Parte I Dendrologia.P65

Total Page:16

File Type:pdf, Size:1020Kb

Parte I Dendrologia.P65 UNIVERSIDAD NACIONAL DE MISIONES Textos de Dendrología Cátedra de Dendrología Héctor Martín Gartland 1 EDITORIAL UNIVERSITARIA DE MISIONES San Luis 1870 Posadas - Misiones Tel-Fax: (03752) 428601 Correos electrónicos: [email protected] [email protected] [email protected] [email protected] Colección: Cuadernos de Cátedra Coordinación de la edición: Claudio Zalazar Armado de interiores: Javier B. Giménez Corrección: Gabriela Domínguez; Julia E. Renaut Gartland, Héctor Martín Dendrología general: nomenclatura especial de los árboles forestales - 1a ed. - Posadas : EDUNaM - Editorial Universitaria de la Universidad Nacional de Misiones, 2008. 120 p. ; 30x21 cm. ISBN 978-950-579-094-4 1. Árboles Forestales. 2. Dendrología . I. Título CDD 634.972 Fecha de catalogación: 07/03/2008 ISBN: 978-950-579-094-4 Impreso en Argentina ©Editorial Universitaria Universidad Nacional de Misiones Posadas, 2008 2 ÍNDICE CAPÍTULO I DENDROLOGÍA .............................................................................................................................. 9 Origen y definición ....................................................................................................................... 9 Importancia y objetivos de la Dendrología dentro de las Ciencias Forestales ...................... 10 Relaciones de la Dendrología con otras Ciencias Dasonómicas ............................................. 10 Partes de la Dendrología............................................................................................................. 11 Los Bosques del Mundo y de Argentina ................................................................................... 11 Territorios Fitogeográficos de Argentina .................................................................................. 15 Provincia Paranaense .................................................................................................................. 17 Distrito de las Selvas Mixtas...................................................................................................... 17 Distrito de los Campos ............................................................................................................... 18 Provincia de las Yungas .............................................................................................................. 18 Distrito de las Selvas de Transición .......................................................................................... 18 Distrito de las Selvas Montanas................................................................................................. 19 Distrito de los Bosques Montanos ............................................................................................. 19 Provincia Chaqueña .................................................................................................................... 20 Distrito Chaqueño Oriental ........................................................................................................ 20 Distrito Chaqueño Occidental .................................................................................................... 21 Distrito Chaqueno Serrano ......................................................................................................... 21 Provincia del Espinal .................................................................................................................. 21 Distrito del Ñandubay................................................................................................................. 22 Distrito del Algarrobo ................................................................................................................. 22 Distrito del Caldén ...................................................................................................................... 22 Provincia Subantártica ................................................................................................................ 22 Distrito del Pehuén...................................................................................................................... 22 Distrito del Bosque Caducifolio ................................................................................................ 23 Distrito Valdiviano ...................................................................................................................... 23 Distrito Magallánico ................................................................................................................... 24 Las especies forestales del Mundo y de Argentina................................................................... 24 CAPÍTULO II ÁRBOL ............................................................................................................................................ 25 Concepto y Definiciones ............................................................................................................ 25 Nomenclatura especial de los árboles ....................................................................................... 26 Partes de un árbol........................................................................................................................ 26 Formas del árbol.......................................................................................................................... 28 Estadios de los árboles................................................................................................................ 28 Caracteres Dendrológicos........................................................................................................... 30 CAPÍTULO III TERMINOLOGÍA REFERENTE A LOS CARACTERES DENDROLÓGICOS...................... 31 Caracteres Dendrológicos de Naturaleza Fisonómica.............................................................. 31 Definición .................................................................................................................................... 31 Clasificación ................................................................................................................................31 Hábito........................................................................................................................................... 31 Hábito de copa baja..................................................................................................................... 31 Hábito de copa alta ..................................................................................................................... 31 3 Porte ............................................................................................................................................. 31 Copa ............................................................................................................................................. 32 Por la forma ................................................................................................................................. 32 Orbicular o redondeada .............................................................................................................. 32 Semiorbicular o semiredondeada ............................................................................................... 32 Cónica o piramidal ...................................................................................................................... 32 Obcónica o flabeliforme o infundibuliforme ............................................................................ 32 Umbeliforme o plateliforme ....................................................................................................... 32 Por la densidad ............................................................................................................................ 32 Densifoliadas ............................................................................................................................... 33 Paucifoliadas ............................................................................................................................... 33 Tipos de Copa .............................................................................................................................. 33 Copa Simple o Compacta ........................................................................................................... 33 Copa en aglomerados .................................................................................................................. 33 Copa múltiple .............................................................................................................................. 33 Copa estratificada........................................................................................................................ 33 Ramificación................................................................................................................................33 Monopódica o Excurrente .......................................................................................................... 34 Simpodial o Delicuescente ......................................................................................................... 34 Caracteres Dendrológicos de Naturaleza Organográfica ......................................................... 34 Raíz .............................................................................................................................................. 34 Raíces Normales.........................................................................................................................
