The Master Neural Transcription Factor BRN2 Is an Androgen Receptor Suppressed Driver Of

Total Page:16

File Type:pdf, Size:1020Kb

The Master Neural Transcription Factor BRN2 Is an Androgen Receptor Suppressed Driver Of Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The master neural transcription factor BRN2 is an androgen receptor suppressed driver of neuroendocrine differentiation in prostate cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3 and Amina Zoubeidi1,2 1: Vancouver Prostate Centre, Vancouver, BC, CAN. 2: Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver BC, CAN. 3: Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA. Running Title: BRN2 is an androgen-suppressed driver of NEPC Conflict of Interest: The authors have no conflicts of interest to disclose. Corresponding Author Information: Amina Zoubeidi, PhD Associate Professor Vancouver Prostate Centre Department of Urologic Sciences, University of British Columbia [email protected] 2660 Oak Street, Vancouver BC V6H3Z6, CAN 604-875-4818 1 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 ABSTRACT 2 Mechanisms controlling emergence of lethal neuroendocrine prostate cancer (NEPC), especially those 3 that are consequences of treatment-induced suppression of the androgen receptor (AR), remain 4 elusive. Using a unique model of AR pathway inhibitor-resistant prostate cancer, we identified AR- 5 dependent control of the neural transcription factor BRN2 as a major driver of NEPC and aggressive 6 tumor growth, both in vitro and in vivo. Mechanistic studies showed the AR directly suppresses BRN2 7 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker, SOX2. 8 Underscoring its inverse correlation with classic AR activity in clinical samples, BRN2 expression was 9 highest in NEPC tumors and was significantly increased in CRPC compared to adenocarcinoma, 10 especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent 11 control of NEPC and suggest targeting BRN2 is a strategy to treat or prevent neuroendocrine 12 differentiation in prostate tumors. 13 14 15 16 17 18 19 20 21 22 23 2 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 24 SIGNIFICANCE 25 Understanding the contribution of the androgen receptor (AR) to the emergence of highly lethal, drug 26 resistant neuroendocrine prostate cancer (NEPC) is critical for better implementation of current 27 standard of care therapies and novel drug design. Our first-in-field data underscore the consequences 28 of potent AR inhibition in prostate tumors, revealing a novel mechanism of AR-dependent control of 29 neuroendocrine differentiation and uncover BRN2 as a potential therapeutic target to prevent 30 emergence of NEPC. 31 32 . 33 34 35 36 37 38 39 40 41 42 43 44 3 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 45 INTRODUCTION 46 Progression from primary prostate cancer (PCa) to advanced metastatic disease is heavily 47 dependent on the androgen receptor (AR), which fuels tumor survival. In men where treatments for 48 localized prostate tumors have failed, or in those who present with metastatic disease, androgen 49 deprivation therapies (ADT) are used to deplete circulating androgens to abrogate AR signalling and 50 prevent disease progression. Eventually however, PCa recurs after first-line ADT as castration resistant 51 prostate cancer (CRPC). Despite low levels of serum androgens in men with CRPC, reactivation of the 52 AR occurs; thus it remains central to tumor cell survival, proliferation and metastatic spread. Thus, 53 targeting the AR is a cornerstone therapeutic intervention in CRPC patients and AR pathway inhibitors 54 (APIs) that further prevent AR activation, such as enzalutamide (ENZ), have become mainstays in the 55 PCa treatment landscape (1). Despite being a potent API, the treatment benefits of ENZ are short lived 56 in CRPC patients and resistance rapidly occurs (2). 57 ENZ resistant (ENZR) CRPC represents a significant clinical challenge due not only to the lack 58 of third-line treatment options to prevent AR driven tumor progression, but also because it can be a 59 precursor to rapidly progressing and lethal neuroendocrine prostate cancer (NEPC). Although NEPC 60 can rarely arise de-novo, it is increasingly defined as a variant of highly API-resistant CRPC (3,4). 61 Aside from the unique small cell morphology and positive staining for neuroendocrine (NE) markers that 62 characterize NEPC, it is often distinguished from prostatic adenocarcinoma by reduced AR expression 63 or activity (5). Clinical presentation of NEPC reflects this shift away from reliance on the AR, as patients 64 typically present with low circulating levels of prostate specific antigen (PSA) despite high metastatic 65 burden in soft tissues, and are refractory to APIs (3). Importantly, it has been reported that under the 66 strong selective pressure of potent APIs like ENZ, these “non-AR driven” prostate cancers, which 67 include NEPC, may constitute up to 25% of advanced, drug resistant CRPC cases (6). Not surprisingly 68 therefore, the incidence of NEPC has significantly increased in recent years (7), coinciding with the 69 widespread clinical use of APIs. 4 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 70 A number of molecular mechanisms likely facilitate the progression of CRPC to NEPC. These 71 include loss of tumor suppressors