectronics and Wear Protection Dr. Ingolf Endler Phone +49 351 2553-7693 [email protected]

Piezo Systems Thomas Rödig Phone +49 351 2553-7709 [email protected]

69 1 1 μm 2 2 nm

CARBON NANOTUBES AS ELECTRODE MATERIAL FOR ENERGY STORAGE

Dipl.-Ing. (FH) Frank Meißner, Dr. Ingolf Endler

Motivation electrode as well as diffusion barrier. This prevents silicide for- mation and allows the use of silicon wafer substrates. The increasing importance of e-mobility requires more effi- cient, modern energy storage systems. Today, new lithium ion Figure 1 shows vertically aligned CNT on nickel foil having a batteries typically contain mixed oxide compounds in the cath- length of 12 μm after a deposition time of 20 minutes. Using ode and graphite in the anode. To increase power density and a special copper quality, insulating interlayers were not neces- reliability, new cathode and anode materials can make an im- sary to grow CNT on copper substrates. The outer diameter of portant contribution. Due to their combination of high electri- the as-grown CNT on copper is 35 nm. The cyclovoltammetric cal conductivity and high aspect ratio, aligned carbon nano- measurements (CV) show the typical behavior of a double- tubes (CNT) are well suited to be used as anode materials in layer capacitor. The stability window is between 1.4 and 3.0 V lithium ion batteries or as electrode materials in supercaps. for the TiN based substrate and between 0.6 V and 3.0 V for the copper substrate. Neglecting the negative shift for low voltages due to the low active mass, a double layer with a re- Synthesis of aligned CNT at Fraunhofer IKTS markable charge capacity of about 130 F/g has been realized.

At Fraunhofer IKTS the synthesis of aligned carbon nanotubes CV measurements of carbon nanotubes on TiN layers and cop- on different carrier materials has been established since 2005. per substrates (measurements by Fraunhofer ISC Würzburg) Two deposition systems based on chemical vapor deposition (CVD) are available. They allow for the synthesis of CNT on samples up to 100 mm in diameter. Carbon nanotube growth is possible either using thermal CVD or high-frequency (HF) plasma.

Properties of CNT electrodes

For the growth of aligned CNT nickel foil, copper foil and tita- nium nitride layers on silicon, wafers were used as carrier ma- terials. Multi-walled carbon nanotubes (MWCNT) with a length of approx. 10 μm and an outer diameter of 20 nm were deposited on TiN layers. The TiN layer serves as base

70 3 4

Further applications

Besides the here mentioned opportunities of CNT use for en- ergy storage, CNT are an interesting material for further appli- cations due to their high Young’s modulus, high thermal conductivity and their good chemical resistance. In electronic packaging laterally structured CNT can be used for fast current and heat transport in components. For this reason, they may be interesting for concepts of future electronic devices. The high aspect ratio of CNT resulting from length of some mi- crometers compared to diameters of some nanometers makes them also interesting for filter applications in the nanometer scale.

Acknowledgments

The presented works are results of the cooperative project KoLi-WIn (03SF0343B) and of Fraunhofer systems research electromobility FSEM (13N10599). The German Federal Min- istry of Education and Research as well as the project manage- ment organizations VDI and PT Jülich are gratefully acknowledged for their financial support. Furthermore, we are indebted to Fraunhofer ISC for electrochemical characteriza- tion of the samples.

Services offered

- Manufacturing of aligned carbon nanotube layers on metal- 1 SEM image of aligned CNT lic and other electrically conductive carrier materials on nickel foil. - Structural CNT deposition on substrates up to 100 mm in 2 HRTEM image of a carbon diameter nanotube made on a conductive - Characterization of carbon nanotube structures by SEM and TiN layer. spectroscopic analysis 3 PECVD system in a cleanroom - Electrochemical characterization of CNT on substrates of Fraunhofer IKTS. - Production of electrodes based on CNT for lithium ion 4 Synthesis of aligned CNT by batteries and supercaps HF plasma CVD.

71 1 2

PIEZOSYSTEMS – AN INTEGRATED APPROACH

Dipl.-Ing. Thomas Rödig

Starting situation ciency. Fields of applications are ultrasound technology, de- centralized power generation, voltage conversion and coupled Fraunhofer IKTS is dealing with the development of materials sensor-actuator structures. By choosing the best suited trans- and technologies for piezoceramic transducers. Best suited ducer material and by adapting electronics, an enormous po- chemical compositions are synthesized in all possible ceramic tential for the optimization of existing and the creation of new forms like thin film, thick film and multilayer or bulk material. applications is provided. Our developments include sugges- The market interest for piezoceramics results from their electro- tions for an easy and cost-efficient production as well as high mechanical coupling behavior. The use in sensors, actuators design reliability. and ultrasound transducers in commercial applications is com- monly known. Recent developments consider the application of piezoelectric transducers as generator to provide small System aspects amounts of electrical energy from structural vibrations. This so-called “energy harvesting” is one key function to increase Piezoelectric transducers connect mechanics with electronics. functionality and smartness of structural components. Success- Based on our physical knowledge, specialized measurement ful implementation requires the optimization of the system. set-ups, modeling methods and simulation tools, we are able Here, we support customized solutions for all subsystems that to develop new systems very effectively. A strong interaction means materials and technologies as well as mechanical and between other research groups at Fraunhofer IKTS allows for electrical components. The “Piezosystems” research group access to the latest developments in materials and technolo- supports customers in all aspects of systems integration. So, gies as well as components. the group completes the services of the „Intelligent Materials und Systems“ research field which comprises the value added chain from the initial idea to the manufacturing of prototypes. Modeling and simulation

Special methods of modeling to describe coupled piezoelectric Motivation systems are needed. Our approach is based on the theory of electromechanical systems. In this case, the considered system The “Piezosystems” research group deals with the design of is divided in electrical (sub-)networks and simulated with com- piezoelectric transducers based on conventional and new, mercial software packages. This approach has been proven by lead-free piezoceramic materials both as single element and as a variety of applications. Alternatively, piezoelectrically cou- integrated elements in multiphase material systems. Customers pled systems are simulated using FEM. This includes also the benefit from technical solutions with highest coupling effi- calculation of sound fields of ultrasound transducers.

72 3 4

Development and design - Ultrasound transducer for the use in air/gases in automotive applications, figure 2 The mechanical and especially the electro-mechanical proper- ties of piezoceramic materials require an appropriate (piezo-) design. This means controlled loading and the utilization of Services offered strain levels in the micrometer range. Furthermore, tensile and shear stresses as well as moments must be avoided. We sys- Our services include the development of systems using piezo- tematically apply and develop construction and design meth- electric transducers for sensor, actuator, generator and ultra- ods for precision fine mechanics. sound applications. This comprises material selection, modeling and simulation, development and design, development of elec- tronics as well as characterization and measurements. Developments of electronics

For the best utilization of the features of piezoelectric materi- Degradation of piezoceramic materials under high dynamic loading als, adapted electronics are essential. In general, standard elec- tronic solutions are not sufficient because of the strong non-linear, capacitive behavior of the piezoceramic transduc- ers. Over the years, we have developed specialized electronics which are suited for these characteristics. We are able to bring this experience into new developments.

Measurement technique

Specialized measurement equipment is needed for character- izing systems with integrated piezoelectric transducers. New measurement methods providing meaningful data have been developed and investigated. One example is a fully automated measurement set-up for ultrasound transducers for use in 1 Force sensor with piezoelec- air/gases. tric transducer in thick film tech- nology. 2 Measurement set-up for ul- Main topics of current research trasound transducers for the use in air/gases. - Piezoelectric energy converter for wireless connected sensor 3 Prototype of a piezoelectric systems with focus on aircraft and production technology, generator. figure 3 (“Cool Silicon”) 4 Low-temperature measure- - Novel piezoelectric force sensor, figure 1 (“PiWA”) ment set-up.

73 RETROSPECTIVE EVENTS, EXHIBITIONS

74 1 23

January 22, 2010 April 14, 2010 Ceramics Vision Commissioning of a photovoltaics pilot production line in the presence of Saxony’s state minister Prof. Sabine On January 22, the colloquium series “Ceramics Vision“, von Schorlemer already taking place for the seventh time, was not held in Dresden as usual, but in Hermsdorf celebrating the integration The Roth & Rau AG and the Fraunhofer Institute for Ceramic of the Hermsdorfer Institut für Technische Keramik into the Technologies and Systems IKTS opened a new pilot line for the Fraunhofer IKTS. Under the motto “Integrated ceramic re- development and production of efficient and cost-effective search from the idea to the product“ the potentials of innova- crystalline solar cells in Hohenstein-Ernstthal on April 14, tive ceramic technologies for new solutions were presented in 2010. The results generated on the pilot line will help to pro- interesting papers from industry and science. Aside from cur- duce and test new cell concepts as well as to develop new rent developments the prospects of ceramic applications and production equipment and plants for crystalline solar cells in technologies were shown. The presentations covered a wide the future. So, it is now possible to study newly developed spectrum of materials, components and systems in markets materials and technologies in terms of their realizability on in- such as electronics, mechanical engineering, photovoltaics, dustry-oriented production lines. and fuel cell systems. The prime minister of the Free State of Thuringia, Christine Lieberknecht, as well as representatives of The pilot line built up only within one year includes all process the Saxon ministries opened the colloquium. Afterwards, Prof. steps for the production of crystalline solar cells, beginning Hans-Jörg Bullinger, president of the Fraunhofer-Gesellschaft, with wet-chemical treatment of wafers through application of presented the successful model of the Fraunhofer-Gesellschaft anti-reflex coatings to frontside and backside metallization as as innovation driver for industry. The colloquium was supple- well as functional tests. It is the aim of the extensive research mented by tours through the HITK with approx. 220 partici- and development activities in the field of traditional as well as pants.

March 20, 2010 1 Volkswagen’s “Production” Visit of Volkswagen’s “Production” management board management board and Saxo- accompanied by Saxony’s prime minister ny’s prime minister Stanislaw Tillich visiting Fraunhofer IKTS. On March 20, 2010 Volkswagen’s “Production” management 2 Festivities on occasion of board and Saxony’s prime minister Stanislaw Tillich visited “Ceramics Vision” at the new Fraunhofer IKTS to inform about the newest developments in Fraunhofer IKTS branch in the field of automotive and energy engineering. Prof. Alexan- Hermsdorf in presence of the der Michaelis presented the latest results of fuel cell, battery Thuringian prime minister Chris- and photovoltaics research, and introduced active structural tine Lieberknecht. components for traffic engineering. During the institute tour 3 Institute tour in presence of specific research projects of Fraunhofer IKTS as well as current the Saxon prime minister Stanis- development trends were shown. law Tillich.

75 12

new, advanced cell concepts to increase the efficiency and re- November 25 and 26, 2010 duce the production costs. Galvanic Symposium

In 2010, electrolytic layers were in the focus of this symposia September 23, 2010 series that has been started in 2005 and is referring to topics Industrial seminar “Ceramics for exhaust gas treatment” on applied electrochemistry. In addition to results from basic research the 15 speakers also presented and discussed results On September 23, 2010 Fraunhofer IKTS invited for the indus- from application-oriented research focused on electrochemical trial seminar “Ceramics for exhaust gas treatment” taking deposition. Some presentations also dealt with measurement place in Dresden for the first time. 70 participants informed techniques connected with formation and investigation of and discussed about the current state as well as trends of ce- electrolytic layers. ramic development and manufacturing aspects. The official start-up of the new hot gas test stand with soot injector was The symposium was completed by a small exhibition of eight one highlight of the interesting program. This test stand helps companies which was used as platform for discussion as well. scientists at Fraunhofer IKTS to analyze components in hot gas On account of the very positive response of the 60 participants environment and under thermal stress. The relevant and cur- the symposium is planned to be continued in 2012. rent topics presented in the seminar program met with a very positive response and are planned to be extended in future seminars and symposia. Awards

Fraunhofer IKTS Hermsdorf wins Innovation Award November 5 to 7, 2010 Fraunhofer Talent School Dresden The Fraunhofer IKTS, branch Hermsdorf, won the Innovation Award of the Fördergesellschaft für Erneuerbare Energien e.V. In early November, 30 talented young persons interested in (FEE), which was announced nationwide, for the development technology visited the Fraunhofer Talent School in Dresden. of a nanoporous membrane to dry bioethanol. With this There, they got to know what current research deals with and award the FEE honors inventions for the reduction of energy which methods are used to research and develop new tech- consumption, efficient energy conversion and storage as well nologies. The three-day seminar focused on project work in as for the use of renewable resources. workshops on various scientific topics. Scientists at the Fraun- hofer Institutes FEP, IKTS and IPMS imparted the necessary Among the 31 candidates the Fraunhofer IKTS came out on theoretical basics and were available for discussion. At Fraun- top with a ceramic filter, which is able to separate ethanol hofer IKTS the students learned in exciting experiments, how from water by a kind of “sieving”. The pore size of the filter is different kinds of fuel cells work, where they can be used and only 0.4 nanometer, and thus is larger than the water molecu- then built their own fuel cell. Fraunhofer IKTS will also host le’s diameter, but smaller than the ethanol molecule. In con- the Fraunhofer Talent School in 2011. trast to conventional methods the newly developed filter saves up to 90 % of energy. The method is already used in a pro- duction plant for biofuel.

76 34

Stifterverband Award for Science goes to DiaCer®

Scientists from four Fraunhofer institutes, among them three institutes of the Fraunhofer Demonstration Center AdvanCer, together with partners from industry, succeeded in producing a new composite material combining the best of diamond and ceramics: diamond-coated ceramics DiaCer®. Any place where components and tools are subjected to heavy strain DiaCer® offers maximum wear resistance coupled with low values of friction. This combination guarantees an extended product lifespan, improves production processes, and reduces energy consumption. Diamond-coated axial face seals for pumps have successfully established on the market for critical environ- ments, like the conveyors for oil, sand and gas mixtures.

In recognition of their achievement, the researcher team was bestowed the Stifterverband Award for Science at the annual conference of the Fraunhofer-Gesellschaft in Leipzig in the end of May. The award recognizes the scientific excellence of joint projects in applied research that the Fraunhofer institutes have developed in conjunction with business and/or other research organizations. 1 Opening of the new photovol- taics pilot production line in Hohenstein-Ernstthal in presence of the Saxon state minister Prof. Sabine von Schorlemer. 2 Institute tour during the in- dustrial seminar “Ceramics for exhaust gas treatment”. 3 Winners of the FEE Innova- tion Award 2010 (left to right: Dr. Weyd, Dipl.-Ing. Kühnert, Dr. Voigt and Dr. Richter). 4 Congratulations of Federal Minister Annette Schavan (right) to the winners of the Stifterver- band Award for Science (left: Dr. Herrmann, Fraunhofer IKTS).

77 PARTICIPATION IN TRADE FAIRS AND EXHIBITIONS

1

nano tech Hannover Messe Tokyo, February 17-19, 2010 Hanover, April 19-23, 2010 Joint stand of Fraunhofer-Gesellschaft - Joint stand of Fraunhofer High-Performance Ceramics Alli- ance/TASK GmbH Solar Energy - Joint stand of Fraunhofer Fuel Cell Initiative Saxony Berlin, February 16-20, 2010 - Joint stand of Fraunhofer Energy Alliance Joint stand of Fraunhofer Energy Alliance - eneramic® fuel cell system - Joint stand of IHK Gera - Joint stand of Micro-Nanotechnology Thuringia

78 2 3

Conference of the German Association for Water, Waste- Clean Tech World water and Waste Berlin, September 15-19, 2010 Potsdam, April 19-21, 2010 Biotechnica POWTECH Hanover, October 5-7, 2010 Nuremberg, April 27-29, 2010 Joint stand “Research for the future – Saxony, Saxony-Anhalt, Thuringia“ 18th Biomass Conference and Exhibiton Lyon, May 3-7, 2010 Highlights of Physics Augsburg, October 9-14, 2010 World Hydrogen Energy Conference Essen, May 16-21, 2010 EURO PM Florence, October 10-14, 2010 Sensor + Test Nuremberg, May 18-20, 2010 Electronica Joint stand “Research for the future – Saxony, Saxony-Anhalt, Munich, November 9-12, 2010 Thuringia“ Joint stand of Fraunhofer-Gesellschaft

Energy Harvesting and Storage Hagen Symposium Munich, May 26-27, 2010 Hagen, November 25-26, 2010

SMT/HYBRID/PACKAGING EuroMold Nuremberg, June 8-10, 2010 Frankfurt/Main, December 1-4, 2010 Joint stand of VDI/VDE Joint stand of Fraunhofer Additive Manufacturing Alliance

Fuel Cell Forum Lucerne, June 29-July 2, 2010

25th European Photovoltaic Solar Energy Conference and Exhibition 1 Presentation of the new Valencia, September 6-9, 2010 eneramic® fuel cell system at Joint stand of Saxony Economic Development Corporation Hannover Messe in presence of (WFS) Prof. Bullinger, president of the Fraunhofer-Gesellschaft (right). IFAT 2 Visitors in Ceramics Meeting Munich, September 13-17, 2010 Point at Hannover Messe. Joint stand of Fraunhofer-Gesellschaft 3 Successful participation in POWTECH 2010 in Nuremberg.

79 COOPERATION IN GROUPS, ALLIANCES AND NETWORKS

Scientists at Fraunhofer IKTS are active in numerous themati- cally oriented groups, networks and associations. Our custo- mers benefit from this by having a coordinated range of joint services available to them.