Recommended publications
  • UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number
    [Show full text]
  • Descriptions of the Plant Types
    APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.
    [Show full text]
  • Phylogenetic Distribution and Identification of Fin-Winged Fruits
    Bot. Rev. (2010) 76:1–82 DOI 10.1007/s12229-010-9041-0 Phylogenetic Distribution and Identification of Fin-winged Fruits Steven R. Manchester1,2 & Elizabeth L. O’Leary1 1 Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA 2 Author for Correspondence; e-mail: [email protected] Published online: 9 March 2010 # The New York Botanical Garden 2010 Abstract Fin-winged fruits have two or more wings aligned with the longitudinal axis like the feathers of an arrow, as exemplified by Combretum, Halesia,andPtelea. Such fruits vary in dispersal mode from those in which the fruit itself is the ultimate disseminule, to schizocarps dispersing two or more mericarps, to capsules releasing multiple seeds. At least 45 families and more than 140 genera are known to possess fin-winged fruits. We present an inventory of these taxa and describe their morphological characters as an aid for the identification and phylogenetic assessment of fossil and extant genera. Such fruits are most prevalent among Eudicots, but occur occasionally in Magnoliids (Hernandiaceae: Illigera) and Monocots (Burmannia, Dioscorea, Herreria). Although convergent in general form, fin-winged fruits of different genera can be distinguished by details of the wing number, texture, shape and venation, along with characters of persistent floral parts and dehiscence mode. Families having genera with fin-winged fruits and epigynous perianth include Aizoaceae, Apiaceae, Araliaceae, Asteraceae, Begoniaceae, Burmanniaceae, Combre- taceae, Cucurbitaceae, Dioscoreaceae, Haloragaceae, Lecythidiaceae, Lophopyxida- ceae, Loranthaceae, and Styracaceae. Families with genera having fin-winged fruits and hypogynous perianth include Achariaceae, Brassicaceae, Burseraceae, Celastra- ceae, Cunoniaceae, Cyrillaceae, Fabaceae, Malvaceae, Melianthaceae, Nyctaginaceae, Pedaliaceae, Polygalaceae, Phyllanthaceae, Polygonaceae, Rhamnaceae, Salicaceae sl, Sapindaceae, Simaroubaceae, Trigoniaceae, and Zygophyllaceae.
    [Show full text]
  • Woods of the Eocene Nut Beds Flora Clarno Formation, Oregon, USA
    Author – Title 1 Woods of the Eocene Nut Beds Flora Clarno Formation, Oregon, USA E.A. Wheeler S.R. Manchester IAWA Journal, Supplement 3 Woods of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon, USA by E.A. Wheeler Department of Wood and Paper Science, Box 8005, N.C. State University, Raleigh, NC 27605, USA and S.R. Manchester Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA IAWA Journal, Supplement 3 — 2002 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland, The Netherlands Cover: Alangium oregonensis Scott & Wheeler, cross section. ISSN 0928-1541 ISBN 90-71236-52-8 E.A. Wheeler and S.R. Manchester Woods of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon, USA IAWA Journal Supplement 3 — 2002 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland P.O. Box 9514, 2300 RA Leiden, The Netherlands CONTENTS Summary — 4 Introduction — 5 Materials and Methods — 8 Geographic and geologic occurrence — 8 Descriptions — 10 Affinities — 10 Philosophy of naming — 11 Collections — 11 Mode of fossilization — 12 Preparation of samples — 13 Results and Discussion — 16 Woods of the Clarno Nut Beds — 16 Comparisons of wood and fruit/seed assemblages — 17 Comparison within shared families — 25 Comparison with other Eocene wood assemblages — 27 Biogeography — 28 Growth forms — 29 Growth rings — 30 Wood anatomical characteristics of the Nut Beds dicot woods — 31 MAT inferences — 32 Descriptions — 34 Dicotyledonous
    [Show full text]
  • Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models
    Plant Genetics and Genomics: Crops and Models 21 Andrew Groover Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models Volume 21 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 [email protected] Andrew Groover • Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees [email protected] Editors Andrew Groover Quentin Cronk Pacific Southwest Research Station Department of Botany United States Forest Service University of British Columbia Davis, CA Vancouver, BC USA Canada ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49327-5 ISBN 978-3-319-49329-9 (eBook) DOI 10.1007/978-3-319-49329-9 Library of Congress Control Number: 2017955083 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 57 (2010) 258–265 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Implications of a molecular phylogenetic study of the Malagasy genus Cedrelopsis and its relatives (Ptaeroxylaceae) Sylvain G. Razafimandimbison a,*, Marc S. Appelhans b,c, Harison Rabarison d, Thomas Haevermans e, Andriarimalala Rakotondrafara f, Stephan R. Rakotonandrasana f, Michel Ratsimbason f, Jean-Noël Labat e, Paul J.A. Keßler b,c, Erik Smets b,c,g, Corinne Cruaud h, Arnaud Couloux h, Milijaona Randrianarivelojosia i,j a Department of Botany, Bergius Foundation, Stockholm University, SE-10691, Stockholm, Sweden b Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, 2300 RA, The Netherlands c Hortus Botanicus Leiden, Leiden, The Netherlands d Département de Biologie et Ecologie Végétales, Université d’Antananarivo, Madagascar e Muséum National d’Histoire Naturelle, Département Systématique et Evolution, UMR 7205 CNRS/MNHN Origine, Structure et Evolution de la Biodiversité, C.P.
    [Show full text]
  • The Evolution of Angiosperm Trees: from Palaeobotany to Genomics
    The Evolution of Angiosperm Trees: From Palaeobotany to Genomics Quentin C.B. Cronk and Félix Forest Abstract Angiosperm trees now rival the largest conifers in height and many species reach over 80 m high. The large tree life form, with extensive secondary xylem, origi- nated with the progymnosperms and gymnosperms in the Devonian and Carboniferous. However evidence suggests that the ancestor of extant angiosperms was not a tree but either a herb or understory shrub. Angiosperm fossil woods are rare in the early Cretaceous but become common in the mid-Cretaceous. The “reinvention” of wood in the Cretaceous produced a novel xylary morphospace that has since been extensively explored by subsequent evolution. Today, large timber trees are absent in the early diverging lineages of the angiosperms, and conventional wood has been lost in the monocots. There are a few timber trees in the magnoliid clade. Most timber trees are in the rosid clade, particularly the fabids (e.g. Fabaceae) but also in the Malvids (e.g. Meliaceae). Timber trees are less common in the strongly herbaceous asterid clade but some important timbers are also found in this lineage such as teak, Tectona grandis (Lamiaceae). Genomic resources for angiosperm trees are developing rapidly and this, coupled with the huge variation in woody habit, make angiosperm trees a highly prom- ising comparative system for understanding wood evolution at the molecular level. Keywords Wood • Fossils • Evolution • Xylogenesis Introduction The tallest known angiosperm tree is “Centurion”, a large Eucalyptus regnans from Tasmania measuring 99.6 m in height, 12 m around at the base, with an above ground biomass of 215 tonnes and an annual increment approaching one tonne (Sillett et al.