Membership in Fraunhofer groups, alliances, networks Association for Manufacturing Technology and Development and demonstration centers e.V. (GFE)

Fraunhofer Group for Materials and Components – MATERIALS Association of Ceramic Industry e.V. (VKI)

Ceramics Meeting Point in Dresden Association of Electrochemical Research Institutes e.V. (AGEF)

Fraunhofer High-Performance Ceramics Alliance Association of German Engineers

Fraunhofer Demonstration Center AdvanCer Association of the Thuringian Economy e.V., committee of research and innovation Fraunhofer Adaptronics Alliance Association of Thermal Spraying e.V. (GTS) Fraunhofer Energy Alliance BioMeT Dresden Network Fraunhofer Nanotechnology Alliance DECHEMA - Society for Chemical Engineering and Biotechnol- Fraunhofer Numerical Simulation of Products, Processes ogy e.V. Alliance DKG/DGM Community Committee Fraunhofer Additive Manufacturing Alliance European Powder Metallurgy Association (EPMA) Fraunhofer Water Systems Alliance (SysWasser) European Research Association for Sheet Metal Working e.V. Fraunhofer Sensor Network (EFB)

80 Expert Group on Ceramic Injection Molding (Working Group Research Association for Diesel Emission Control Technologies in the German Ceramic Society) e.V. (FAD)

Fuel Cell Initiative Saxony e.V. (BZS) Research Association on Welding and Allied Processes of the German Welding Society (DVS) German Ceramic Society e.V. (DKG) Silicon Saxony e.V. German Society for Materials Research e.V. (DGM) Society for Knowledge and Technology Transfer of TU Dresden International Zeolite Association mbH

Materials Research Network Dresden e.V. (MFD) TransNanoPowder Information and Consulting Center

Meeting of Refractory Experts Freiberg e.V. (MORE) University of Applied Sciences Jena, university council

Micro-Nanotechnology Thuringia e.V. (MNT)

NanoMat - Supraregional Network for Materials Used in Nano- technology

Nanotechnology Center of Excellence for “Ultrathin Functional Layers“

ProcessNet – an Initiative of DECHEMA and VDI-GVC

81 GROUPS, ALLIANCES, NETWORKS

THE FRAUNHOFER GROUP FOR MATERIALS AND COMPONENTS – MATERIALS

Fraunhofer research in the field of materials science and tech- - To improve the use of raw materials and the quality of the nology covers the entire value chain from the development of products made from them new materials and the improvement of existing ones to manu- facturing technology on a semi-industrial scale, the characteri- zation of materials’ properties and the assessment of their The group comprises the Fraunhofer Institutes for performance. This work extends to the components produced from the materials and their performance in systems. - Applied Polymer Research IAP In addition to experimental tests in laboratories and pilot plants, - Building Physics IBP numerical simulation and modeling techniques are applied in - Structural Durability and System Reliability LBF all these areas. The Fraunhofer Group for Materials and Com- - Chemical Technology ICT ponents – MATERIALS encompasses the entire field of metallic, - Manufacturing Technology and Advanced Materials IFAM inorganic-nonmetallic, polymer and sustainable materials, as - Wood Research, Wilhelm-Klauditz-Institut, WKI well as semiconductor materials. - Ceramic Technologies and Systems IKTS The Group concentrates its expertise in the Energy & Environ- - High-Speed Dynamics, Ernst-Mach-Institut, EMI ment, Mobility, Health, Machinery & Plant Engineering, Con- - Silicate Research ISC struction & Living, Microsystems Technology, and Safety - Solar Energy Systems ISE business sectors. System innovations are achieved by means of - Systems and Innovation Research ISI tailor-made material and component developments and cus- - Mechanics of Materials IWM tomer-specific performance assessment. - Non-Destructive Testing IZFP

Permanent guests of the group are the Institutes for: Key aims of the group are - Industrial Mathematics ITWM - Interfacial Engineering and Biotechnology IGB. - To increase safety and comfort and to reduce the consump- tion of resources in transport, mechanical engineering and plant construction Chairman of the group - To raise the efficiency of systems for generating, converting and storing energy Prof. Dr.-Ing. Holger Hanselka - To improve the biocompatibility and functioning of materials Fraunhofer Institute for Structural Durability and System used in medical engineering and biotechnology Reliability, LBF - To increase the integration density and improve the utility properties of components in microelectronics and microsys- www.materials.fraunhofer.de tem technology

82 1

CERAMICS MEETING POINT DRESDEN

Due to the cooperation of Fraunhofer IKTS, TASK GmbH and Members of Ceramics Meeting Point its various members, the Ceramics Meeting Point could be further established as an inherent part of the technology transfer landscape in Dresden. Many partners use the fast ac- cess to the research infrastructure of the Fraunhofer-Gesell- schaft.

The spectrum ranges from the analysis and characterization of materials to the exclusive development project for large- scale production. The institute and the ceramic manufactu- rers draw a bow from raw materials to systems and from prototypes to series components. TASK GmbH supports the Fraunhofer Demonstration Center AdvanCer in conducting its workshops and training courses by providing the required practice-relevant and market information. Close collabora- tion between the researchers of the Fraunhofer Demonstra- tion Center AdvanCer and the ceramic manufacturers has enabled users to quickly realize their ideas. Thus, a project forum for small and medium-sized companies has developed facilitating contacts to project initiators and research institu- tes.

By visiting Ceramics Meeting Point within the framework of numerous events taking place at Fraunhofer IKTS once again more than 2000 visitors could inform about ceramic product innovations and manufacturers in 2010. Main focus of the external industrial exhibitions under the motto “Meet Cera- mic Experts“ was on the Hannover Messe with a booth size of 300 m² and on the “Technical Ceramics Day” at Hannover Messe.

1 Visitors tour through Ceramics Meeting Point.

83 GROUPS, ALLIANCES, NETWORKS

1

FRAUNHOFER HIGH-PERFORMANCE CERAMICS ALLIANCE

Systems development with high-performance ceramics The topics are: - Materials, technology The application of high-performance ceramics allows for new - Machining applications in energy technology, mechanical and plant engi- - Construction, testing neering, and medical technology. Well-known examples are combustion-chamber linings, roller bearings and implants. This Through the AdvanCer newsletter, the Fraunhofer Demonstra- innovative area has become an established field of expertise of tion Center regularly informs about new developments related the Fraunhofer-Gesellschaft. to the topic of high performance ceramics.

Seven Fraunhofer institutes have joined together to form the Fraunhofer High-Performance Ceramics Alliance. The research Fields of cooperation activities of the alliance extend along the entire value added chain − from modeling and simulation through application- - Materials development for structural ceramics, functional ce- oriented materials development, production and machining of ramics, fiber-reinforced ceramics, cermets, ceramic compo- ceramic parts to component characterization, evaluation and sites and adaptive composite materials non-destructive testing under application conditions. Current - Component design and development of functional prototypes R&D activities focus on joining and integration methods. - Systems integration and verification of batch-production ca- pabilities In the Fraunhofer Demonstration Center AdvanCer the alli- - Development of powder, fiber and coating technologies ance’s institutes expanded their presentation, training and - Materials, component and process simulation consulting offerings in the field of high-performance ceramics. - Materials and component testing, proof-testing and non-de- Using demonstration systems the added-value chain from pow- structive testing der to component as well as the implementation of knowl- - Defect analysis, failure analysis, quality management edge, research and development in the form of products and improved quality of life are shown. The Fraunhofer Demons- tration Center AdvanCer supports small and medium-sized Service offerings companies in solving complex tasks ranging from prototype development to technology transfer. - Consulting and execution of feasibility studies - Method and technology development Since 2005, the Fraunhofer Demonstration Center AdvanCer - Prototype development, technology transfer has been offering training courses for technicians and engi- - Completion of contract research, conceptualization and exe- neers. The three parts being offered follow one after another, cution of alliance projects but can also be taken as single courses. - Workshops, seminars, training programs

84 23

Institutes Office leader

Fraunhofer Institute for Ceramic Technologies and Systems Susanne Freund IKTS Fraunhofer IKTS www.ikts.fraunhofer.de Winterbergstrasse 28 01277 Dresden, Germany Fraunhofer Institute for Production Systems and Design Tech- nology IPK Phone +49 351 2553-7504 www.ipk.fraunhofer.de Fax +49 351 2554-334

Fraunhofer Institute for Production Technology IPT [email protected] www.ipt.fraunhofer.de www.hochleistungskeramik.fraunhofer.de Fraunhofer Institute for Silicate Research ISC www.advanced-ceramics.fraunhofer.com www.isc.fraunhofer.de

Fraunhofer Institute for Mechanics of Materials IWM www.iwm.fraunhofer.de

Fraunhofer Institute for Non-Destructive Testing IZFP www.izfp.fraunhofer.de

Fraunhofer Institute for Structural Durability and System Relia- bility LBF www.lbf.fraunhofer.de

1 Shot-peened ceramic gears. Steering committee 2 CerCut is one of seven proj- ects within the Fraunhofer De- Prof. Dr. Alexander Michaelis (spokesperson of the alliance) monstration Center AdvanCer Fraunhofer IKTS that have already been comple- ted. The prototype tool will now Prof. Dr. Peter Gumbsch be further qualified with indus- Fraunhofer IWM trial partners. 3 Thermooptical measuring de- Prof. Dr. Fritz Klocke vice for the characterization of Fraunhofer IPT ceramics in controlled atmos- phere up to 2000°C.

85 NAMEN,NAMES, DATES,DATEN, EVENTS

PATENTS,EREIGNISSE PATENT APPLICATIONS, BOOKS AND PERIODICAL CONTRIBU- TIONS

Granted patents 2010 fahren zu deren Herstel- Richter, V.; v. Ruthendorf, M. Verfahren zu seiner Her- lung Wasserstrahlschneidhoch- stellung Adler, J.; Piwonski, M.; EP 1 603 663 B1 druckdüse DE 10 2010 019 666 Greulich-Hickmann, N.; DE 100 52 021 B4 Langsdorf, A. Endler, I. Goldberg, A.; Marcinkowski, P.; Method and device for Hard-material-coated bo- Siegel, S.; Boden, G.; Feller, C.; Schneider, M. non-contact moulding of dies and method for their Petasch, U.; Thole, V.; Elektrochemische Zelle fused glass gobs production Weiß, R.; Scheibel, T.; eines Akkumulators US 7 743 628 B2 CN 101218370 B Henrich, M.; Ebert, M. DE 10 2010 046 307 US 7 767 320 B2 Method for the production Adler, J.; Ihle, J. of a carbon or ceramic Johannes, M.; Ehrt, R. High-strength planar Faßauer, B.; Eichstätter, R.; component Verblendkeramik für den- structures for end-ballistic Maas, R.; Friedrich, H. US 7 682 534 B2 tale Restaurationen aus protection and protection Verfahren und Vorrichtung Yttrium-stabilisiertem against wear and method zur Behandlung biogener Waeschke, U.; Kusnezoff, M. Zirkoniumdioxid sowie for producing the same Stoffe zur Erzeugung von Kontaktelement für eine Verfahren zu deren Auf- IL 170927 Biogas elektrisch leitende Verbin- trag DE 10 2008 042 461 B3 dung zwischen einer DE 10 2010 035 545 Adler, J.; Beckert, W. Anode und einem Inter- Plattenförmiger kerami- Grützmann, D.; Fischer, G.; konnektor einer Hochtem- Jurk, R.; Fritsch, M. scher Wärmestrahlkörper Richter, H. peraturbrennstoffzelle Verfahren zur Herstellung eines Infrarot-Flächen- Anordnung aus elektrisch DE 10 2009 015 794 B4 von Nanopartikeln aus strahlers leitfähiger Keramik mit einem Edelmetall und die DE 10 2008 000 010 B4 funktioneller Beschichtung Verwendung der so herge- EP 2 092 793 B1 Patent applications 2010 stellten Nanopartikel Bitterlich, S.; Voß, H.; DE 10 2010 033 924 Schuch, G.; Diefenbacher, A.; Kusnezoff, M.; Stelter, M.; Adler, J. Noack, M.; Schafer, R.; Michaelis, A. Pellets und Verfahren zu Klumbies, H.; Partsch, U.; Voigt, I.; Richter, H.; Caro, J. Wiederholeinheit für einen deren Herstellung Gebhardt, S. Composite membrane Stapel elektrochemischer DE 10 2010 030 547 Hybridaktorelement und US 7 749 414 B2 Zellen sowie Stapelordnung Verfahren zu seiner Her- EP 2 054 964 B1 Giebe, A.; Scheithauer, U.; stellung Duzidak, G.; Nickel, A.; Rödig, T.; Schönecker, A. DE 10 2010 013 611 Voigt, I.; Hoyer, T.; Puhlfürß, P. Luthardt, R. G.; Johannes, M. Aktorisches, sensorisches Keramische Nanofiltrati- Verfahren zur Herstellung und/oder generatorisches Kusnezoff, M.; Trofimenko, N.; onsmembran für die Ver- mehrschichtig aufgebau- Faserverbundbauteil und Girdauskaite, E.; Belda, C. wendung in organischen ten Zahnersatzes Verfahren zur Herstellung Lösungsmitteln und Ver- RU 2 385 686 C2 von Festoxidbrennstoffzel-

86 len mit einer metallsub- verfahren dieser Microstructural analysis nology 205(2010), No.5, stratgetragenen Kathoden- DE 10 2010 015 171 and mechanical properties p.1307-1312

Elektrolyt-Anoden-Einheit of Pb(Zr,Ti)O3 fibers deri- sowie deren Verwendung ved by different processing Feng, B.; Martin, H.-P.; DE 10 2010 046 146 Books and periodical con- routes Michaelis, A. tributions Journal of the American Ce- Thermoelectric properties Kusnezoff, M.; Michaelis, A.; ramic Society 93(2010), No.8, of boron carbide with Si Schneider, M. Busch, W.; Bastian, S.; p.2403-2410 doping Anordnung mit mindestens Trahorsch, U.; Iwe, M.; Jänsch, D.: Thermoelectrics einer Farbstoffsolarzelle Kühnel, D.; Meißner, T.; Eckhard, S.; Fries, M. Goes Automotive: Thermo- DE 10 2010 056 338 Springer, A.; Gelinsky, M.; Influence of different sus- elektrik, II Richter, V.; Ikonomidou, C.; pension properties on in- Renningen: expert-Verl., Luthardt, F.; Adler, J. Potthoff, A.; Lehmann, I.; ternal structure and defor- 2010, p.290-295 Verfahren und Vorrichtung Schirmer, K. mation behavior of spray zur kontinuierlichen Erzeu- Internalisation of enginee- dried ceramic granules Flössel, M.; Gebhardt, S.; gung von Schäumen red nanoparticles into Advances in Science and Schönecker, A.; Michaelis, A. DE 10 2010 039 322 mammalian cells in vitro: Technology 62(2010), p.157- Development of a novel Influence of cell type and 162 sensor-actuator-module Partsch, U.; Feller, C.; particle properties with ceramic multilayer Kretzschmar, C.; Reinhardt, K. Journal of Nanoparticle Re- Elschner, C.; Kusnezoff, M.; technology Ionensensitives Sensorele- search (2010), online first, Ziesche, S.; Paepcke, A.; Journal of Ceramic Science ment doi:10.1007/s11051-010- Michaelis, A. and Technology 1(2010), DE 10 2010 015 551 0030-3 New method to determine No.1, p.55-58 diffusion coefficients and Reuber, S.; Barthel, M.; Czyperek, M.; Zapp, P.; surface rate constants in Friedrich, E.; Friedrich, H.; Schneider, M.; Koszyk, S.; Bouwmeester, H. J. M.; mixed ionic electronic con- Lincke, M.; Schwarz, B.; Belitz, R. Modigell, M.; Ebert, K.; ductors Wufka, A.; Fassauer, B. System mit Hochtempera- Voigt, I.; Meulenberg, W. A.; Journal of Membrane Science Verbesserte Konvertierbar- turbrennstoffzellen Singheiser, L.; Stöver, D. 362(2010), No.1-2, p.545-549 keit lignocellulosehaltiger PCT/EP2010/004457 Gas separation membranes Substrate in der Nassfer- for zero-emission fossil Endler, I.; Höhn, M.; mentation: Extrusion von Roscher, H.-J.; Anselment, C.; power plants: MEM-BRAIN Herrmann, M.; Holzschuh, H.; Stroh Just, D.; Seffner, L.; Moritz, T. Journal of Membrane Science Pitonak, R.; Ruppi, S.; Chemie-Ingenieur-Technik Piezoelektrisches Aktormo- 359(2010), No.1-2, p.149-159 Berg, H. van den; 82(2010), No.8, p.1177-1181 dul sowie piezoelektrischer Westphal, H.; Wilde, L. Aktor mit einem solchen Dittmer, R.; Clemens, F.; Aluminum-rich TiAlCN coa- Fritsch, M.; Klemm, H.; piezoelektrischen Aktor- Schönecker, A.; Scheithauer, U.; tings by low pressure CVD Herrmann, M.; Michaelis, A.; modul und Herstellungs- Rojas-Ismael, M.; Graule, T. Surface and Coatings Tech- Schenk, B.

87 BOOKS AND PERIODICAL CONTRIBU- TIONS

The water vapour hot gas Bales, A.; Sigalas, I. Chemie-Ingenieur-Technik Klemm, U.; Schöne, B.; corrosion of ceramic mate- Field-assisted densification 82(2010), No.9, p.1335 Svoboda, H.; Fries, M.; rials of superhard B6O materials Nebelung, M.

Ceramic forum international: with Y2O3/Al2O3 addition Johnson, O.T.; Sigalas, I.; Instrumented compaction CFI. Berichte der Deutschen Orlovskaya, N.; Lugovy, M.: Herrmann, M.: experiments under varied Keramischen Gesellschaft Boron-Rich Solids: Sensors for Microstructure and interfa- climatic conditions

87(2010), No.11-12, p.E28- Biological and Chemical De- cial reactions between B6O Journal of Ceramic Science E32 tection. Sensors, Ultra High and (Ni, Co) couples and Technology 1(2010), Temperature Ceramics, Ther- Ceramics international: CI No.1, p.59-66 Heddrich, M.; Jahn, M.; moelectrics, Armor 36(2010), No.8, p.2401-2406 Michaelis, A.; Stelter, M. (NATO science for peace and König, M.; Höhn, S.; SOFC-μKWK mit Biogas – security series) Johnson, O.T.; Sigalas, I.; Hoffmann, R.; Suffner, J.; Ein einfacher Prozess mit Berlin: Springer, 2010, p.319- Ogunmuyiwa, E.N.; Lauterbach, S.; Weiler, L.; hohem elektrischen Wir- 326 Kleebe, H.J.; Müller, M.M.; Guillon, O.; Rödel, J. kungsgrad Herrmann, M. Sintering of hierarchically Chemie-Ingenieur-Technik Herrmann, M.; Bodkin, R.; Boron suboxide materials structured ZnO 82(2010), No.9, p.1415-1416 Coville, N.J.; Thiele, M. with Co sintering additives Materials Research Society Sintering and mechanical Ceramics international: CI 25(2010), No.11, p.2125-

Herrmann, M.; Neher, R.; properties of AlMgB14 com- 36(2010), No.6, p.1767-1771 2134 Brandt, K.; Höhn, S. posite materials Micro-segregations in li- Journal of Ceramic Science Kinski, I. Krell, A.; Hutzler, T.; quid phase sintered silicon and Technology 2(2010), Gallium nitride and oxoni- Klimke, J.; Potthoff, A. carbide ceramics No.1, p.55-60 trides Nano-processing for larger Journal of the European Ce- Riedel, R.: Ceramics science fine-grained windows of ramic Society 30(2010), No.6, Hildebrandt, H.; Kühnel, D.; and technology. Vol.2: Mate- transparent spinel p.1495-1501 Potthoff, A.; Mackenzie, K.; rials and Properties Ceramic engineering & sci- Springer, A.; Schirmer, K. Weinheim: Wiley-VCH, 2010, ence proceedings 31(2010), Herrmann, M.; Shen, Z.; Evaluating the cytotoxicity p.91-130 No.5, p.167-182 Schulz, I.; Hu, J.; Jancar, B. of palladium/magnetite Silicon nitride nanocera- nano-catalysts intended Klemm, H. Krell, A.; Hutzler, T.; mics densified by dynamic for wastewater treatment Silicon nitride for high- Klimke, J.; Potthoff, A. grain sliding Environmental Pollution temperature applications. Fine-grained transparent Journal of Materials Research 158(2010), No.1, p.65-73 Review spinel windows by the pro- 25(2010), No.12, p.2354- Journal of the American Ce- cessing of different nano- 2361 Jahn, M.; Michaelis, A.; ramic Society 93(2010), No.6, powders Pohl, M.; Schreck, C. p.1501-1522 Journal of the American Ce- Herrmann, M.; Räthel, J.; Schaumkeramik als Kataly- ramic Society 93(2010), No.9, Sempf, K.; Thiele, M.; satorsystem p.2656-2666

88 Kriegel, R. als 39(2010), No.9, p.1809- SiC: Beiträge zu Prozessab- bide nanoparticles as a Einsatz keramischer BSCF- 1813 sicherung und Dauerstabi- basis for toxicological in- Membranen in einem lität vestigations transportablen Sauerstoff- Lenk, R.; Freund, S.; Gaal, A. Chemie-Ingenieur-Technik Nanotoxicology 4(2010), Erzeuger AdvanCer Newsletter 82(2010), No.9, p.1419 No.2, p.196-206 J. Kriegesmann (Ed.), DKG issues 2010/1-3 Handbuch Technische Kera- Dresden: Fraunhofer IKTS, Martin, U.; Ehinger, D.; Meißner, T.; Potthoff, A.; mische Werkstoffe. Loseblatt- 2010 Krüger, L.; Martin, S.; Richter, V. ausgabe. Mottitschka, T.; Weigelt, C.; Physico-chemical characte- Ellerau: HvB-Verlag, Kapitel Lenk, R. Aneziris, C.G.; Herrmann, M. rization in the light of toxi- 8.10.1.1 Product and process orient- Cellular energy absorbing cological effects: Erratum to ed shaping techniques for TRIP-steel/Mg-PSZ compo- Inhalation Toxicology Kriegel, R.; Kircheisen, R.; advanced ceramics at the site: Honeycomb structures 22(2010), No.1, p.89 Töpfer, J. example of ceramic injection fabricated by a new extru- Oxygen stoichiometry and molding and extrusion sion powder technology Meyer, A.; Lenzner, K.; expansion behavior of Ceramic forum international: Advances in Materials Science Potthoff, A.