    [Show full text]
  • Chilean Pitavia More Closely Related to Oceania and Old World Rutaceae
    A peer-reviewed open-access journal PhytoKeys 19: 9–29Chilean (2012) Pitavia more closely related to Oceania and Old World Rutaceae... 9 doi: 10.3897/phytokeys.19.3912 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Chilean Pitavia more closely related to Oceania and Old World Rutaceae than to Neotropical groups: evidence from two cpDNA non-coding regions, with a new subfamilial classification of the family Milton Groppo1, Jacquelyn A. Kallunki2, José Rubens Pirani3, Alexandre Antonelli4 1 Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 – Ribeirão Preto, SP, Brazil 2 The New York Botanical Garden, Bronx, NY, 10458-5126, USA 3 Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil 4 Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, PO Box 461, 405 30 Gothenburg, Sweden Corresponding author: Milton Groppo ([email protected]) Academic editor: P. Acevedo-Rodríguez | Received 29 August 2012 | Accepted 5 December 2012 | Published 18 December 2012 Citation: Groppo M, Kallunki JA, Pirani JR, Antonelli A (2012) Chilean Pitavia more closely related to Oceania and Old World Rutaceae than to Neotropical groups: evidence from two cpDNA non-coding regions, with a new subfamilial classification of the family. PhytoKeys 19: 9–29. doi: 10.3897/phytokeys.19.3912 Abstract The position of the plant genus Pitavia within an infrafamilial phylogeny of Rutaceae (rue, or orange family) was investigated with the use of two non-coding regions from cpDNA, the trnL-trnF region and the rps16 intron. The only species of the genus, Pitavia punctata Molina, is restricted to the temperate forests of the Coastal Cordillera of Central-Southern Chile and threatened by loss of habitat.
    [Show full text]
  • Avaliação Do Efeito Dos Extratos E Frações Das Folhas De Balfourodendron Riedelianum (Rutaceae) Sobre Spodoptera Frugiperda (J
    EXTRATOS VEGETAIS Avaliação do Efeito dos Extratos e Frações das Folhas de Balfourodendron riedelianum (Rutaceae) sobre Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) ANDRÉIA P. MATOS1, ALESSANDRA R. P. AMBROZIN2, ANTONIO R. BERNARDO1, ANA C. VOLANTE1, PAULO C. VIEIRA1, JOÃO B. FERNANDES1, MARIA F. DAS G. FERNANDES DA SILva1 1Departamento de Química, Universidade Federal de São Carlos; 2Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Email: [email protected]. BioAssay 9:3 (2014) Evaluation of the Effect of Extracts and Fractions of Leafs from Balfourodendron riedelianum (Rutaceae) on Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) ABSTRACT - The armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of the maize crop, which causes huge damages to the productivity and quality of final product. Such pest is usually controlled by the use of insecticides as pyrethroids and organophosphates that can damage the environment and contaminate food. Thus, the search for new pesticides, more selective, less toxic and less damaging to environment is of high relevance. In this way, there is a growing interest in the use of natural products for the control of agricultural pests. Vegetable extracts or fractions and some compounds obtained from plants of the Rutaceae family show anti-food or insecticidal activity and the wide chemical diversity of this family, its high biological potential and the lack of assessment of insecticidal activity of Balfourodendron riedelianum motivated the present work, which has the main goal to evaluate the effect of extracts and fractions from leafs of B. riedelianum against S. frugiperda. Biological assays were performed incorporating 100 mg.Kg-1 of each extract or fraction to the artificial diet of S.
    [Show full text]
  • Chapter 5 Age and Historical Biogeography of the Pan Tropically
    Phylogeny and biogeography of Spathelioideae (Rutaceae) Appelhans, M.S. Citation Appelhans, M. S. (2011, November 15). Phylogeny and biogeography of Spathelioideae (Rutaceae). Retrieved from https://hdl.handle.net/1887/18076 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis License: in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/18076 Note: To cite this publication please use the final published version (if applicable). Chapter 5 Age and historical biogeography of the pan tropically distributed Spathelioideae (Rutaceae, Sapindales) Marc S. Appelhans, Paul J.A. Keßler, Erik Smets, Sylvain G. Raza!mandim- bison & Steven B. Janssens Resubmitted a"er revision to Journal of Biogeography Abstract #e main objective of this study is to present the !rst molecular dating and biogeographic analyses of the subfamily Spathelioideae (Rutaceae), which allow us to unravel the temporal and spatial origins of this group, ascertaining possible vicariant patterns and dispersal routes and determining diversi!cation rates through time. A dataset comprising a complete taxon sampling at generic level (83.3% at species level) of Spathelioideae was used for a Bayesian molecular dating analysis (BEAST). Four fossil cali- bration points and an age constraint for Sapindales were applied. An ancestral area recon- struction analysis utilising the dispersal-extinction-cladogenesis model and diversi!cation rate analyses were conducted. Rutaceae and Spathelioideae are probably of Late Cretaceous origin, wherea"er Spatheli- oideae split into a Neotropical and a Paleotropical lineage. #e Paleotropical taxa have their origin in Africa with dispersal events to the Mediterranean, the Canary Islands, Madagascar and South-East Asia.
    [Show full text]
  • Paleocene Wind-Dispersed Fruits and Seeds from Colombia and Their Implications for Early Neotropical Rainforests
    IN PRESS Acta Palaeobotanica 54(2): xx–xx, 2014 DOI: 10.2478/acpa-2014-0008 Paleocene wind-dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests FABIANY HERRERA1,2,3, STEVEN R. MANCHESTER1, MÓNICA R. CARVALHO3,4, CARLOS JARAMILLO3, and SCOTT L. WING5 1 Department of Biology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA; e-mail: [email protected]; [email protected] 2 Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA 3 Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá; e-mail: [email protected] 4 Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA; e-mail: [email protected] 5 Department of Paleobiology, NHB121, Smithsonian Institution, Washington, D.C. 20013-7012, USA; e-mail: [email protected] Received 24 May 2014; accepted for publication 18 September 2014 ABSTRACT. Extant Neotropical rainforests are well known for their remarkable diversity of fruit and seed types. Biotic agents disperse most of these disseminules, whereas wind dispersal is less common. Although wind-dispersed fruits and seeds are greatly overshadowed in closed rainforests, many important families in the Neotropics (e.g., Bignoniaceae, Fabaceae, Malvaceae, Orchidaceae, Sapindaceae) show numerous morphological adaptations for anemochory (i.e. wings, accessory hairs). Most of these living groups have high to moderate lev- els of plant diversity in the upper levels of the canopy. Little is known about the fossil record of wind-dispersed fruits and seeds in the Neotropics. Six new species of disseminules with varied adaptations for wind dispersal are documented here.
    [Show full text]
  • Evolution of the Angiosperms and Co-Evolution of Secondary Metabolites, Especially of Alkaloids
    Evolution of the Angiosperms and Co-evolution of Secondary Metabolites, Especially of Alkaloids Michael Wink Contents 1 Introduction: Evolution and Functions of Secondary Metabolites .. ... .. ... .. ... ... .. ... .. 2 1.1 Plant Secondary Metabolism ........................................................... 2 1.2 Functions of Plant Secondary Metabolites as Defense Compounds . ............... 4 1.3 Functions of Plant Secondary Metabolites as Signal Compounds . .................. 5 1.4 Adaptation of Herbivores ............................................................... 6 2 Evolution and Function of Alkaloids ........................................................ 6 2.1 Evolution of Alkaloids ................................................................. 9 3 Evolution of Angiosperms, Pollinating Insects, and Defense via Alkaloids . ............... 18 4 Co-evolution of Angiosperms, Animals, and Alkaloids ..................................... 20 5 Conclusions ................................................................................... 21 References ........................................................................................ 22 Abstract Plants produce a wide variety of secondary metabolites (PSM) for protection against herbivores, microorganisms, and competing plants. PSM also function as signal compounds to attract pollinating and fruit-dispersing animals. PSM occur in complex mixtures, which vary between organs and developmental stages of a plant. PSM have been structurally optimized during evolution to affect
    [Show full text]