Ba0.5Sr0.5Co0.8Fe0.2O3-δ CFI. Berichte der Deutschen and Engineering (2010), on- Influence of energy input Solid State Ionics 181(2010), Keramischen Gesellschaft line journal, on suspension properties No.1-2, p.64–70 87(2010), No.4, p.E17-E20 doi:10.1155/2010/269537 Advances in Science and Technology 62(2010), p.141- Kusnezoff, M.; Ziesche, S.; Mannschatz, A.; Höhn, S.; Megel, S.; Girdauskaite, E.; 146 Elschner, C. Moritz, T. Sauchuk, V.; Kusnezoff, M.; Measurement of chemical Powder-binder separation Michaelis, A.: Michaelis, A.; Schneider, M. diffusion coefficient and in injection moulded green Area specific resistance of Fraunhofer-Institut für Kera- surface exchange on mixed parts oxide scales grown on fer- mische Technologien und Sys- ionic electronic conductors Journal of the European Ce- ritic alloys for solid oxide teme IKTS, Dresden: using periodical pO2 oscil- ramic Society 30(2010), fuel cell interconnects Symposium »Galvanik – lations No.14, p.2827-2832 Journal of Power Sources eine etablierte Technik in- Journal of Membrane Science (2010), online first, novativ angewendet« 360(2010), No.1/2, p.9-16 Mannschatz, A.; Moritz, T. doi:10.1016/j.jpowsour.2010. Tagungsband, 25.-26. No- 2C ceramics moves into the 09.003 vember 2010, Dresden. Stutt- Lankau, V.; Martin, H.-P.; industrial reality zone gart: Fraunhofer Verlag, Hempel-Weber, R.; Metal Powder Report Meißner, T.; Kühnel, D.; 2010, ISBN 978-3-8396- Oeschler, N.; Michaelis, A. 65(2010), No.3, p.22-25 Busch, W.; Oswald, S.; 0205-8 Preparation and thermo- Richter, V.; Michaelis, A.; electric characterization of Marschallek, F.; Adler, J.; Schirmer, K.; Potthoff, A. Moritz, K.; Moritz, T.

SiC-B4C composites Böttge, D.; Füssel, A.; Jahn, M. Physical-chemical characte- ZrO2 ceramics with aligned Journal of Electronic Materi- Verbrennung in porösem rization of tungsten car- pore structure by EPD and

89 BOOKS AND PERIODICAL CONTRIBUTIONS, PRESENTATIONS AND POSTERS

their characterisation by X- rous tubular catalytic mem- Rödig, T.; Schönecker, A.; Schneider, M.; Schroth, S.; ray computed tomography branes for direct synthesis Gerlach, G. Schubert, N.; Michaelis, A. Journal of the European Ce- of hydrogen peroxide A survey on piezoelectric In-situ investigation of the ramic Society 30(2010), No.5, Chemical Engineering Journal ceramics for generator ap- surface-topography during p. 1203-1209 165(2010), No.3, p.924-933 plications anodic dissolution of cop- Journal of the American Ce- per under near-ECM condi- Moritz, T.; Ahlhelm, M.; Pan, Z.; Fabrichnaya, O.; ramic Society 93(2010), No.4, tions Lenk, R. Seifert, H.J.; Neher, R.; p.901-912 Materials and Corrosion Verifizierung der Formfüll- Brandt, K.; Herrmann, M. (2010), online first, simulation beim Spritzgie- Thermodynamic evaluation Rose, M.; Niinistö, J; doi:10.1002/maco201005716 ßen von Keramik of the Si-C-Al-Y-O System Endler, I.; Bartha, J.W.; Ceramic forum international: for LPS-SiC application Kücher, P.; Ritala, M. Seffner, L.; Moritz, T.; CFI. Berichte der Deutschen Journal of Phase Equilibria In situ reaction mechanism Schönecker, A.; Roscher, H.-J.; Keramischen Gesellschaft and Diffusion 31(2010), No.3, studies on ozone-based Anselment, C.; Just, D. 87(2010), No.4, p.D21-D22 p.238-249 atomic layer deposition of Das Potenzial des Spritz-

Al2O3 and HfO2 gießens reicht für adaptro- Moritz, T.; Ahlhelm, M.; Pawlowski, B.; Schabbel, D.; ACS Applied Materials & In- nische Systeme Lenk, R.: Barth, S.; Fischer, M.; terfaces 2(2010), No.2, Maschinenmarkt. MM, das Verification of the simula- Bartsch, H.; Hoffmann, M.; p.347-350 Industriemagazin (2010), tion results for mold filling Müller, J. No.41, p.32-35 processes in ceramic in- SiCer – ein innovativer Sub- Rose, M.; Bartha, J.W.; jection molding stratwerkstoff für MEMS Endler, I. Soller, T.; Bathelt, R.; Ceramic forum international: Keramische Zeitschrift Temperature dependence Benkert, K.; Boedinger, H.; CFI. Berichte der Deutschen 62(2010), No.4, p.259-263 of the sticking coefficient Schuh, C.; Schlenkrich, F.: Keramischen Gesellschaft in atomic layer deposition Textured and tungsten- 87(2010), No.4, p.E28-E30 Richter, H.; Voß, H.; Voigt, I.; Applied Surface Science bronze-niobate-doped

Diefenbacher, A.; Schuch, G.; 256(2010), No.12, p.3778- (K,Na,Li)(Nb,Ta)O3 piezoce- Neher, R. Steinbach, F.; Caro, J. 3782 ramic materials Liquid phase formation in High-flux ZSM-5 membra- Journal of the Korean Physi- the system SiC, Al2O3, Y2O3 nes with an additional Schneider, M.-E.; Langklotz, U.; cal Society 57(2010), Nro4, Journal of the European Ce- non-zeolite pore system by Michaelis, A.; Arnold, B. p.942-946 ramic Society (2010), online alcohol addition to the Microelectrochemical in- first, doi:10.1016/j.jeurcera- synthesis batch and their vestigation on aluminium- Standke, G.; Müller, T.; micsoc.2010.09.002 evaluation in the 1-butene/ steel friction welds Neubrand, A.; Weise, J.; i-butene separation Surface and Interface Analysis Göpfert, M. Pashkova, A.; Dittmeyer, R.; Separation and Purification 42(2010), No.4, p.281-286 Cost-efficient metal-cera- Kaltenborn, N.; Richter, H. Technology 72(2010), No.3, mic composites – novel Experimental study of po- p.388-394 foam-preforms, casting

90 processes and characterisa- Technology 19(2010), No.1-2, geometrie 2010, Dresden (27.- tion p.137-147 Chemie-Ingenieur-Technik 29.10.2010), presentation Advanced Engineering Mate- 82(2010), No.8, p.1257-1260 rials 12(2010), No.3, p.189- Toma, F.-L.; Scheitz, S.; Adler, J. 196 Berger, L.-M.; Sauchuk, V.; Zgalat-Lozynskyy, O.; Dieselpartikelfilter: Stand Kusnezoff, M.; Thiele, S. Herrmann, M.; Ragulya, A. und Trends bei Filtern, Re- Stelter, M.: Comparative study of the Spark plasma sintering of generationssystemen und Potential of multilayer ce- electrical properties and TiCN nanopowders in non- Ascheverhalten ramics for micro fuel cells characteristics of thermally linear heating and loading Industrietag: Keramik in der Steinberger-Wilckens, Robert sprayed alumina and spinel regimes motorischen Abgas-Nachbe- (Hrsg.) u.a.: Innovations in coatings Journal European Ceramic handlung, Dresden Fuel Cell Technologies. (RSC Journal of Thermal Spray Society 31(2010), No.5, (23.9.2010), presentation Energy and Environmental Technology 20(2010), No.1-2, p.809-813 Series) p.195-204 Adler, J. Cambridge: RSC Publishing, Ziesche, S.; Michaelis, A. Keramische Werkstoffe: 2010, Chapter 2, p.28-40 Weidmann, S.K.; Fürbeth, W.; Synthese und elektrische/ Cordierit, Siliciumcarbid, ISBN: 978-1-84973-033-4 Yezerska, O.; Sydow, U.; elektrochemische Charak- Aluminiumtitanat, Mullit Schneider, M. terisierung von ionisch- etc. - Unterschiede und Be- Sydow, U.; Schneider, M.; Modifizierung von Anodi- elektronisch gemischt- sonderheiten, Grenzen Herrmann, M.; Kleebe, H.J.; sierschichten auf Alumini- leitenden keramischen und Entwicklungspotenzial Michaelis, A. umwerkstoffen durch Werkstoffen für Permeati- Industrietag: Keramik in der Electrochemical corrosion chemische Nanotechnologie onsanwendungen motorischen Abgas-Nachbe- of silicon carbide ceramics. Galvanotechnik 101(2010), Stuttgart: Fraunhofer Verlag, handlung, Dresden Pt.1: Electrochemical inves- No.8, p.1728-1744 2010 (23.9.2010), presentation tigation of sintered silicon (Kompetenzen in Keramik. carbide (SSiC) Weyd, M.; Richter, H. Schriftenreihe 7). Zugl.: Dres- Ahlhelm, M.; Moritz, T.; Materials and Corrosion Zeolithmembranen zur den, Univ., Diss., 2009 Maisl, M. 61(2010 ), No.8, p.657-664 Stofftrennung auf moleku- ISBN 978-3-8396-0108-2 Freeze-Foaming: A promi- larer Basis sing method for synthesi- Toma, F.-L.; Stahr, C.C.; Labor-Praxis 34(2010), zing cellular ceramic Berger, L.-M.; Saaro, S.; No.7/8, p.36-38 Presentations and posters materials Herrmann, M.; Deska, D.; Cellular Materials – CELLMAT Michael, G. Weyd, M.; Richter, H.; Adler, J.; Füssel, A.; 2010, Dresden (27.- Corrosion resistance of Kühnert, J.-T.; Voigt, I.; Böttge, D.; Marschallek, F.; 29.10.2010), presentation APS- and HVOF-sprayed Tusel, E.; Brüschke, H. Jahn, M. coatings in the Al2O3-TiO2 Effiziente Entwässerung Cellular ceramics in com- Ahlhelm, M. system von Ethanol durch Zeolith- bustion environments Herstellung eines biokom- Journal of Thermal Spray membranen in Vierkanal- Cellular Materials – CELLMAT patiblen Hydroxylapatit-

91 PRESENTATIONS AND POSTERS

ZrO2-Hybridschaums über Barth, S.; Pawlowski, B.; Fraunhofer EAS, Dresden Ba0,5Sr0,5Co0,8Fe0,2O3-δ zur die Methode der Gefrier- Arnold, M.; Bartnitzek, T.; (30.8.2010), presentation Sauerstoffseparation Direktschäumung Mürbe, J.; Töpfer, J. DKG-Jahrestagung 2010, 18. Symposium Verbund- Niedrig sinternde Funkti- Beckert, W. Hermsdorf/Thüringen werkstoffe und Werkstoffver- onswerkstoffe für LTCC- Mechanik- und Strömungs- (22.-24.3.2010), poster bunde, Chemnitz Anwendungen simulation von Keramik- (30.3.-1.4.2010), presenta- DKG-Jahrestagung 2010, komponenten für die Böttge, D.; Adler, J. tion Hermsdorf/Thüringen Abgasnachbehandlung Functionalization of cera- (22.-24.3.2010), poster Industrietag: Keramik in der mic foams for high tempe- Ahlhelm, M.; Moritz, T. motorischen Abgas-Nachbe- rature catalytic PIM-Simulation and -verifi- Bartsch, H.; Grieseler, R.; handlung, Dresden applications illustrated by cation of an experimental Müller, J.; Barth, S.; (23.9.2010), presentation the development of a lean mold cavity using a mold Pawlowski, B. gas reactor flow simulation tool Properties of high-k mate- Belitz, R.; Jahn, M.; Cellular Materials – CELLMAT Junior-Euromat 2010, Lau- rials embedded in low Koszyk, S.; Männel, D.; 2010, Dresden (27.- sanne, Schweiz (26.- temperature cofired cera- Michaelis, A.; Roch, M. 29.10.2010), presentation 30.7.2010), presentation mics Einsatz von beschichteter, Electronics System Integration offenzelliger SSiC-Schaum- Bramlage, B.; Gebhardt, S. Arnold, M.; Gleichmann, H.; Technology Conference – keramik zur katalytischen Development of PZT thick Lenke, N.; Suphan, K.-H.; ESTC 2010, Berlin (13.- Nachbehandlung von film actuators for active Müller, R. 16.9.2010), presentation SOFC-Abgasen micro-optics Fernabfragbare Tempera- 43. Jahrestreffen Deutscher 12th International Confe- tursensoren auf Basis von Baumann, A. Katalytiker, Weimar (10.- rence and Exhibition New

GaPO4 Pulverspritzgießen von 12.3.2010), p.323-324, poster Actuators and Drive Systems DKG-Jahrestagung 2010, Metall-Keramik-Verbunden – ACTUATOR 2010, Hermsdorf/Thüringen 10. Sitzung des Gemein- Böer, J. (14.-16.6.2010), p.594-596, (22.-24.3.2010), poster schaftsausschusses Pulverme- Werkstoffgrundlagen und poster tallurgie Expertenkreis Verfahrenstechnik der pie- Barth, S. Sintern, Dresden zokeramischen Werk- Breite, M.; Pohl, M.; Jahn, M. Werkstoffaufbereitung – (28.10.2010), presentation stoffe – Brenntechnik Partielle Oxidation von Eigenschaften und Anwen- IHK-Schulung für technische flüssigen und gasförmigen dung technischer Magne- Beckert, W. Mitarbeiter PI Ceramic, Kohlenwasserstoffen tokeramiken Einsatz von Modellierung Hermsdorf (29.9.-1.10.2010), Jahrestreffen Reaktionstech- IHK-Schulung für technische und Simulation für multi- presentation nik 2010, Würzburg (10.- Mitarbeiter PI Ceramic, disziplinäre Forschungs- 12.5.2010), p.107-108, Hermsdorf (29.9.-1.10.2010), und Entwicklungsaufga- Böer, J.; Kiesel, L.; Pippardt, U. poster presentation ben am Fraunhofer IKTS Keramische asymmetrische Simulations-Stammtisch, Membranen aus

92 Breite, M.; Jahn, M.; Beckert, E.; Eberhardt, R.; Dannowski, M.; Beckert, W.; ties of ceramic spray gra- Männel, D.; Weder, A.; Tünnermann, A. Adler, J.; Michaelis, A. nules Michaelis, A. New results of unimorph Model-based evaluation of 17th International Drying Selectivity and stability for laser mirrors with screen diesel particulate filter Symposium – IDS 2010, Mag- catalytic partial oxidation printed actuator structures deburg (3.-6.10.2010), CD, of ethanol to synthesis gas MEMS Adaptive Optics IV, 1st International Conference p.938-944, presentation 1st International Conference San Fransisco/Calif. on Multiphysics Simulation – on Materials for Energy, DE- (27./28.1.2010), presentation Advanced Methods for Indus- Eckhard, S.; Fries, M.; CHEMA, Karlsruhe (4.- trial Engineering, Höhn, S.; Nebelung, M. 8.7.2010), p.928-930, poster Brüschke, H.; Heckmann, M.; (22./23.6.2010), presentation Quantitative Bewertung Weyd, M.; Jakob, S. innerer Strukturen kerami- Breite, M.; Jahn, M.; Technical and economic Eckhard, S.; Lenzner, K.; scher Granulate in Korrela- Männel, D.; Weder, A.; comparison of distillation/ Nebelung, M.; Fries, M. tion mit mechanischen Ei- Michaelis, A.; Bernhard, J. Dehydration concepts for Deformation behavior of genschaften Selektivität und Langzeit- bioalcohol/water mixtures single ceramic granules ProcessNet Fachausschuß stabilität bei der katalyti- 18th European Biomass Con- with regard to internal Trocknungstechnik, Göttin- schen partiellen Oxidation ference & Exhibition, Lyon structure gen (1./2.3.2010), poster von Ethanol zu Synthese- (3.-7.5.2010), presentation 6th World Congress on Parti- gas cle Technology – WCPT6 Endler, I.; Höhn, M.; 43. Jahrestreffen Deutscher Brüschke, H. ; Tusel, G.; 2010, Nürnberg (26.- Herrmann, M.; Holzschuh, H.; Katalytiker, Weimar (10.- Weyd, M.; Richter, H.; Voigt, I. 29.4.2010), CD, presentation Pitonak, R.; Ruppi, S.; 12.3.2010), p.346-347, Improvement of the effi- van den Berg, H.; poster ciency of bioethanol pro- Eckhard, S.; Fries, M.: Westphal, H.; Wilde, L. duction by inorganic Influence of different sus- Aluminium-rich TiAlCN Brückner, B.; Schönecker, A. membranes pension properties on coatings by LPCVD Prüfsystem für Module und 13th Aachener Membran internal structure and de- 37th International Conference Strukturen mit integrierten Kolloquium, Aachen formation behavior of spray on Metallurgical Coatings piezokeramischen Aktoren (27./28.10.2010), p.251-259, dried ceramic granules and Thin Films – ICMCTF unter hoher elektrischer presentation 12th International Ceramics 2010, San Diego, CA, USA Gleichlast Congress – CIMTEC 2010, (26.-30.4.2010), presentation 3. Tagung DVM-Arbeitskreis Chen, H.F.; Klemm, H.; Montecatini Terme, Italy (06.- Zuverlässigkeit mechatroni- Michaelis, A. 11.6.2010), p.157-162, Endler, I. scher und adaptronischer Sys- Environmental barrier coa- presentation Herstellung gerichteter teme, Darmstadt tings for silicon nitride CNT-Schichten (14./15.4.2010), presentation 3rd International Congress on Eckhard, S.; Fries, M.; Carbon Nanotubes – auf dem Ceramics – ICC3, Osaka, Japan Höhn, S.; Nebelung, M. Weg aus der Forschung in die Bruchmann, C.; Burkhardt, T.; (14.-18.11.2010), presenta- Influence of drying conditi- Anwendung, Regensburg Kamm, A.; Gebhardt, S.; tion ons on processing proper- (6./7.12.2010), presentation

93 PRESENTATIONS AND POSTERS

Endler, I.; Höhn, M. 54. Treffen des Sächsischen Thüringer Werkstofftag, Il- mentation-Strohbehand- Novel TiAlN and TiAlCN Arbeitskreises Elektronik- menau (24.3.2010), p.6, pre- lung coatings by LPCVD Technologie, Dresden sentation Hannover Messe, Hannover Materials Science and Engi- (30.6.2010), presentation (19.-23.4.2010), poster neering – MSE 2010, Flössel, M.; Gebhardt, S.; Darmstadt (24.-26.8.2010), Feller, C.; Reinhardt, K.; Schönecker, A.; Michaelis, A. Friedrich, E. presentation Grießmann, H.; Partsch, U.; Novel packaged LTCC/PZT Behandlung der Biomasse Meye, R.; Schulz, J. modules for actuator and am Eingang des Fermen- Falk Windisch, H.; Keramikbasierter pH-Sensor sensor applications ters: Das System IKTS Kretzschmar, C.; in Multilayertechnologie 12th International Confe- 6. Info Biogas, Montichiari Rebenklau, L.; Michaelis, A. 15. Heiligenstädter Kollo- rence and Exhibition New (21.10.2010), presentation Interaction between glass quium, Heilbad Heiligenstadt Actuators and Drive Systems and silicon during firing of (27.-29.9.2010), poster – ACTUATOR 2010, Bremen Friedrich, E.; Jobst, K.; a solar cell front electrode (14.-16.6.2010), p.586-589, Lomtscher, A. paste Feng, B.; Hans-Peter, M.; poster Bewertung von Mischpro- 10th ESG Conference und Michaelis, A. zessen mittels Prozess-To- 84. Glastechnische Tagung, Thermoelektrische Eigen- Frense, D.; Pflieger, C.; mographie Magdeburg (30.5.-2.6.2010), schaften von Borcarbid mit Szolkowy, D.; Barthel, A.; KSB-Biogasanwenderforum, poster Si-Dotierung Nacke, T.; Pliquett, U.; Halle (12.11.2010), present. 2. Tagung Thermoelectrics Beckmann, D.; Pätz, R.; Faßauer, B. goes Automotive, Berlin Listewnik-Richter, J.-H.; Friedrich, E.; Friedrich, H.; Forschungsförderung von (9./10.12.2010), poster Weyd, M.; Richter, H.; Jobst, K.; Schwarz, B.; Biogas- und Biomassetech- Reitberger, S.; Hänel, E. Lincke, M.; Wufka, A. nologie im Kontext aktuel- Fischer, G. Entwicklung innovativer Desintegrationsverfahren – ler EU-Strategien – ein Werkstoffgrundlagen und Messtechnik für die On- Aufwand und Nutzen für Überblick Verfahrenstechnik der pie- line-Überwachung der Bio- die Biogaserzeugung 7. Fachtagung Anaerobe Bio- zokeramischen Werk- ethanolfermentation 19. Jahrestagung Fachver- logische Abfallbehandlung: stoffe – Praktische Prbleme 15. Heiligenstädter Kollo- band Biogas e.V., Leipzig aktuelle Tendenzen, Co-Ver- IHK-Schulung für technische quium, Heiligenstadt (27.- (2.-4.2.2010), presentation gärung und Wirtschaftlich- Mitarbeiter PI Ceramic, 29.9.10), poster keit, Dresden (7./8.6.2010), Hermsdorf (29.9.-1.10.2010), Friedrich, H.; Friedrich, E. presentation presentation Friedrich, E.; Friedrich, H.; Entwicklung eines neuarti- Jobst, K.; Schwarz, B.; gen energie- und rohstoff- Feller, C.; Kretzschmar, C.; Fischer, M.; Bartsch, H.; Stelter, M.; Wufka, A.; effizienten Entschwe- Reinhardt, K.; Belda, C.; Pawlowski, B.; Barth, S.; Fassauer, B. felungssystems für die Er- Fritsch, M.; Partsch, U. Hoffmann, M.; Müller, J. Verbesserte Konvertierbar- zeugung von Bio-Erdgas Elektrochemische Sensoren SiCer – ein innovativer Sub- keit lignozellulosehaltiger 2. Statusseminar des BMU- in Dickschichttechnik stratwerkstoff für MEMS Substrate in der Nassfer- Förderprogramms zur Opti-

94 mierung der energetischen Fries, M. 3rd International Congress on Gestrich, T.; Biomassenutzung, Berlin Pulveraufbereitung Ceramics – ICC3, Osaka, Jaenicke-Rößler, K. (11./12.10.2010), present. Keramische Hochleistungs- Japan (14.-18.11.2010), pre- Grundlagen der Thermo- werkstoffe Schulungspro- sentation analytik – Optimierung Fries, M.; Eckhard, S.; gramm des Fraunhofer- von Entbinderungs- und Svoboda, H. Demonstrationszentrums Ganzer, G.; Schöne, J.; Sinterprozessen Korrelationen zwischen AdvanCer, Block I: Werkstoffe Beckert, W.; Jahn, M.; DKG-Fortbildungsseminar – Einzelgranalieneigenschaf- und Verfahren, Dresden Michaelis, A. Thermoplastische Formgebung ten, Verdichtungsverhalten (10./11.3.2010), presentation Coupled model description von Technischer Keramik, Dres- und Grünkörpereigen- of a reformer for a SOFC den (6./7.10.2010), present. schaften sprühgetrockne- Fries, M. system ter Pressgranulate Thermische Granulations- 7th Symposium Fuel Cell Mo- Gestrich, T.; Jaenicke-Rößler, K.; 29. Hagener Symposium Pul- verfahren delling and Experimental Vali- Herrmann, M.; Neher, R.; vermetallurgie, Hagen 15. DKG-Fortbildungssemi- dation – MODVAL7, Morges, Brandt, K. (25./26.11.2010), p.163-179, nar – Technologische Grund- Schweiz (23./24.3.2010), pre- Thermische Analyse bei der presentation lagen der Granulierung und sentation Herstellung von Werkstof- Granulatverarbeitung, Dres- fen über die pulvertechno- Fries, M. den (22./23.4.2010), present. Gestrich, T.; Zins, M. logische Route Design of granules for die Werkstoff-, Prozess- und Praxistag – Thermische Ana- pressing by organic comp- Fritsch, M.; Jurk, R. Systementwicklung im lyse für Hochtemperaturan- action aids Ink jet printing of fine line Fraunhofer-Institut für Ke- wendungen, Ilmenau 6th World Congress on Parti- metallization with particle ramische Technologien (4.2.2010), presentation cle Technology – WCPT6 Ag inks und Systeme IKTS Dresden 2010, Nürnberg (26.- IMAPS/ACerS 6th Internatio- 29. Hagener Symposium Pul- Gestrich, T.; Jaenicke-Rößler, K.; 29.4.2010), CD, presentation nal Conference and Exhibi- vermetallurgie, Hagen Leitner, G. tion on Ceramic Interconnect (25./26.11.2010), p.319-320, Thermoanalytical and ther- Fries, M.; Eckhard, S.; and Ceramic Microsystems presentation mophysical analysis of Höhn, S.; Nebelung, M. Technologies – CICMT 2010, metal-ceramic-composites Korrelationen zwischen Chiba, Japan (18.- Gebhardt, S.; Schönecker, A.; Users Meeting for Laser Flash Prozessfunktionen, Granu- 21.4.2010), presentation Bruchmann, C. Technique, Dresden latstruktur und Produktei- Integrated actuators based (26./27.10.2010), present. genschaften – Quantifi- Füssel, A.; Klemm, H.; on PZT thick films for mi- zierung der inneren Struk- Böttge, D.; Marschallek, F.; crosystems applications Glöß, B. tur von Sprühgranulaten Adler, J.; Michaelis, A. 12th International Confe- Charakterisierung des Arbeitskreis Verarbeitungsei- Advancement of cellular rence and Exhibition New Fließverhaltens kerami- genschaften keramischer syn- ceramics made of silicon Actuators and Drive Systems scher Pressgranulate – thetischer Rohstoffe, Dresden carbide for burner applica- – ACTUATOR 2010, Bremen Messmethoden und deren (9.11.2010), presentation tions (14.-16.6.2010), presentation Aussagekraft

95 PRESENTATIONS AND POSTERS

Arbeitskreis Verarbeitungsei- Mitarbeiter PI Ceramic, simple process concept with Entwicklung und Test kera- genschaften keramischer syn- Hermsdorf (29.9.-1.10.2010), high electrical efficiency mischer nichtoxidischer thetischer Rohstoffe, Dresden presentation 9th European SOFC Forum, Werkstoffe für die Reak- (9.11.2010), presentation Lucerne, Switzerland (29.6.- torauskleidung von Verga- Heddrich, M. 2.7.2010), poster sungsanlagen Glöß, B.; Fries, M. Cost requirements for 1. DER-Tag, Freiberg Kombination von experi- SOFCs Heddrich, M.; Jahn, M.; (21.10.2010), presentation mentellen, statistischen und 3rd Large-SOFC Workshop - Michaelis, A.; Stelter, M. numerischen Methoden zur Large Fuel Cell Systems: Ba- SOFC-μKWK mit Biogas – Herrmann, M. Analyse des Fließverhaltens lance of Plant, Brügge Ein einfacher Prozess mit Gefügedarstellung und Be- von Pressgranulaten (17./18.5.2010), presentation hohem elektrischen Wir- wertung DKG-Symposium Simulation kungsgrad Keramische Hochleistungs- und Modellierung von Ferti- Heddrich, M.; Jahn, M.; 28. DECHEMA-Jahrestagung werkstoffe Schulungspro- gungsprozessen, Erlangen Stelter, M.; Paulus, J. der Biotechnologen und Pro- gramm des Fraunhofer- (30.11.-1.12.2010), present. Development of robust cessNet-Jahrestagung 2010, Demonstrationszentrums SOFC microCHP systems Aachen (21.-23.9.2010), pos- AdvanCer, Block III: Konstruk- Günther, C. 9th European SOFC Forum, ter tion, Werkstoffprüfung, Qua-

H2-permeable Zeolithmem- Lucerne, Switzerland (29.6.- litätssicherung, branen 2.7.2010), presentation Herrmann, M. Einsatzverhalten, Freiburg Dresdner Werkstoffsympo- Anisotropes Kornwachstum (11./12.11.2010), present. sium 2010 – Werkstoffe der Heddrich, M. in Si3N4/ Sialon-Werkstoffen Energietechnik, Dresden Hochtemperaturbrenn- Mechanik-Seminar, Karlsruher Herrmann, M.; Zins, M. (9./10.12.2010), poster stoffzellen – Stand der Institut für Technologie Hochleistungskeramik für Technik und Perspektiven (14.1.2010), presentation korrosive Anwendungen Haderk, K.; Richter, H.-J.; 3. Veranstaltung der Energie- Keramische Hochleistungs- Grzesiak, A.; Graf, C.; City Leipzig Innovationen, Herrmann, M.; Sydow, U.; werkstoffe Schulungspro- Refle, O. Leipzig (21.10.2010), present. Sempf, K.; Schneider, M.; gramm des Fraunhofer- Three dimensional printing Kleebe, H.-J.; Michaelis, A. Demonstrationszentrums for the manufacture of ce- Heddrich, M.; Jahn, M. Electrochemical corrosion AdvanCer, Block I: Werkstoffe ramic dental prostheses SOFC Systementwicklung of silicon carbide ceramics und Verfahren, Dresden Materials Science and Engi- zur Hausenergieversorgung in aqueous solutions (10./11.3.2010), presentation neering – MSE 2010, Darm- 3. Sächsischer Brennstoffzel- 12th International Ceramics stadt (24.-26.8.2010), present. lentag, Freiberg (9.12.2010), Congress – CIMTEC 2010, Herrmann, M.; Klemm, H. presentation Montecatini Terme, Italy Hochtemperaturkorrosion Häusler, Andreas (6.-11.6.2010), presentation keramischer Werkstoffe Rohformgebung – Tro- Heddrich, M.; Jahn, M.; DKG Fachausschusses 6 ckenpressen und Extrusion Kaden, C.; Michaelis, A. Herrmann, M.; Himpel, G.; »Werkstoffanwendung«, IHK-Schulung für technische Biogas SOFC μCHP – A Martin, H.-P.; Standke, G. (9.6.2010), pres.

96 Herrmann, M.; Höhn, S. Exhibition – 25th EU PVSEC, genschaften – Quantifi- European Aerosol Jet User Kinetics of rare earth in- Valencia, Spain zierung der inneren Struk- Group Meeting, Bremen corporation and their role (6.-10.9.2010), poster tur von Sprühgranulaten (13./14.9.2010), presentation in densification and micro- auf der Basis keramischer structure formation of Himpel, G. Mischsysteme Jaenicke-Rößler, K. alpha-SiAlON Entbinderungstechnik 9. Workshop über Sprays, Thermoanalytik zur Opti- 3rd International Symposium DKG-Fortbildungsseminar – Techniken der Fluidzerstäubung mierung der Entbinde- on SiAlONs and Non-Oxides, Entbinderung keramischer und Untersuchungen von rungsprozesse Cappadocia, Turkey (1.- Formteile, Dresden (28./ Sprühvorgängen – Spray 2010, DKG-Fortbildungsseminar – 4.6.2010), presentation 29.10.2010), presentation Heidelberg (3.-5.5.2010), CD, Entbinderung keramischer p.104-111, presentation Formteile, Dresden Herrmann, M. Höhn, M.; Endler, I.; (28./29.10.2010), present. Sintern von Keramik mit- van den Berg, H.; Westphal, H. Höhn, S.; Eckhard, S.; tels FAST – Möglichkeiten Deposition of chromium- Fries, M.; Matthey, B. Jahn, M. und Grenzen containing Al2O3-CVD-coa- Quantification of internal Brennstoffzellen-System- 2. Workshop Anwendung tings structures of spray-dried Entwicklung am Fraunho- des Spark Plasma Sinterver- 37th International Conference granules fer IKTS fahrens, Fraunhofer IFAM on Metallurgical Coatings and 6th World Congress on Particle Engler-Bunte-Institut, Bereich Dresden (15.4.2010), present. Thin Films – ICMCTF 2010, Technology – WCPT6 2010, Chemische Energieträger – San Diego, CA, USA (26.- Nürnberg (26.-29.4.2010), Brennstofftechnologie, Karls- Herrmann, M. 30.4.2010), presentation presentation and poster ruhe (17.5.2010), present. Thermische Entbinderungs- prozesse: Mechanismen, Höhn, S. Huppertz, H.; Hering, S.; Jahn, M.; Heddrich, M. Methoden, Verfahren Charakterisierung der Zvoriste, C. E.; Riedel, R.; SOFC-Systementwicklung DKG-Fortbildungsseminar – Formkörper: Defektentste- Kinski, I. am Fraunhofer IKTS Entbinderung keramischer hung, Nachweis, Vermei- High-pressure/High-tempe- Workshop »Stationäre Brenn- Formteile, Dresden dung rature synthesis of oxynitri- stoffzellensysteme«, Berlin (28./29.10.2010), present. DKG-Fortbildungsseminar – des (11.11.2010), presentation Entbinderung keramischer 12th International Ceramics Hildebrandt, S.; Völkel, L.; Formteile, Dresden Congress – CIMTEC 2010, Jahn, M.; Michaelis, A.; Mosch, S.; Partsch, U.; (28./29.10.2010), presenta- Montecatini Terme, Italy Pohl, M.; Schreck, C. Michaelis, A.; Kinski, I. tion (6.-11.6.2010), presentation Schaumkeramik als Kataly- Non contact printed front satorsystem metallization: Conductor Höhn, S.; Eckhard, S.; Ihle, M.; Mosch, S.; 28. DECHEMA-Jahrestagung geometry affected by prin- Fries, M.; Nebelung, M. Partsch, U. der Biotechnologen und Pro- ting technologies Korrelationen zwischen Aerosol printed conductors cessNet-Jahrestagung, Aa- 25th European Photovoltaic Prozessfunktionen, Granu- for miniaturized LTCC pa- chen (21.-23.9.2010), poster Solar Energy Conference and latstruktur und Produktei- ckaging

97 PRESENTATIONS AND POSTERS

Jurk, R.; Fritsch, M.; Völkel, L.; separation Kinski, I.; Oberländer, A.; Matrix Composites – HT-CMC Partsch, U.; Michaelis, A. CNT-Jahreskongress, Marl Giszas, L.; Huppertz, H.; 7, Bayreuth (20.-22.9.2010), Inkjet printing the front (19.-21.1.10), poster Hering, S.; Zvoriste, C. E.; presentation grid metallization of sili- Riedel, R. con solar cells Kazemekas, D.; Listewnik, J.-H.; Cubic gallium oxonitride Klemm, H. 25th European Photovoltaic Hasselbeck, G.; Weyd, M. synthesis via a single Hochleistungskeramik für Solar Energy Conference and Kostensenkung in der Bioal- source precursor Hochtemperaturanwen- Exhibition – 25th EU PVSEC, koholproduktion aus stär- Polymer Derived Ceramics dungen Valencia, Spain kehaltigen Rohstoffen and Related Materials – PDC Keramische Hochleistungs- (6.-10.9.2010), poster mithilfe einer verbesserten 2010, Boulder, Colorado werkstoffe Schulungspro- Verflüssigung/Verzuckerung (31.7.-7.8.2010), present. gramm des Fraunhofer- Kaltenborn, N.; Müller, S..; und Kurzzeitfermentation Demonstrationszentrums Richter, H.; Voigt, I. Bioprozessorientiertes Anla- Kircheisen, R.; Kriegel, R.; AdvanCer, Block I: Werkstoffe Structure of nanoporous gendesign, Nürnberg (10.- Töpfer, J. und Verfahren, Dresden carbon membranes for gas 12.5.2010), presentation Sauerstoffstöchiometrie (10./11.3.2010), presentation separation und ihre Auswirkung auf 5th International Zeolite Kemnitz, E.; Scholz, G.; die thermische und chemi- Kolb, S.; Birman, E.; Membrane Meeting – Stosiek, C.; Reichel, U.; sche Dehnung von Konstandin, A.; Schönecker, A.

IZMM2010, Loutraki (23.- Ludwig, H.; Voigtsberger, B. Ba0,5Sr0,5Co0,8Fe0,2O3-δ Ferroelastic domain swit- 26.5.2010), presentation Nanoskopische Metallfluo- DKG-Jahrestagung 2010, ching in soft and hard ride als neuartige Sinter- Hermsdorf/Thüringen doped lead zirconate tita- Kaltenborn, N.; Müller, S.; hilfsmittel (22.-24.3.2010), poster nate ceramics Richter, H.; Voigt, I. DKG-Jahrestagung 2010, DKG-Jahrestagung 2010, Structure of nanoporous Hermsdorf/Thüringen Klemm, H.; Nake, K.; Bales, A. Hermsdorf/Thüringen carbon membranes for gas (22.-24.3.2010), presentation Bestimmung der Warm- (22.-24.3.2010), presentation separation härte von metallischen und 7th International Conference Kiesel, L. keramischen Hochtempe- Koplin, C.; Stockmann, J. High Temperature Ceramic Werkstoffgrundlagen und raturwerkstoffen Belastungsgerechte Ausle- Matrix Composites – HT-CMC Verfahrenstechnik der pie- Härterei-Kolloquium, Rhein- gung von Extrusionsmund- 7, Bayreuth (20.-22.9.2010), zokeramischen Werk- Main-Hallen, Wiesbaden (13.- stücken p.688-693, poster stoffe – Brenntechnik 15.10.2010), presentation DKG-Symposium Simulation IHK-Schulung für technische und Modellierung von Ferti- Kaltenborn, N.; Müller, S.; Mitarbeiter PI Ceramic, Klemm, H.; Fritsch, M. gungsprozessen, Erlangen Voigt, I.; Richter, H.; Hermsdorf (29.9.-1.10.2010), Environmental barrier coa- (30.11.-1.12.2010), present. Anisiris, C.; Feldhoff, A.; presentation tings for ceramic matrix Roitsch, S. composites Krell, A. Structure of nanoporous 7th International Conference Hochleistungskeramik für carbon membranes for gas High Temperature Ceramic Verschleißanwendungen

98 Keramische Hochleistungs- Mitarbeiter PI Ceramic, DKG-Jahrestagung 2010, ceramic granules - Challen- werkstoffe Schulungspro- Hermsdorf (29.9.-1.10.2010), Hermsdorf/Thüringen ges in characterization gramm des Fraunhofer- presentation (22.-24.3.2010), poster 6th World Congress on Parti- Demonstrationszentrums cle Technology – WCPT6 AdvanCer, Block I: Werkstoffe Kriegel, R. Kühnert, J.-T.; Tusel, E.; 2010, Nürnberg (26.- und Verfahren, Dresden Verfahren zur energieeffi- Brüschke, H.; Richter, H.; 29.4.2010), CD, presentation (10./11.3.2010), presentation zienten Bereitstellung von Weyd, M.; Voigt, I. Sauerstoff Entwässerung von Ethanol Lang, B.; Eckhard, S.; Kriegel, R. 4. Internationaler Biomass-to- durch Dampfpermeation Fries, M.; Nebelung, M. Aufbau und Testbetrieb Liquid-Kongress – BtL 2010, mit NaA-Zeolithmembranen Keramische Pressgranulate: eines Sauerstoff-Erzeugers Berlin (1./2.12.2010), poster im industriellen Maßstab Mechanische Eigenschaf- auf der Basis gemischt lei- Vision Keramik 2010 – Inte- ten und deren Einfluss auf tender keramischer Mem- Kriegel, R.; Voigt, I. grierte Keramikforschung von das Fließverhalten branen Hochtemperatur-Sauerstoff- der Idee bis zum Produkt, ProcessNet Jahrestreffen der DKG-Jahrestagung 2010, Separation mit leitfähigen Hermsdorf (22.1.2010), poster FA »Agglomerations- und Hermsdorf/Thüringen keramischen Membranen Schüttguttechnik«, »Zerklei- (22.-24.3.2010), presentation Sitzung des Dechema-Ar- Kusnezoff, M.; Megel, S.; nern und Klassieren« und beitsausschusses Membran- Paepcke, A.; Sauchuk, V.; »Mischvorgänge«, Fulda Kriegel, R. technik, Frankfurt/Main Venskutonis, A.; Kraussler, W.; (22./23.2.2010), presentation Efficient oxygen separa- (21.1.2010), presentation Brandner, M. tion with the help of cera- CFY-Stack development for Langklotz, U.; Schneider, M.; mic membranes Kucera, A.; Ahlhelm, M. long-term operation with Michaelis, A. Hannover Messe, Renewable Comparison of injection high efficiency Micro-EIS of anodic thin Energy Forum, Hannover molding simulation, mold 9th European SOFC Forum, oxide films on TiAlV-6-4 (20.4.2010), presentation filling analysis and sintered Lucerne, Switzerland (29.6.- 8th International Symposium component of an inmold, 2.7.2010), Chapter 17, p.9- on Electrochemical Impe- Kriegel, R. labelled cylinder 19, presentation dance Spectroscopy, Carvo- Energieeffiziente Sauer- Junior-Euromat 2010, Lau- eiro (6.-11.6.2010), stoff-Separation mit misch- sanne, Schweiz (26.- Kusnezoff, M.; Michaelis, A. presentation leitenden Membranen 30.7.2010), presentation Trends in SOFC develop- Thüringer Werkstofftag 2010, ment Langklotz, U.; Schneider, M.; Ilmenau (24.3.2010), p.15- Kühnert, J.-T.; Richter, H.; SOFC Konferenz, Chernogo- Michaelis, A. 20, presentation Weyd, M.; Voigt, I.; Tusel, G.; lovka, Russland Micro-EIS on anodized Brüschke, H.; Tusel, E. (17./18.6.2010), p.7, present. TiAlV-6-4 Kriegel, R. Hydrophile Zeolithmembra- 3rd International Workshop Keramische Werkstoffe – nen für die Entwässerung Lang, B.; Schäfer, M.; on Impedance Spectroscopy, Strukturen – Überblick organischer Lösemittel im Höhne, D.; Nebelung, M. Chemnitz (13.-15.10.2010), IHK-Schulung für technische industriellen Maßstab Flow properties of ductile presentation

99 PRESENTATIONS AND POSTERS

Lankau, V.; Martin, H.-P.; Lincke, M.; Friedrich, E.; von Katalysatorpulvern und Mannschatz, A.; Müller, A.; Michaelis, A. Friedrich, H. beschichteten Partikelfiltern Moritz, T. Modification of the ther- Möglichkeiten der Leis- für die Rußverbrennung am Influence of powder mor- moelectric properties of tungssteigerung von Bio- Beispiel von La-Perowskiten phology on properties of sintered silicon carbide gasanlagen 43. Jahrestreffen Deutscher ceramic injection moulding 2. Tagung Thermoelectrics Kolloquium – Neue Verfahren Katalytiker, Weimar (10.- feedstocks goes Automotive, Berlin und Materialien für Energie- 12.3.2010), p.508-509, poster International Conference on (9./10.12.2010), poster und Umwelttechnik, Zwickau Ceramic Processing Science, (4.11.2010), presentation Männel, D.; Jahn, M.; Zürich (29.8.-1.9.2010), pre- Lenk, R. Kriegel, R.; Kusnezoff, M. sentation Formgebung Ludwig, H. High temperature ceramics Keramische Hochleistungs- Aufbereitung oxidkerami- for efficient energy conver- Marschallek, F.; Stelter, M. werkstoffe Schulungspro- scher Massen sion and chemical separa- Cost requirements for SOFCs gramm des Fraunhofer- IHK-Schulung für technische tion, technologies for 7th International Solid Oxide Demonstrationszentrums Mitarbeiter PI Ceramic, Herms- sustainability and climate Fuel Cell Summer School, AdvanCer, Block I: Werkstoffe dorf (29.9.-1.10.2010), pres. protection – chemical pro- Thessaloniki, Griechenland und Verfahren, Dresden cesses and use of CO2 (29.8.-2.9.2010), present. (10./11.3.2010), presentation Luthardt, F.; Adler, J. Informations- und Partnering- Continuous slurry foaming: Veranstaltung zum BMBF-För- Marschallek, F.; Pönicke, A.; Lenk, R. A new method for manu- derprogramm »Technologien Rost, A. Waben, Schäume: Ferti- facturing ceramic foams für Nachhaltigkeit und Klima- Sealing materials and joi- gungsverfahren für Filter Cellular Materials – CELLMAT schutz – Chemische Prozesse ning techniques und Katalysatorsubstrate 2010, Dresden (27.- und stoffliche Nutzung von 7th International Solid Oxide

Industrietag: Keramik in der 29.10.2010), presentation CO2«, Frankfurt/Main Fuel Cell Summer School, motorischen Abgas-Nachbe- (21.4.2010), poster Thessaloniki, Griechenland handlung, Dresden Mammitzsch, L. (29.8.-2.9.2010), present. (23.9.2010), presentation Katalyse im Abgasstrang: Malzbender, J.; Huang, B.X.; Stand und Trends bei Kata- Baumann, S.; Kriegel, R.; Marschallek, F.; Megel, S.; Lenzner, K.; Potthoff, A.; lysatorträgern, beschichte- Steinbrech, R.W. Stelter, M. Stein, J. ten Filtern und DeNOx Thermomechanical beha- SOFC stack materials and Interaction of energy input Industrietag: Keramik in der vior of LSCF and BSCF oxy- design and bead abrasion during motorischen Abgas-Nachbe- gen transport membranes. 7th International Solid Oxide comminution of alumina in handlung, Dresden I: Mechanical anomalies at Fuel Cell Summer School, attrition mills (23.9.2010), presentation intermediate temperature Thessaloniki, Griechenland 6th World Congress on Parti- 11th International Confe- (29.8.-2.9.2010), present. cle Technology – WCPT6 Mammitzsch, L.; Petasch, U.; rence on Inorganic Membra- 2010, Nürnberg (26.- Adler, J. nes, Washington Marschallek, F.; Adler, J.; 29.4.2010), CD, poster Bewertung der Aktivität (19.-22.7.2010), poster Böttge, D.; Füssel, A.;

100 Jahn, M.; Michaelis, A. tion and simulation studies brücken (15.-17.3.2010), pre- energy on the effective- Verbrennung in porösen of carbon nanotube elec- sentation ness of chemical additives Medien – Beiträge zur Pro- trodes for electrochemical in suspension preparation zessabsicherung und zur energy storage Meyer, A.; Potthoff, A.; 6th World Congress on Parti- Langzeitstabilität kerami- 1st International Conference Lenzner, K. cle Technology – WCPT6 scher Brennereinsätze on Materials for Energy, DE- Einfluss des Energieeintra- 2010, Nürnberg (26.- 28. DECHEMA-Jahrestagung CHEMA, Karlsruhe (4.- ges auf die Wirkung von 29.4.2010), CD, poster der Biotechnologen und Pro- 8.7.2010), p.622-624, poster Dispergatoren bei der cessNet-Jahrestagung 2010, Nassmahlung von Böhmit Michaelis, A. Aachen (21.-23.9.2010), pos- Meißner, T. ProcessNet Jahrestreffen der Keramische Hochtempera- ter Nanoparticle and suspen- FA »Agglomerations- und turbrennstoffzellen (SOFC) sion characterization as Schüttguttechnik«, »Zerklei- und Mikrobrennstoffzellen Martin, H.-P.; Kinski, I.; basis for toxicological in- nern und Klassieren« und für die Praxis Conze, S.; Feng, B.; vestigations »Mischvorgänge«, Fulda DKG-Jahrestagung 2010, Veremchuk, I.; Oeschler, N.; 5th Late Summer Workshop (22./23.2.2010), presentation Hermsdorf/Thüringen (22.- Grin, J.; Michaelis, A. »Nanoparticles and Nanoma- 24.3.2010), presentation Keramische Thermoelek- terials in Aquatic Systems«, Meyer, A.; Potthoff, A.; trika als Werkstoff für ther- Maurach am Bodensee Lenzner, K. Michaelis, A. moelektrische Generatoren (28.9.-1.10.2010), present. Influence of energy input 300 Jahre Hochleistungske- 1. International ECEMP Collo- on suspension properties ramik aus Dresden. Vom quium, Dresden Meißner, T. 12th International Ceramics Böttger Porzellan bis zu (2./3.12.2010), presentation Nanopartikeldispergierung Congress – CIMTEC 2010, High Tech Innovationen und -charakterisierung im Montecatini Terme, Italy (6.- für die Energie- und Um- Megel, S.; Girdauskaite, E.; Rahmen toxikologischer 11.6.2010), presentation welttechnologie Sauchuk, V.; Kusnezoff, M.; Untersuchungen Neujahrsempfang des VDI- Michaelis, A. nanoToxCom-Kolloquium, Meyer, A.; Potthoff, A.; Landesverbandes Sachsen, Area specific resistance of Universität Bremen Lenzner, K.; Nebelung, M. Dresden (4.2.2010), present. oxide scales grown on fer- (18.1.2010), presentation Stabilisierung des Böhmits ritic alloys for solid oxide zur Vermahlung in der Michaelis, A. fuel cell interconnects Meißner, T. Rührwerkskugelmühle Advanced processing tech- 9th European SOFC Forum, Physiko-chemische Materi- Symposium »Nano geht in die nologies for innovative ce- Lucerne, Switzerland (29.6.- alcharakterisierung zur Produktion – NanOnline, Na- ramic systems 2.7.2010), Chapter 12, p.71- Identifizierung toxizitätsbe- noDirekt, COMPOMEL«, Pfinz- 34th International Conference 87, poster stimmender Parameter von tal (20./21.4.2010), present. and Exposition on Advanced technischen Nanopartikeln Ceramics and Composites – Meißner, F.; Lorrmann, H.; DFG-Nachwuchsakademie Meyer, A.; Potthoff, A.; ICACC 2010, Daytona Beach, Pastewka, L.; Endler, I. »Materialwissenschaft und Lenzner, K. Florida (24.-29.1.2010), Preparation, characteriza- Werkstofftechnik«, Heigen- Influence of application of presentation

101 PRESENTATIONS AND POSTERS

Michaelis, A. lität Michaelis, A. Forum Umwelttechnik, Erfurt Batterien, Brennstoffzellen Sachsen – Land der Inge- Keramische Werkstoffe und (1.12.2010), presentation und Superkondensatoren nieure – Ingenieure gestalten Technologien für die Ener- für die Elektromobilität die Zukunft, Ingenieurkam- gie- und Umwelttechnik Moritz, T. 3. Sächsischer Ingenieurtag mertag Sachsen, Dresden IMF-Seminarvortrag, KIT Eg- Fehlerquellen bei der Her- des VDI, Leipzig (17.4.2010), (10.11.2010), presentation genstein-Leopoldshafen stellung keramischer Werk- presentation (23.4.2010), presentation stoffe Michaelis, A. Keramische Hochleistungs- Michaelis, A. Keramik in der Energie- Michaelis, A. werkstoffe Schulungspro- Ceramic materials and technik Thick films and multilayer gramm des Fraunhofer- technologies for fuel cells, Dresdner Werkstoffsympo- ceramic technology for in- Demonstrationszentrums batteries and supercapaci- sium 2010 – Werkstoffe der novative fuel cell systems AdvanCer, Block III: Konstruk- tors Energietechnik, Dresden 12th International Ceramics tion, Werkstoffprüfung, Workshop Commercializing (9./10.12.2010), presentation Congress – CIMTEC 2010, Qualitätssicherung, Einsatz- Future Technologies for Montecatini Terme, Italy (6.- verhalten, Freiburg (11./ Energy and Energy Efficiency, Michaelis, A. 11.6.2010), presentation 12.11.2010), presentation Dresden (8.7.2010), present. Keramische Materialien und Technologien für Michaelis, A. Moritz, T.; Richter, H.-J.; Michaelis, A. Brennstoffzellen, Li-Ionen- Vom Material bis zum Sys- Lenk, R. Chancen der Lithium-Ionen- Batterien und Superkon- tem. Entwicklung von Pro- Formgebung – Werkstofflö- Technologie für mobile und densatoren dukten für die Elektro- sungen und Designfreiheit stationäre Anwendungen Technische Universität Dres- mobilität in geschlossenen für keramische und pulver- Kooperationsforum Lithium- den, Fakultät Elektrotechnik Wertschöpfungsketten metallurgische Produkte Ionen-Technologie, Dresden und Informationstechnik: Saxxess event »Elektromobili- 29. Hagener Symposium Pul- (28.9.2010), presentation Industriepartner-Symposium, tät«, Silicon Saxony, Dresden vermetallurgie, Hagen Dresden (30.9.2010), presen- (18.10.2010), presentation (25./26.11.2010), p.129-149, Michaelis, A. tation presentation Die Entwicklung der Kera- Michaelis, A. mik – von den Anfängen Michaelis, A. Vom Material zum System: Moritz, T.; Mannschatz, A.; bis zur Gegenwart Keramische Werkstoffe Steigerung der Ressourcen- Kucera, A.; Baumann, A.; Dresdner Gesprächskreis, und Anwendung in Brenn- effizienz durch Entwick- Lenk, R. Dresden (27.8.2010), pres. stoffzellen lung nachhaltiger Fraunhofer IKTS activities Dresdner Materialinnovatio- Energiesysteme in ge- in two-component powder Michaelis, A. nen für die Praxis & Verlei- schlossenen Werkstoffket- injection moulding Innovative Mobilitätskon- hung des internationalen ten am Beispiel von Powder Metallurgy World zepte – Brennstoffzellen, »Dresden Barkhausen Awards Brennstoffzellen, Super- Congress & Exhibition – Superkondensatoren und 2009«, Dresden (15.1.2010), kondensatoren und Li- World PM2010, Florenz Batterien für Elektromobi- presentation thium-Ionen-Batterien (10.-14.10.2010), present.

102 Moritz, T. sium 2010 – Werkstoffe der Hermsdorf/Thüringen Pawlowski, B.; Barth, S.; Keramische Formgebung Energietechnik, Dresden (22.-24.3.2010), presentation Bartsch de Torres, H.; unter Verwendung organi- (9./10.12.2010), poster Fischer, M.; Müller, J.; scher Adittive Oberländer, A.; Kunz, W.; Hoffmann, M. DKG-Fortbildungsseminar – Näke, R.; Heddrich, M.; Michael, G.; Schönfeld, K.; Ein neuartiges Silizium-Ke- Entbinderung keramischer Jahn, M. Kinski, I.; Klemm, H.; ramik-Verbundsubstrat für Formteile, Dresden (28./ Brennstoffzellen-System- Müller, A.; Decker, D. die Mikrosystemtechnik 29.10.2010), presentation entwicklung für μKWK-An- SiC/SiCN CMC for high tem- DKG-Jahrestagung 2010, wendungen perature application pro- Hermsdorf/Thüringen Müller, J.; Fischer, M.; Kolloquium – Neue Verfahren duced via a PIP process (22.-24.3.2010), poster Bartsch de Torres, H.; und Materialien für Energie- 7th International Conference Pawlowski, B.; Barth, S. und Umwelttechnik, Zwickau High Temperature Ceramic Petasch, U. Advantages of a new (4.11.2010), presentation Matrix Composites – HT-CMC Heißgasprüfstand mit Ru- wafer level integration 7, Bayreuth (20.-22.9.2010), ßinjektor: Leistungspara- concept based on direct Neher, R.; Herrmann, A.; presentation meter und Testmöglich- bonded silicon on LTCC Jaenicke-Rößler, K.; keiten Pan Pacific Microelectronics Brandt, K.; Pan, Z.; F Oehme, F. Industrietag: Keramik in der Symposium and Tabletop Ex- abrichnaya, O.; Seifert, H.J. Rationalisierung der Grün- motorischen Abgas-Nachbe- hibition; Kauai, Hawaii (26.- Liquid phase formation in bearbeitung technischer handlung, Dresden

28.1.2010), presentation the system SiC-Al2O3-Y2O3 Keramik (23.9.2010), presentation GEFTA Jahrestagung 2010, Keramische Hochleistungs- Müller, S.; Kaltenborn, N.; Dresden (26.-28.5.2010), pre- werkstoffe Schulungspro- Petasch, U. Voigt, I.; Richter, H. sentation gramm des Fraunhofer- Testung und Vergleich von Nanoporöse Kohlenstoff- Demonstrationszentrums keramischen Werkstoffen/ schichten auf porösen, ke- Neher, R. AdvanCer, Block II: Bearbei- Bauteilen für die Abgas- ramischen Trägern zur Micro-segregations in li- tung, Berlin (5./6.5.2010), nachbehandlung Gastrennung quid phase sintered silicon presentation Industrietag: Keramik in der Jahreskongress 2010 der In- carbide ceramics motorischen Abgas-Nachbe- novationsallianz Carbon Na- Junior-Euromat 2010, Lau- Partsch, U.; Mosch, S.; handlung, Dresden notubes (Inno.CNT), Marl sanne, Schweiz (26.- Ihle, M. (23.9.2010), presentation (20.1.2010), poster 30.7.2010), presentation Aerosol printed conductors for miniaturized LTCC pa- Pohl, M.; Bouché, M.; Müller, S.; Richter, J.; Voigt, I. Oberbach, T.; Begand, S.; ckaging Jahn, M.; Michaelis, A. CNT-Schichten auf porö- Ludwig, H. IEEE-CPMT: Electronic System Einsatz offenzelliger sen, keramischen Trägern Hochfestes sub-μm kristal- Integration Technology Con- Schaumkeramik bei der für die Anwendung in der lines Al2O3 für die Gelenk- ference – ESTC 2010, Berlin partiellen Oxidation von Gastrennung endoprothetik (13.-16.9.2010), CD, Methan Dresdner Werkstoffsympo- DKG-Jahrestagung 2010, p0136.pdf, presentation 43. Jahrestreffen Deutscher

103 PRESENTATIONS AND POSTERS

Katalytiker, Weimar (10.- nopartikeln DKG-Jahrestagung 2010, Lead-oxide-free copper 12.3.2010), p.344-345, Fortbildungsseminar Nano- Hermsdorf/Thüringen thick-film paste for alu- poster analytik, Dresden (29./ (22.-24.3.2010), poster mina substrates 30.11.2010), presentation 33rd International Spring Pohl, M.; Jahn, M.; Puhlfürß, P.; Herrmann, K.; Seminar on Electronics Tech- Michaelis, A.; Schreck, C. Potthoff, A.; Buschmann, M.; Voigt, I.; Sittig, D.; Prehn, V.; nology, Warschau, Polen (12.- Experimentelle Untersu- Meyer, A. Stobbe, A.; Junghans, A. 16.5.2010), presentation chung der partiellen Oxi- Nanofluids – ready to use? Nanoporöse keramische dation von Methan mit International Conference on Membranen für die Reini- Reichel, U. Katalysatorsystemen auf Ceramic Processing Science, gung von Problemabwäs- Ceramic materials with der Basis offenzelliger Zürich (29.8.-1.9.2010), pre- sern submicron structure based Schaumkeramik sentation DKG-Jahrestagung 2010, on nanopowders 28. DECHEMA-Jahrestagung Hermsdorf/Thüringen Deutsch-Russisches NanoFo- der Biotechnologen und Pro- Potthoff, A.; Bräunig, R. E. (22.-24.3.2010), poster rum, Tomsk (15.-17.9.2010), cessNet-Jahrestagung 2010, NanOnLine – Online-Na- presentation Aachen (21.-23.9.2010), pos- nopartikelcharakterisie- Rabbow, T.; Jablonowski, R.; ter rung für die Produktion Roch, M.; Petri, M.; Reichel, U. Arbeitskreis Prozessbeglei- Schneider, M. Ceramic nanomaterials – Pönicke, A.; Schilm, J.; tende Prüfungen, Berlin Elektrolytische Schichten Research & Development Kusnezoff, M.; Michaelis, A. (2./3.6.2010), presentation für Anwendungen in der Deutsch-Russisches NanoFo- Reactive air brazing as joi- Photovoltaik rum, Tomsk (15.-17.9.2010), ning technology for SOFC Potthoff, A.; Meißner, T. Symposium: Galvanik - eine poster 9. Internationales Kolloquium Evaluation of health risks etablierte Technik innovativ Hart- und Hochtemperaturlö- of technical nanoparti- angewendet, Dresden Reichel, U.; Khasanov, O.; ten und Diffusionsschweißen cles – the contribution of (25./26.11.2010), poster Dvilis, E.; Khasanov, A. – LÖT 2010, Aachen (15.- characterization Nanostructured dense ce- 17.6.2010), presentation 6th World Congress on Parti- Räthel, J.; Herrmann, M. ramics compacted from dry cle Technology – WCPT6 Korrosionsmechanismen nanopowders using Potthoff, A. 2010, Nürnberg (26.- von Chrom/Nickelschmel- powerful ultrasonic action Ceramic nanomaterials and 29.4.2010), CD, poster zen an Verdampferwerk- 17th International Sympo- nanotechnologies stoffen sium on Metastable, Amor- The first Symposium Global Potthoff, A.; Lenzer, K.; DKG-Jahrestagung 2010, phous and Nanostructured Challenges for Sustainable Meyer, A.; Stein, J. Hermsdorf/Thüringen Materials – ISMANAM 2010, Development, Rennes, France Stabilisierung von Böhmit (22.-24.3.2010), poster Zürich, (4.-9.7.2010), poster (25./26.2.2010), presentation zur Herstellung von Nano- partikeln durch Vermah- Reinhardt, K.; Kretzschmar, C.; Reichel, U.; Ludwig, H.; Potthoff, A. lung in einer Rührwerks- Rebenklau, L.; Schulz-Hader, J.; Johannes, M. Charakterisierung von Na- kugelmühle Meyer, A.; Marx, C. Oxide ceramic materials –

104 high purity, high dense, Low temperatures ethanol Richter, H.-J.; Lenk, R.; Rödel, C.; Michaelis, A.; high strength, biocompati- up grading with hydropho- Stockmann, J. Fries, M.; Potthoff, A. ble, transparent bic zeolite membranes Entwicklung und Fertigung Einfluss von Mahlung und 4th International Seminar – International Scientific Confe- keramischer Bauteile als Dotierung auf die Wechsel- Nanotechnolgy, Energy, rence on Pervaporation and Funktionsmuster und Pro- wirkungen von organi-

Plasma, Lasers – NEPL 2010, Vapor Permeation, Toruń totypen schen Additiven in Al2O3- Tomsk, (25.-31.10.2010), (18.-21.4.2010), presentation 15. Anwenderforum RPD, Suspensionen presentation Stuttgart (13.10.2010), pres. DKG-Jahrestagung 2010, Richter, H.; Weyd, M.; Hermsdorf/Thüringen Reichel, U.; Ludwig, H.; Kriegel, R.; Voigt, I. Richter, H.-J.; Kucera, A. (22.-24.3.2010), poster Kemnitz, E.; Scholz, G.; Nanoporöse keramische UV-curable binders in tape Stosiek, C. Schichten und ihre Anwen- casting Rödig, T.; Schönecker, A. Nano-metallfluorid do- dung zur Stofftrennung Workshop on Tape Develop- Enhancement of power tierte Aluminiumoxid-Ke- elmug4future, Suhl ment, Karlsruhe (17.3.2010), output and efficiency of ramik (22.-23.6.2010), presentation presentation piezoelectric generator by DKG-Jahrestagung, Herms- proper material selection dorf (23.3.2010), present. Richter, H.; Weyd, M.; Richter, J.; Kriegel, R.; 5th Annual Energy Harvesting Kühnert, J.-T.; Kriegel, R.; Kahn, R.; Glüsing, J.; Workshop, Roanoke, Virginia, Richter, H. (invited); Voigt, I. Voigt, I. Ruhe, N.; Beckmann, M.; USA (3./4.3.2010), presenta- Ceramic membrane pro- LTA-membranes in indus- Böhning, D.; Müller, M.; tion duction in industrial scale trial bioethanol dewate- Ma, M. NASA-OTM/MemBrain-Sum- ring Entwicklung eines Katalysa- Rödig, T. mer School, Valencia (8.- Sino-German Symposium on tor- und Sauerstoffträger- Optimising Piezoelectric 10.9.2010), presentation Novel Inorganic Membranes systems zur Aufbereitung Generators – From Material with Nano Design, Gu- teerhaltiger Brenngase Selection to System Design Richter, H.; Voigt, I.; angzhou (21.-26.3.2010), 4. Internationaler Biomass-to- Energy Harvesting for Wire- Puhl-fürß, P.; Wöhner, S.; presentation Liquid-Kongress – BtL 2010, less Automation, München Weyd, M.; Voss, H.; Berlin (1./2.12.2010), poster (23.-25.3.2010), workshop Schuch, G. Richter, H.; Weyd, M.; Zeolith-MFI-Membranen Kühnert, J.-T.; Voigt, I.; Richter, V. Rödig, T.; Schönecker, A.; für die Isomerentrennung Mothes, R.; Lubenau, U.; Effect of grain size on me- Martin, H.-P. in der chemischen Industrie Tusel, E.; Brüschke, H. chanical properties of ma- Innovative Keramiken für DKG-Jahrestagung 2010, Ceramic membranes in bio- terials effiziente Generatoren Hermsdorf/Thüringen gas upgrading and bioet- Innovation through Nanotech- Fraunhofer-Workshop »Ener- (22.-24.3.2010), poster hanol drying nology and Nanomaterials – gieautarke Sensornetz- International Biomass Confe- Current Aspects of Safety As- werke«, München Richter, H.; Voigt, I.; Weyd, M.; rence, Leipzig (4./5.5.2010), sessment and Regulation, Dres- (16.11.2010), presentation Fischer, G.; Puhlfürß, P. poster den (22.-24.4.2010), present.

105 PRESENTATIONS AND POSTERS

Rödig, T.; Schönecker, A. Rohländer, D. »Innovative Technologien für Michaelis, A. Piezoelectric generator for Roh- und Werkstoffcharak- Ressourceneffizienz – roh- In-situ investigation on the self-powered micro actua- terisierung stoffintensive Produktionspro- influence of the crystallo- tors IHK-Schulung für technische zesse«, Berlin (4.11.2010), graphic grain orientation 12th International Conference Mitarbeiter PI Ceramic, presentation on the anodic dissolution and Exhibition New Actuators Hermsdorf (29.9.-1.10.2010), of copper under near-ECM and Drive Systems – ACTUA- presentation Sauchuk, V.; Megel, S.; conditions TOR, Bremen (14.-16.6.2010), Girdauskaite, E.; 6th International Symposium p.133-136, presentation Rost, A.; Schilm, J.; Trofimenko, N.; Kusnezoff, M.; on Electrochemical Machining Kusnezoff, M.; Michaelis, A. Michaelis, A. Technology – INSECT, Brüssel Rödig, T.; Schönecker, A.; Degradation of sealing Influence of protective lay- (4./5.11.2010), presentation Martin, H.-P. glasses under electrical load ers on SOFC operation Smart ceramics for energy 9th European SOFC Forum, SOFC Konferenz, Chernogo- Schneider, M.; Kremmer, K.; harvesting Lucerne, Switzerland (29.6.- lovka, Russland Fürbeth, W.; Weidmann, S. Energy Harvesting and Sto- 2.7.2010), presentation (17./18.6.2010), presentation What do we learn about rage Europe, München anodized aluminium by (26./27.5.2010), presentation Rösler, J.; Häusler, A. Seffner, L.; Moritz, T.; using the electrochemical Low-temperature sintering Schönecker, A.; Roscher, H.-J.; impedance spectroscopy? Rodrigues, G.; Preumont, A.; of porcelain for domestic Anselment, C.; Just, D. 3rd International Workshop Gebhardt, S. and technical applications Packaging of active devices on Impedance Spectroscopy, Segmented deformable bi- on ultra-light, highly-po- using plastic injection mol- Chemnitz (13.-15.10.2010), morph mirrors for adaptive rous shelves ding presentation optics Statusseminar des Förder- 12th International Conference 12th International Conference schwerpunktes »Innovative and Exhibition New Actuators Schöne, J.; Ganzer, G.; and Exhibition New Actuators Technologien für Ressourcen- and Drive Systems – ACTUA- Pfeifer, T.; Beckert, W.; and Drive Systems – ACTUA- effizienz – rohstoffintensive TOR, Bremen (14.-16.6.2010), Jahn, M.; Michaelis, A. TOR, Bremen (14.-16.6.2010), Produktionsprozesse«, Berlin p.620-623, poster Coupled model description p.624-627, poster (4.11.2010), poster of reactors for high tempe- Schilm, J.; Rost, A.; Pönicke, A. rature fuel cell systems Rohländer, D. Rösler, J.; Häusler, A. Fügetechnologien und 1st International Conference Untersuchungen an techni- Niedrig-Temperatur-Sinte- Glaslote für SOFC on Multiphysics Simulation – schen Keramiken vom Roh- rung von Geschirr und tech- DGG-Fachausschuss I Physik Advanced Methods for Indus- stoff bis zum Endprodukt nischem Porzellan auf und Chemie des Glases, trial Engineering, Bonn (22./ mittels FESEM ultraleichten, hochporösen Würzburg (18.10.2010), 23.6.2010), presentation GEMINI User Meeting, Bo- Brennplatten in mit Holzgas presentation chum (30.8.-1.9.2010), pre- beheizten Schnellbrandöfen Schönecker, A. sentation r2 – internes Statusseminar Schneider, M.; Schroth, S.; Funktionskeramik: Spezifi- des Förderschwerpunktes Richter, S.; Schubert, N.; sche Eigenschaften und

106 Anwendungen Schulz, M.; Kämpfer, A.; Stahn, M. Steinbrech, R.W.; Keramische Hochleistungs- Kriegel, R. Berechnung des Strö- Malzbender, J.; Rutkowski, B.; werkstoffe Schulungspro- Experimentelle Bestim- mungsverhaltens in porö- Huang, B.X.; Baumann, S.; gramm des Fraunhofer- mung und Modellierung sen Membranen – Einsatz Kriegel, R.; Beck, T. Demonstrationszentrums der Sauerstoffpermeation von CFD-Software zur nu- Thermomechanical beha-

AdvanCer, Block I: Werkstoffe durch Ba0,5Sr0,5Co0,8Fe0,2O3-δ merischen Simulation des vior of LSCF and BSCF oxy- und Verfahren, Dresden DKG-Jahrestagung 2010, Einflusses von Trägergeo- gen transport membranes. (10./11.3.2010), presentation Hermsdorf/Thüringen metrie und Trennschicht II: Creep at operation tem- (22.-24.3.2010), poster auf das Strömungsverhal- perature Schroth, S.; Schneider, M.; ten 11th International Confe- Michaelis, A. Schulz, M.; Kriegel, R.; Arbeitskreis »Keramische rence on Inorganic Membra- Investigation of the anodic Kämpfer, A. Membranen«, Frankfurt/M. nes, Washington dissolution on cemented Assessment of CO2-stability (06.5.2010), presentation (19.-22.7.2010), poster carbides under near-ECM and oxygen flux of oxygen conditions permeable membranes Stein, J.; Altin, E.; Fuchs, T.; Stelter, M.; Schneider, M.; 6th International Symposium 11th International Confe- Bräunig, R.; Potthoff, A. Reuber, S. on Electrochemical Techno- rence on Inorganic Membra- Aufbereitung von Nano- Portable SOFC System logy – INSECT, Brüssel nes, Washington teilchen im industriellen based on multilayer tech- (4./5.11.2010), presentation (19.-22.7.2010), presentation Maßstab durch Automati- nology sierung des Nassmahlpro- Fuel Cell Seminar & Exposi- Schubert, R.; Tupaika, F.; Sempf, K. zesses tion, San Antonio, TX, USA Kuhn, J. Neue Möglichkeiten der DKG-Jahrestagung 2010, (18.-21.10.2010), present. Funktionell modifizierte Gefügedarstellung von SiC- Hermsdorf/Thüringen anorganisch-organische Werkstoffen (22.-24.3.2010), presentation Stockmann, J. Kompositwerkstoffe 13. Internationale Metallogra- Verbindungstechnik DKG-Jahrestagung 2010, phie-Tagung 2010, Leoben Steinbrech, R.W.; Keramische Hochleistungs- Hermsdorf/Thüingen (29.9.-1.10.2010), present. Huang, B.X.; Malzbender, J.; werkstoffe Schulungspro- (22.-24.3.2010), poster Baumann, S.; Kriegel, R. gramm des Fraunhofer- Stahn, M.; Endter, A. Thermomechanische Cha- Demonstrationszentrums Schulz, M. Keramische Filterelemente rakterisierung von AdvanCer, Block III: Konstruk-

FEM-Simulation der Sauer- in der Cross-Flow-Filtration – Ba0,5Sr0,5Co0,8Fe0,2O3-δ tion, Werkstoffprüfung, Qua- stoffpermeation durch Beschreibung des Einflusses für den Einsatz als Sauer- litätssicherung, Einsatzverhal- MIEC Membranen im Vaku- von Trägergeometrie und stoff-Transport-Membra- ten, Freiburg (11./ umbetrieb und Vergleich Trennschicht durch Simula- nen 12.11.2010), presentation mit experimentellen Daten tion der Strömungsvorgänge DKG-Jahrestagung 2010, DKG-Jahrestagung 2010, DKG-Jahrestagung 2010, Hermsdorf/Thüringen Svoboda, H.; Sobek, D.; Hermsdorf/Thüringen Hermsdorf/Thüringen (22.-24.3.2010), presentation Michaelis, A. (22.-24.3.2010), presentation (22.-24.3.2010), presentation Einfluss des Matrizenwerk-

107 PRESENTATIONS AND POSTERS

stoffs auf das Pressergeb- hard anodizing layers Töpfer, J.; Kircheisen, R. Tröber, O.; Kahle, I.; nis bei der uniaxialen Ver- 61st Annual Meeting of the Phase stability, point de- Trentsch, S.; Richter, H. dichtung von keramischen International Society of Elect- fects and magnetic proper- Preparation of custom-made Granulaten rochemistry, Nizza (26.9.- ties of nonstoichiometric nano-zeolites for absorb-

DKG-Jahrestagung 2010, 1.10.2010), presentation Sr2FeMoO6-δ tion of photochromic dyes Hermsdorf/Thüringen 7th International Conference 22nd German Zeolite Confe- (22.-24.3.2010), presentation Toma, F.-L.; Scheitz, S.; on Inorganic Materials, Biar- rence, München, Berger, L.-M.; Sauchuk, V.; ritz (12.-15.9.2010), poster (3.-5.3.2010), poster Thiele, J.; Prasad, R.M.; Kusnezoff, M. Kaltenborn, N.; Richter, H.; Comparative study of the Töpfer, J.; Kracunovska, S.; Trofimenko, N.; Kusnezoff, M.; Voigt, I.; Gurlo, A.; Riedel, R. electrical properties and Barth, S.; Pawlowski, B.; Michaelis, A. Polymerabgeleitete Kera- microstructures of ther- Bechtold, F.; Müller, J. Electrolyte supported cells mik-Membranen auf porö- mally sprayed alumina- Z-, Y- and M-type hexago- with high power density sen keramischen and spinel-coatings nal ferrites for high-fre- SOFC Konferenz, Chernogo- Supporten für die Hoch- International Thermal Spray quency multilayer inductors lovka, Russland (17./18.6.2010), temperatur-Gastrennung Conference – ITSC 2010, Sin- 3rd International Congress on p.38-39, presentation Dresdner Werkstoffsympo- gapore (3.-5.5.2010), CD, Ceramics, Osaka (14.-18.11. sium 2010 – Werkstoffe der p.272-277 2010), presentation Voigt, I. Energietechnik, Dresden Bestimmung des Wasser- (9./10.12.2010), poster Toma, L.-F.; Langner, S.; Töpfer, J.; Mürbe, J.; flusses und des molekula- Berger, L.-M.; Rödel, C.; Kracunovska, S.; Barth, S.; ren Rückhaltes an Thiele, S.; Sempf, K.; Potthoff, A. Pawlowski, B.; Rabe, T. keramischen Membranen Jaenicke-Roeßler, K.; Influence of spray parame- Ferrite materials for inte- DKG-Jahrestagung 2010, Berger, L.-M.; Spatzier, J. ters on the characteristics grated LTCC modules Hermsdorf/Thüringen Thermophysical studies on of dense suspension- Materials Science & Techno- (22.-24.3.2010), poster thermally sprayed tungs- sprayed Al2O3-coatings logy 2010 Conference & Ex- ten carbide-cobalt coatings 24th International Confe- hibition, Houston, Texas Voigt, I. International Thermal Spray rence on Surface Modifica- (17.-21.10.2010), present. Ceramic membranes for Conference – ITSC 2010, Sin- tion Technologies, Dresden gas upgrading processes gapore (3.-5.5.2010), CD, (7.-9.9.2010), presentation Triebert, A.; Martin, H.-P. Workshop »Upgrading of p.266-271 Elektrische Kontaktierung biologically produced gases«, Töpfer, J.; Kircheisen, R. von Keramiken für Hoch- Herzogenrath (24.9.2010), Tigges, B.; Lämmel, C.; Phase stability, point de- temperaturanwendungen presentation Schneider, M.; Fürbeth, W. fects and magnetoresis- 9. Internationales Kolloquium Innovative wear and corro- tance of nonstoichiometric Hart- und Hochtemperatur- Voigt, I. sion protection of alumi- Sr2FeMoO6-δ löten und Diffusionsschwei- Tailoring of membrane nium by formation of Electroceramics XII, Trondheim ßen – LÖT 2010, Aachen pore size and wettability nanoparticle-reinforced (13.-16.6.2010), presentation (15.-17.6.2010), presentation of ceramic NF-membranes

108 for application in organic Voigtsberger, B.; Michaelis, A. Weyd, M.; Hermann, K.; Demonstrationszentrums solvents Keramische Technologien Kühnert, J.-T.; Tusel, E.; AdvanCer, Block I: Werkstoffe 3rd International Organic und Systeme als Innovati- Brüschke, H.; Richter, H.; und Verfahren, Dresden Solvent Nanofiltration onstreiber für High-Tech Voigt, I. (10./11.3.2010), presentation Conference, London Produkte des 21ten Jahr- Ceramic membranes for (13.-15.9.2010), presentation hunderts the separation of glucose Zins, M. Vision Keramik 2010 – Inte- and the dewatering of Keramische Hochleistungs- Voigt, I.; Kriegel, R.; grierte Keramikforschung von ethanol werkstoffe: Einsatzberei- Adler, W.; Sommer, E. der Idee bis zum Produkt, 18th European Biomass Con- che, Entwicklungstrends Vacuum driven oxygen se- Hermsdorf (22.1.2010), pre- ference & Exhibition, Lyon DKG-Fortbildungsseminar – paration with BSCF mem- sentation (3.-7.5.2010), poster Entbinderung keramischer branes Formteile, Dresden 11th International Congress Wätzig, K. Weyd, M.; Richter, H.; (28./29.10.2010), presenta- on Inorganic Membranes, Transparente Mg-Al-Kera- Voigt, I.; Tusel, E.; tion Washington D.C. mik: Durchsichtig wie Glas, Brüschke, H.; Kühnert, J.-T. (17.-22.7.2010), poster hart wie Keramik Dewatering of ethanol by Zins, M. Barkhausen-Posterwettbe- hydrophilic zeolite mem- Keramische Werkstoffe Voigtsberger, B. werb, Dresden (16.12.2010), branes in vapour permea- und Anwendungen – Ent- Keramische Werkstoffe – poster tion at high temperatures wicklungstrends und Einführung und Eigen- International Scientific Confe- -angebote schaften und Anwendung Weidmann, S. K.; Kremmer, K.; rence on Pervaporation and DKG-Fortbildungsseminar – ausgewählter technischer Schneider, M.; Fürbeth, W. Vapor Permeation, Torun Thermoplastische Formge- Keramikwerkstoffe Imprägnierung poröser (18.-21.4.2010), presentation bung von Technischer Kera- IHK-Schulung für technische Anodisierschichten auf mik, Dresden (6./7.10.2010), Mitarbeiter PI Ceramic, Aluminiumlegierungen Wufka, A. presentation Hermsdorf (29.9.-1.10.2010), durch Einbau oxidischer Trattamento della bio- presentation Nanopartikel massa all`ingresso del fer- Zschippang, E.; Klemm, H.; ZVO Oberflächentage, Berlin mentatore: Il sistema IKTS Sempf, K.; Guth, U.; Voigtsberger, B.; Reichel, U. (22.-24.9.2010), presentation 6. Info Biogas, Montichiari Michaelis, A. Advanced ceramic materi- (21.10.2010), presentation Elektrisch leitfähige Kera- als – History – Present – Weyd, M. miken auf Basis von Si3N4 Prospects Process integrated water Zins, M. DKG-Jahrestagung 2010, 4th International Seminar and waste water treat- Anwendungen und Liefe- Hermsdorf/Thüringen »Nanotechnolgy, Energy, ment by ceramic membra- ranten keramischer Hoch- (22.-24.3.2010), presentation Plasma, Lasers« – NEPL-2010, nes leistungskomponenten Tomsk (25.-31.10.2010), IFAT Entsorga 2010, Mün- Keramische Hochleistungs- presentation chen (13.-17.9.2010), pre- werkstoffe Schulungspro- sentation gramm des Fraunhofer-

109 TEACHING ACTIVITIES OF IKTS EMPLOYEES, PARTICIPATION IN BODIES AND TECHNICAL COMMITTEES

Teaching activities of IKTS Dr. Kusnezoff, M. Prof. Michaelis »Funktionske- »NE-Metalle /Keramik/Kunst- employees Lecture ramik« stoffe − Technische Keramik »Funktionskeramik II«, Studi- TU Dresden, Institut für als Leichtbaustoff« Dr. Barth, S. engang »Elektronik- und Sen- Werkstoffwissenschaft (SS10) TU Dresden, Institut für Werk- Lecture sormaterialien« (9. Semester) stoffwissenschaft (WS10/11) »Keramische Technologie« TU Bergakademie Freiberg Dipl.-Ing. Svoboda, H. Fachhochschule Jena, Fach- (WS10/11) Lecture bereich Scitec (WS10/11) »Pulveraufbereitung und – Participation in bodies and Prof. Dr. Michaelis, A. konfektionierung« im Rah- technical committees Dr. habil. Herrmann, M. Lecture and internship men der Lehrveranstaltung Lecture »Keramische Werkstoffe« »Keramische Werkstoffe« »Principles of ceramic proces- TU Dresden, Institut für (12.11.2010) Bodies sing« Werkstoffwissenschaft University of Witwatersrand, (WS09/10; WS10/11) Dr. Voigt, I. Prof. Dr. Michaelis, A. Johannesburg, Südafrika Lecture - »World Academy of Cera- (10/2010) Prof. Dr. Michaelis, A.; »Membranen - Theorie und mics« WAC Dr. Schönecker, A.; Anwendung« - WAC Forum Komitee, Mit- Dipl.-Ing. Höhn, S. Dr. Kusnezoff, M.; Friedrich-Schiller-Universität arbeit Lecture Dr. Stelter, M.; Dr. Partsch, U.; Jena, Chemisch-geowissen- - DKG-Vorstandsmitglied »Keramografie« Dr. Jahn, M.; Heddrich, M. schaftliche Fakultät - DGM/DKG-Gemeinschafts- Im Rahmen der Lehrveran- Lecture (WS10/11) ausschuss »Hochleistungs- staltung »Metallografie« »Keramische Funktionswerk- keramik«, Arbeitskreis TU Dresden, Institut für stoffe« Dr. Voigt, I. »Koordinierung« Werkstoffwissenschaft TU Dresden, Institut für Lecture - DGM/DKG-Gemeinschafts- (11.01.2010) Werkstoffwissenschaft (SS10) »Keramische Verfahrenstech- ausschuss »Hochleistungs- nik« keramik«, Arbeitskreis Dr. Jahn, M. Dr. Rebenklau, L. Fachhochschule Jena, Fach- »Funktionskeramik«, Lei- Lecture Kapitel: »Technologien der bereich Scitec (WS10/11) tung »Chemische Verfahrenstech- Dickschichttechnik« in der Vor- - DECHEMA-Arbeitsaus- nik/Reaktionstechnik« lesungsreihe »Hybridtechnik« Dr. Voigtsberger, B. schuss »Angewandte Anor- HTW Dresden, Chemieinge- TU Dresden, Fakultät Elektro- Lecture ganische Chemie« nieurwesen (SS10) technik und Informations- »Keramische Verfahrenstech- - Fraunhofer-Allianz »Hoch- technik (WS10/11) nik« leistungskeramik«, Sprecher Dr. Kriegel, R. Fachhochschule Jena, Fach- - AGEF-Arbeitsgemeinschaft Lecture Dr. Rebenklau, L. bereich Scitec (WS10/11) Elektrochemischer For- »Keramische Verfahrenstechnik« Lecture »Dickschichttechnik« schungsinstitutionen e.V. Fachhochschule Jena, Fach- and »Multilayerkeramik« in Dr. Zins, M. - DPG-Deutsche Physikalische bereich Scitec (WS10/11) der Vorlesung von Lecture Gesellschaft

110 - Institutsrat des IfWW, TU Thüringens e.V., Ausschuss Dr. Fries, M. Dr. Krell, A. Dresden »Forschung und Innova- - DGM/DKG-Arbeitskreis - Associate Editor des »Jour- - FZ Rossendorf, Vereinsmit- tion« »Verarbeitungseigenschaf- nal of the American Cera- glied - Hochschulrat Fachhoch- ten synthetischer kerami- mic Society« - Fa. Roth & Rau, Aufsichts- schule Jena scher Rohstoffe«, Leiter ratsmitglied - Wissenschaftlicher Beirat - DKG-Fachausschuss »Ver- Kunath, R. - AiF Wissenschaftlicher Rat Jenoptik AG fahrenstechnik« - Arbeitskreis »Dresdner In- - Solarvalley Mitteldeutsch- formationsvermittler e.V.« I land e.V., Vorstand Dr. Gestrich, T. - Arbeitskreis »Spezialbiblio- - Beirat Arbeitskreis »Photo- Technical committees - Gemeinschaftsausschuss theken« voltaik Silicon Saxony« »Pulvermetallurgie«, Exper- - Hochschulrat der Westsäch- Dr. Beckert, W. tenkreis »Sintern« Dr. Kusnezoff, M. sischen Hochschule - Fraunhofer-Allianz »Nume- - GEFTA-Arbeitskreis »Ther- - DIN/VDE, Referat K 141, Zwickau rische Simulation von Pro- mophysik« DKE Deutsche Komission, - Dresdner Gesprächskreis dukten und Prozessen« »Elektrotechnik Elektronik - NanoChem, BMBF, NUSIM Dipl.-Ing. Gronde, B. Informationstechnik« Gutachter - Gemeinschaft »Ther- - Gutachterausschuss »In- Dipl.-Chem. Fischer, G. misches Spritzen e.V.« Dr. Lenk, R. terne Programme« der - DKG-Fachausschuss 10 - DVS-Arbeitsgruppe »Ther- - DKG-Expertenkreis »Kera- Fraunhofer-Gesellschaft »Umwelttechnik« misches Spritzen« mikspritzguss«, Vorstands- - Lenkungsgremium Innovati- vorsitzender onszentrum Energieeffi- Dr. Friedrich, H. Dipl.-Ing. Jaenicke-Rößler, K. - Fraunhofer-Allianz »Hoch- zienz TUD - DKG-Fachausschuss 10 - GEFTA-Arbeitskreis »Ther- leistungskeramik«, Ge- - Beirat eZelleron GmbH »Umwelttechnik«, Vorsitz mophysik« schäftsstelle - VDI/GVC-Fachausschuss - GEFTA-Arbeitskreis »Mess- Dr. Richter, H. »Partikelmesstechnik« unsicherheit von Thermodil- Dipl.-Ing. Ludwig, H. - International Zeolite Asso- - VDI/GVC-Fachausschuss atometern« - DGM-Fachausschuss »Bio- ciation »Abfallwirtschaft und Wert materialien« stoffrückgewinnung« Dr. Kaltenborn, N. Dr. Voigtsberger, B. - VDI/GET-Fachausschuss - DKG-Arbeitskreis »Kohlen- Dr. Moritz, T. - DKG-Vorstandsmitglied »Regenerative Energien« stoff« - ENMAT »European Net- - DGM/DKG-Gemeinschafts- - VDI-Bezirksverein Dresden, work of Materials Research ausschuss »Strategiekreis« Arbeitskreis »Granulome- Dr. Klemm, H. Centres«, Sprecher - DGM/DKG-Gemeinschafts- trie« - DKG-Arbeitskreis »Verstär- - Management Committee of ausschuss »Hochleistungs- - DWA-Fachkreis »Schlamm- kung keramischer Stoffe« COST action MP0701 »Na- keramik«, Arbeitskreis behandlung« - DIN Normenausschuss nocomposite Materials« »Koordinierung« - Energieprojekt »Biogas« (NL) »Materialprüfung NMP - DECHEMA-Fachausschuss - Verband der Wirtschaft - Fachverband »Biogas« 291« »Nanotechnologie«

111 PARTICIPATION IN BODIES AND TECHNICAL COMMITTEES

- DKG-Expertenkreis »Kera- schuss 5.5 »Aufbau- und Dr. Schilm, J. Dipl.-Ing. Thiele, S. mikspritzguss« Verbindungstechnik« - DGG-Fachausschuss 1 - GTS-Gemeinschaft Thermi- - Ges. für Mikroelektronik, »Physik und Chemie des sches Spritzen e.V. Dipl.-Phys. Mürbe, J. Mikro- und Feinwerktech- Glases« - VDI-Bezirksverein Dresden, nik - DKG/DGG-Arbeitskreis Dr. Voigt, I. Arbeitskreis »Granulome- »Glasig-kristalline Multi- - GVC-Fachausschuss »Pro- trie« Dr. Reichel, U. funktionswerkstoffe« duktionsintegrierte Wasser- - DKG-Fachausschuss 6 - DVS-Arbeitskreis W3 und Abwassertechnik« Nake, K. »Werkstoffanwendungen« »Löten von Metall, Keramik - ProcessNet-Arbeitsaus- - DGM-Arbeitskreis »Härte- - DKG-Arbeitskreis »Verarbei- und Glas« schuss »Membrantechnik« prüfung und AWT«, Fach- tungseigenschaften synthe- - DGM/DKG-Gemeinschafts- ausschuss »FA-12« tischer keramischer Dr. Schönecker, A. susschuss »Hochleistungs- Rohstoffe« - Beirat der Smart Material keramik«, Arbeitskreis Dr. Nebelung, M. GmbH Dresden »Keramische Membranen«, - VDI/GVC-Fachausschuss Dr. Richter, H.-J. Leiter »Agglomerations- und - DGM/DKG-Gemeinschafts- Dipl.-Chem. Schubert, R. - DGM/DKG-Gemeinschafts- Schüttguttechnik« ausschuss »Hochleistungs- - DGM/DKG-Gemeinschafts- ausschuss »Hochleistungs- - VDI/GVC-Fachausschuss keramik«, Arbeitskreis ausschuss »Hochleistungs- keramik«, Arbeitskreis »Trocknungstechnik« »Keramische Membranen« keramik«, Arbeitskreis »Koordinierung« - DGM/DKG-Gemeinschafts- »Polymerkeramik« Dipl.-Ing. Pönicke, A. ausschuss »Hochleistungs- Dr. Zins, M. - DVS-Ausschuss für Technik, keramik«, Arbeitskreis Dipl.-Phys. Sikora, R. - DKG-Koordinierungsgruppe Arbeitsgruppe W3 »Fügen »Biokeramik« - DVS-Arbeitsgruppe »Kera- »Strukturwerkstoffe Fach- von Metall, Keramik und mik-Metall-Verbindungen« ausschüsse« Glas« Dr. Richter, V. - DVS-Arbeitsgruppe »Kle- - Fachausschuss »Pulverme- - DECHEMA/VCI-Arbeitskreis ben von Glas und Keramik« tallurgie« Dr. Potthoff, A. »Responsible Production - DKG-Fachausschuss »Kera- - DGM/DKG-Arbeitskreis and Use of Nanomaterials« Dipl.-Ing. Stahn, M. mikanwendungen« »Prozessbegleitende Prüf- - Fraunhofer-Allianz »Nano- - VDI-Entwicklung, Konstruk- - Deutsche Messe AG, Fach- verfahren« technologie« tion, Vertrieb messebeirat »Industrial - DECHEMA/VCI-Arbeitskreis - EPMA-Arbeitskreis »Euro- Supply« »Responsible Production pean Hard Materials Dr. Stelter, M. - Messe München, Fachbei- and Use of Nanomaterials« Group« - Brennstoffzellen Initiative rat »Ceramitec« - Fraunhofer-Allianz »Nano- - VDI-Fachausschuss Sachsen e.V., Vorstand - Institut für Prozess- und An- technologie« »Schneidstoffanwendung - VDMA-Arbeitsgruppe wendungstechnik Keramik, - DIN-Normenausschuss »Brennstoffzellen«, Arbeits- RWTH Aaachen, Vorstand Dr. Rebenklau, L. »Werkstofftechnologie«, kreis »Industrienetzwerk« - VDI/VDE-GMM Fachaus- AA »Hartmetalle«

112 Advisory boards for sym- gung »Anorganisch-Techni- - Keramische Hochleistungs- langen (30.11.-1.12.2010), posia and conferences sche Chemie«, Frankfurt/ werkstoffe – Schulungspro- advisory board Main (2011), organizing gramm des Fraunhofer- Prof. Dr. Michaelis, A. committee Demonstrationszentrums Dr. Reichel, U. - DECHEMA-Diskussionsta- - 10th CMCEE International AdvanCer, Block I: Werk- - 4th International Seminar gung »Anorganisch-Techni- Symposium on Ceramic stoffe und Verfahren, IKTS »Nanotechnolgy, Energy, sche Chemie«, Materials and Components Dresden (10./11.3.2010), Plasma, Lasers – NEPL 2010, Frankfurt/Main (2010), for Energy and Environmen- organizer Tomsk, (25.-31.10.2010) organizing committee tal Applications, Dresden - Vision Keramik 2010, (20.-23.4.2012), organizing Dr. Moritz, T. Dr. Richter, V. Hermsdorf (22.1.2010) committee - DKG-Symposium »Plasti- - 10th International Sympo- - APNFM 2010 – Advanced sche und Thermoplastische sium on Ceramic Materials Processing for Novel Dipl.-Krist. Adler, J. Formgebung«, Dresden and Components for Functional Materials, Dres- - Industrietag »Keramik in (6./7.10.2010), organizer Energy and Environmental den der motorischen Abgas- - Powder Metallurgy World Applications – CMCEE, - DKG-Jahrestagung 2010 / Nachbehandlung«, Dresden Congress & Exhibition – Dresden (20.-23.4.2012), Symposium Hochleistungs- (23.9.2010), organizer WORLD PM2010, Florence, organizing committee keramik DKG/DGM 2010, Italy (10.-14.10.2010), Hermsdorf/Thüringen Dr. Gestrich, T. organizing committee Dr. Schneider, M. (22.-24.3.2010) - 29. Hagener Symposium - International Workshop on - MATERIALICA Keramik Pulvermetallurgie »Formge- Dr. Nebelung, M. Impedance Spectroscopy, Kongress München (2010) bung: Chancen der Pulver- - DKG-Jahrestagung 2010/ Chemnitz (13.-15.10.2010), - Symposium »Galvanik eine metallurgie», Hagen Symposium Hochleistungs- advisory board etablierte Technik innovativ (25./26.11.2010), advisory keramik DKG/DGM 2010, - Symposium »Galvanik eine angewendet«, IKTS Dres- board Hermsdorf/Thüringen etablierte Technik innovativ den (25./26.11.2010), (22.-24.3.2010) angewendet«, IKTS Dres- organizer Dr. Herrmann, M. den (25./26.11.2010), - Materialforschungstag des - DKG-Fortbildungsseminar Dr. Fries, M. organizer MFD, Dresden (Nov/Dez »Entbinderung keramischer - 15. DKG-Fortbildungssemi- 2010) Formteile«, IKTS Dresden nar »Technologische Dr. Voigt, I. - Industrietag »Keramik in (28./29.10.2010), organizer Grundlagen der Granulie- - DKG-Jahrestagung 2010/ der motorischen Abgas- rung und Granulatverarbei- Symposium Hochleistungs- Nachbehandlung«, Dresden Dr. Lenk, R. tung«, IKTS Dresden/TU keramik DKG/DGM 2010, (23.9.2010), organizer - DKG-Symposium »Plasti- Dresden (22./23.4.2010), Hermsdorf/Thüringen - DKG-Jahrestagung 2011, sche und Thermoplastische organizer (22.-24.3.2010) Saarbrücken (28.- Formgebung«, Dresden - DKG-Symposium »Simula- - International Scientific 30.3.2011) (6./7.10.2010), organizer tion und Modellierung von Committee of the Interna- - DECHEMA-Diskussionsta- Fertigungsprozessen«, Er- tional Conference on Inor-

113 PARTICIPATION IN BODIES AND TECHNICAL COMMITTEES, DISSERTATIONS, DIPLOMA THESES

ganic Membranes – ICIM, Gastrennung Scholehwar, Timo tikeln aus Gold und Berliner Washington D.C. Dissertation 2010 Charakterisierung der Struk- Blau (17.-22.7.2010) IKTS Hermsdorf – TU Berg- tur-Gefüge-Eigenschaftsbe- Diplomarbeit 2010 - Aachener Membran Kollo- akademie Freiberg ziehungen von IKTS Dresden – HTW Dres- quium, Aachen piezokeramischen Werkstof- den, Fakultät Maschinen- (27./28.10.2010), scientific Nawka, Stefan fen des Systems PZT/SKN bau/Verfahrenstechnik committee Untersuchung des Wachs- Dissertation 2010 tumsverhaltens und der IKTS Dresden – TU Dresden, Bergner, Anne Dr. Voigtsberger; B. Bandlücke von ALD-hafnium- Fakultät Maschinenwesen Herstellung und Charakteri- - DKG-Jahrestagung 2010/ basierten Oxidschichten mit- sierung von Titansuboxid- Symposium Hochleistungs- tels winkelauflösender XPS Uhlig, Benjamin Carbid-Kompositkeramiken keramik DKG/DGM 2010, Dissertation 2010 High precision stress measu- Diplomarbeit 2010 Hermsdorf/Thüringen IKTS Dresden – TU Dresden, rements in semiconductor IKTS Dresden – TU Bergaka- (22.-24.3.2010) Fakultät Elektrotechnik und structures by raman micros- demie Freiberg, Fakultät für Informationstechnik copy werkstoffwissenschaften und Dr. Zins, M. Dissertation 2010 Werkstofftechnologie - Hannover Messe – Tag der Paepcke, Anne IKTS Dresden – TU Dresden, Technischen Keramik, Untersuchungen des Hoch- Fakultät Mathematik und Na- Bigalke, Stephan Werkstoff-Forum, Hannover temperaturbrennstoffzellen- turwissenschaften Strömungsmechanische Ana- (23.4.2010), advisory board stapels unter realen lyse eines Filtrationsmoduls Betriebsbedingungen durch Ziesche, Steffen im Hinblick auf die Minimie- Finite Elemente Modellierung Synthese und rung von Ablagerungen an Dissertations Dissertation 2010 elektrische/elektrochemische der Filteroberfläche IKTS Dresden – TU Dresden, Charakterisierung von io- Diplomarbeit 2010 Baumann, Andreas Fakultät Maschinenwesen nisch-elektronisch gemischt- IKTS Dresden – TU Dresden, Pulverspritzgießen von Me- leitenden keramischen Fakultät Maschinenwesen tall-Keramik-Verbunden Rose, Martin Werkstoffen für Permeations- Dissertation 2010 Untersuchungen zur Oberflä- anwendungen Deska, David IKTS Dresden – TU Dresden, chenchemie der Atomlagen- Dissertation 2010 Elektrochemische und infra- Fakultät Maschienwesen, In- abscheidung und deren IKTS Dresden – TU Dresden, rotspektroskopische Charak- stitut Verfahrens- und Ener- Einfluss auf die Effizienz von Fakultät Maschinenwesen terisierung von Elektroden- gietechnik Prozessen materialien und Elektrolyten Dissertation 2010 für Energiespeicher Kaltenborn, Nadine IKTS Dresden – TU Dresden, Diploma theses Masterarbeit 2010 Nanopröse Kohlenstoffmem- Fakultät Elektrotechnik und IKTS Dresden – HTW Dres- branen auf asymmetrisch Informationstechnik Adler, Anne-Katrin den, Fakultät Maschinen- aufgebauten porösen kerami- Elektrochemische Abschei- bau/Verfahrenstechnik schen Supporten für die dung von Kompositnanopar-

114 Deutschmann, Anne Fakultät Maschinenbau/Ver- tut für Aufbau- und Verbin- nung aus verdünnten wässri- Untersuchungen zum Einsatz fahrenstechnik dungstechnik gen Lösungen von Enzympräparaten im Be- Bachelorarbeit 2010 reich der anaeroben Biogaser- Hauptmann, Erik Kammer, Georg IKTS Hermsdorf – Fachhoch- zeugung mit separater Methodenentwicklung zur Untersuchungen zum Einsatz schule Jena, Fachbereich Hydrolysestufe impedimetrischen Bestim- von Oxidationskatalysatoren SciTec Diplomarbeit 2010 mung der Elektrodenalterung bei der Nachbehandlung von IKTS Dresden – TU Dresden, einer symmetrischen Zelle SOFC-Abgas Paulik, Sebastian Fakultät Maschinenwesen Diplomarbeit 2010 Diplomarbeit 2010 Charakterisierung der Stabili- IKTS Dresden – TU Dresden, IKTS Dresden – HTW Dres- tät und katalytischen Eigen- Dosch, Chritian Fakultät Maschinenwesen den, Fakultät Maschinen- schaften von perowskit- und Untersuchungen zum Einfluss bau/Verfahrenstechnik platinhaltigen Katatalysatoren der Rußbildner auf die Leis- Hlawatschek, Daniel für den Einsatz in Dieselparti- tung der Hochtemperatur- Untersuchung des Einflusses Kretzschmann, Lisett kelfiltern brennstoffzelle (SOFC) von Vor- und Fertigsinterung Untersuchung des Herstel- Masterarbeit 2010 Diplomarbeit 2010 auf den Kohlenstoffhaushalt lungsprozesses von piezoke- IKTS Dresden – TU Dresden, IKTS Dresden – HTWK Leip- von WC-Ni-Hartmetallen ramischen Vollfasern mit Fakultät Mathematik und Na- zig, Fakultät Maschinen- und Diplomarbeit 2010 Porositäten kleiner fünf Pro- turwissenschaften Energietechnik IKTS Dresden – TU Dresden, zent nach dem Polysulfonver- Fakultät Maschinenwesen fahren Pilz, Sirko Friedrich, David Diplomarbeit 2010 Untersuchung instationärer Untersuchungen zur organi- Hoyer, Christian IKTS Dresden – HTW Dres- Prozesse in anodisch erzeug- schen Modifizierung von Entwicklung und Charakteri- den, Fakultät Maschinen- ten dünnen Ventilmetalloxid- HMDSO-stabilisierten Silizi- sierung keramischer Folien bau/Verfahrenstechnik schichten mit hoher lateraler umoxid-Isolationsschichten auf Basis von UV-vernetzen- und zeitlicher Auflösung Diplomarbeit 2010 den Bindern Marx, Christian Diplomarbeit 2010 IKTS Dresden – TU Dresden, Diplomarbeit 2010 Wasserstoff/Propan-Trennung IKTS Dresden – TU Dresden, Fakultät Maschinenwesen IKTS Dresden – Hochschule unter Verwendung moleku- Fakultät Mathematik und Na- Amberg-Weiden, Fakultät für larsiebender keramischer turwissenschaften Gierth, Uta Maschinenbau/Umwelttech- Membranen Aufbau eines enzymatischen nik Bachelorarbeit 2010 Reichelt, Erik amperometrischen Biosensors IKTS Hermsdorf – Fachhoch- Entwicklung eines mit Biogas – Einfluss verschiedener Ihle, Martin schule Jena, Fachbereich betriebenen SOFC-Systems Gold-Dickschichtelektroden Rapid Prototyping für LTCC- SciTec mit dem Ziel der Wirkungs- als Sensorsubstrat Multilayer mittels Aerosoldruck gradsteigerung durch hohe Diplomarbeit 2010 Diplomarbeit 2010 Patzak, Stefan Reaktorenintegration IKTS Dresden – HTW Dresden, IKTS Dresden – TU Dresden, Zeolithgefüllte Polymermem- Diplomarbeit 2010 Fakultät Elektrotechnik, Insti- branen für die Alkoholabtren- IKTS Dresden – HTW Dres-

115 DIPLOMA THESES

den, Fakultät Maschinen- Wilk, Tabea bau/Verfahrenstechnik Entwicklung keramischer Fo- lien auf Basis von wasserlösli- Seitz, Ronald chen Bindersystemen zur Einfluss des Energieeintrages Strukturierung mittels Prägen auf die Stabilisierung hoch- bei Raumtemperatur konzentrierter Böhmit-Sus- Diplomarbeit 2010 pensionen IKTS Dresden – TU Bergaka- Masterarbeit 2010 demie Freiberg, Fakultät für IKTS Dresden – HTW Dres- Werkstoffwissenschaft und den, Fakultät Maschinen- Werkstofftechnologie bau/Verfahrenstechnik Zschornack, Daniel Weder, Aniko Katalytische Abscheidung von Aufbau und Betrieb eines Carbon Nanotubes auf leitfä- Reformerteststandes zur Un- higen Substraten mittels CVD tersuchung der Synthesegas- Diplomarbeit 2010 erzeugung mittels partieller IKTS Dresden – Fachhoch- Oxidation von Ethanol schule Südwestfalen, Iser- Diplomarbeit 2010 lohn, Fachbereich Informatik IKTS Dresden – TU Bergaka- und Naturwissenschaften demie Freiberg, Fakultät Ma- schinenbau, Verfahrens- und Energietechnik

Weller, Sebastian Einfluss von Vergällungsmit- teln auf die Reformierung von Ethanol für den Betrieb in einer Hochtemperatur- brennstoffzelle Diplomarbeit 2010 IKTS Dresden – HTW Dres- den, Fakultät Maschinen- bau/Verfahrenstechnik

116 EVENTS AND TRADE FAIRS 2011

Conferences Debinding of ceramic bo- nano tech POWTECH dies Tokyo, February 16-18, 2011 Nuremberg, October 11-13, Dutch-German Seminar on October 6-7, 2011 2011 Energy Innovations Innovation Materials and April 13-14, 2011 Spray drying of ceramic Technologies (Technical Ce- Materialica suspensions ramics Exhibition, Specialized Munich, October 25-27, ISPA 2011 – International November 2011 Salon) 2011 Symposium on Piezocom- Moscow, March 1-3, 2011 posite Applications Please find further informa- Agritechnica September 22-23, 2011, tion at www.dkg.de. Z Zuliefermesse Hanover, November 13-19, Volkswagen’s Transparent Leipzig, March 1-4, 2011 2011 Factory Seminars of the Fraunho- fer Demonstration Center IDS Internationale Dental- Productronica AdvanCer Schau Munich, November 15-18, Events Cologne, March 22-26, 2011 2011 Introduction into Advan- Long Night of Sciences ced Ceramics Hannover-Messe Hagener Symposium July 1, 2012 Hanover, April 4-8, 2011 Hagen, November 24-25, Part I: Materials, technology 2011 Fraunhofer Talent School Dresden, March 9-10, 2011 Energy Harvesting and Sto- November 4-6, 2010 rage EuroMold Part II: Machining Orlando, April 25-29, 2011 Frankfurt a. M., November Berlin, May 4-5, 2011 29-December 2, 2011 Seminars/workshops SMT/HYBRID/PACKAGING Part III: Construction, testing Nuremberg, May 3-5, 2011 DKG seminars Freiburg, November 10-11, 2011 Internationale Biomasse- Technological fundamen- konferenz Leipzig tals of granulation and Please find further informa- Leipzig, May 24-25, 2011 granule processing tion at April 14-15, 2011 www.advancer.fraunhofer.de Sensor + Test Nuremberg, June 7-9, 2011 Thermoplastic shape-for- . ming of advanced ceram- Participation in trade fairs EURO PM ics – technology and Barcelona, October 9-12, 2011 training Enertec/Terratec October 5-6, 2011 Leipzig, January 25-27, 2011 Biotechnica Hanover, October 11-13, 2011

117 INFORMATION SERVICE

Contact Annual Report Fraunhofer Institute for _German _English Ceramic Technologies and Systems IKTS

Press and Public Relations Katrin Schwarz Fraunhofer IKTS in Profile  German  English Winterbergstrasse 28 01277 Dresden, Germany Research field Phone +49 351 2553-7720 Materials Fax +49 351 2554-114  German  English [email protected] Research field www.ikts.fraunhofer.de Processes and Components  German  English

Information material Research field Sintering and Characterization If you would like to receive information about a subject, place  German  English an “X“ in the corresponding box and mail or fax a copy of this page to the address given above Research field Environmental Engineering and Bioenergy  German  English Surname, first name Research field Company Micro and Energy Systems  German  English Address Research field ZIP code/city Smart Materials and Systems  German  English Phone

Fax

Date, signature

118 HOW TO REACH US

How to reach us in Dresden How to reach us in Hermsdorf by car by car

- At the three-way highway intersection “Dresden West“ exit - From exit Bad Klosterlausnitz/Hermsdorf (A9, exit 23) follow Autobahn A4 onto Autobahn A17 in direction “Prag“ (Pra- the road to Hermsdorf, go straight ahead up to the rounda- gue) bout - Exit at “Dresden Prohlis“ (Exit 4) - Turn right to Robert-Friese-Strasse - Continue 2 km along the secondary road in direction “Zen- - The 4th turning to the right after the roundabout is Michael- trum“ (City Center) Faraday-Strasse - At the end of the secondary road (Kaufmarkt store will be - Fraunhofer IKTS is on the left side on the right side), go through light and continue straight ahead along Langer Weg in direction “Prohlis“ (IHK) - From exit Hermsdorf-Ost (A4, exit 56a) follow the road to - After 1 km, turn left onto Mügelner Strasse Hermsdorf - Turn right at the next traffic light onto Moränenende - At Regensburger Strasse turn left and go straight ahead up - Continue under the train tracks and turn left at next traffic to the roundabout light onto Breitscheidstrasse - Turn off to right at the roundabout and follow Am Globus - Continue 3 km (the road name will change to An der Renn- - After about 1km turn off left to Michael-Faraday-Strasse bahn and then to Winterbergstrasse) - Fraunhofer IKTS is on the left side - Fraunhofer IKTS is on the left side of the road (Winterberg- strasse 28) across from the NETTO grocery store by train by train - From Hermsdorf-Klosterlausnitz main station turn right and walk in the direction of the railway bridge - From Dresden main railway station take train S1 (direction - Walk straight into Keramikerstrasse (do not cross the bridge) Bad Schandau) or train S2 (direction Pirna) to stop “Halte- - Pass the porcelain factory and the Hermsdorf town house punkt Strehlen“ - Turn right, pass the roundabout and walk straight into Ro- - Change to bus line 61 (direction Weißig/Fernsehturm) or 85 bert-Friese-Strasse (direction Striesen) and exit at “Grunaer Weg“ - After 600 m turn right into Michael-Faraday-Strasse - Find Fraunhofer IKTS after 20 m by plane

- From Airport Dresden-Klotzsche take a taxi to Winterberg- strasse 28 (distance is approximately 7 miles or 10 km) - Or use suburban train S2 (underground train station) to stop “Haltepunkt Strehlen“ - Change to bus line 61 (direction Weißig/Fernsehturm) or 85 (direction Striesen) and exit at “Grunaer Weg“

119 EDITORIAL NOTES

Editorial team/layout Institute address

Katrin Schwarz Fraunhofer Institute for Peter Peuker Ceramic Technologies and Systems IKTS Andrea Gaal Susanne Freund Dresden branch of the institute Rita Kunath Winterbergstrasse 28, 01277 Dresden, Germany Phone +49 351 2553-7700 Fax +49 351 2553-7600 Printing Hermsdorf branch of the institute ELBTAL Druckerei & Kartonagen Kahle GmbH Michael-Faraday-Strasse 1, 07629 Hermsdorf, Germany Phone +49 36601 9301-0 Fax +49 36601 9301-3921 Photo acknowledgments [email protected] Photographer Jürgen Lösel, Dresden www.ikts.fraunhofer.de Foto Wachs Dresden Fraunhofer IKTS Atelier »Mein Foto« Dresden Press and public relations Photographer Sebastian Reuter, Jena Dipl.-Chem. Katrin Schwarz

Phone +49 351 2553-7720 [email protected]

Reprints permitted only upon express authorization by editorial team.

© Fraunhofer IKTS, Dresden 05/2011

120