like RB1 (8,9) and p53 (10), amplification of n-Myc (11), mitotic 72 deregulation through AURKA (11) and PEG10 (12), epigenetic controls such as REST (13-15) and 73 EZH2 (11,16) and splicing factors like SSRM4 (14,17). Importantly, the AR plays a crucial, albeit still 74 mechanistically unclear, role in NEPC. Reports over many years have highlighted how ADT (18,19) or 75 loss of AR promotes the NE differentiation of prostate cancer cells (reviewed in (20))); as such, many 76 genes associated with a NE phenotype, including ARG2 (21), hASH-1 (22) and REST (15,23) are 77 controlled by the AR. Although this evidence underscores an inverse correlation between AR 78 expression and/or activity and molecular events leading to NEPC, the mechanisms by which the AR 79 directly influence the induction of a NEPC phenotype from CRPC under the selective pressure of APIs 80 like ENZ remain elusive. 81 Answering such questions requires a model of API resistant CRPC that recapitulates the trans- 82 differentiation of adenocarcinoma to NEPC that occurs in patients. Herein, we present an in vivo 83 derived model of ENZR, which different to others (24-26), underscores the emergence of tumors with 84 heterogeneous mechanisms of resistance to ENZ over multiple transplanted generations. These 85 include the natural acquisition of known AR mutations found in ENZR patients (26-29) and the 86 transdifferentiation of NEPC-like tumors through an AR+ state, without the manipulation of oncogenes 87 typically used to establish NEPC in murine PCa models (30-32) . Using this model and human PCa 88 patient data, we show that a master regulator of neuronal differentiation, the POU-domain transcription 89 factor BRN2 (POU3F2) (33), is directly transcriptionally repressed by the AR, is required for the 90 expression of terminal NE markers and aggressive growth of ENZR CRPC, and is highly expressed in 91 human NEPC and metastatic CRPC with low circulating PSA. Beyond suppressing BRN2 expression 92 and activity, we also show that the AR inhibits BRN2 regulation of SOX2, another transcription factor 93 associated with NEPC. These results suggest that relief of AR-mediated suppression of BRN2 is a 94 consequence of ENZ treatment in CRPC that may facilitate the progression of NEPC, especially in men 5 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 95 with “non-AR driven” disease. 96 RESULTS 97 Emergence of AR-driven and non- driven tumors in ENZR CRPC 98 To model ENZ resistant (ENZR) disease, we developed cell lines from LNCaP-CRPC and ENZR 99 LNCaP-CRPC xenograft tumors. LNCaP cells were used to establish subcutaneous tumors in intact 100 male athymic nude mice and upon tumor growth and rising PSA, mice were castrated. Once tumors 101 recurred (CRPC) mice were treated with vehicle or 10mg/kg ENZ daily and monitored for tumor growth 102 (Fig. S1A, Supplementary Methods). While ENZ treatment did slow tumor growth compared to vehicle 103 control, it did not prevent tumor recurrence (Fig. 1A) and the majority of (9 out of 10, 90%) ENZ treated 104 CRPC tumors increased in tumor volume with concomitant rise in PSA (Fig.
Recommended publications
  • The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer
    Published OnlineFirst October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 RESEARCH ARTICLE The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3, and Amina Zoubeidi1,2 ABSTRACT Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mecha- nistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with clas- sic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug- resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design.
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain
    Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 RESEARCH ARTICLE PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability Berkley E. Gryder 1 , Marielle E. Yohe 1 , 2 , Hsien-Chao Chou 1 , Xiaohu Zhang 3 , Joana Marques 4 , Marco Wachtel4 , Beat Schaefer 4 , Nirmalya Sen 1 , Young Song 1 , Alberto Gualtieri 5 , Silvia Pomella 5 , Rossella Rota5 , Abigail Cleveland 1 , Xinyu Wen 1 , Sivasish Sindiri 1 , Jun S. Wei 1 , Frederic G. Barr 6 , Sudipto Das7 , Thorkell Andresson 7 , Rajarshi Guha 3 , Madhu Lal-Nag 3 , Marc Ferrer 3 , Jack F. Shern 1 , 2 , Keji Zhao8 , Craig J. Thomas 3 , and Javed Khan 1 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2017 American Association for Cancer Research. 16-CD-16-1297_p884-899.indd 884 7/20/17 2:21 PM Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 ABSTRACT Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and ado- lescent young adults, driven primarily by the chimeric transcription factor PAX3–FOXO1. The mechanisms by which PAX3–FOXO1 dysregulates chromatin are unknown. We fi nd PAX3–FOXO1 repro- grams the cis -regulatory landscape by inducing de novo super enhancers. PAX3–FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3–FOXO1-occupied super enhancers.
    [Show full text]
  • PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
    Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15).
    [Show full text]
  • PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
    Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15).
    [Show full text]
  • In Mediating Transcriptional Activity of Androgen Receptor Splice Variants
    ROLE OF TRANSCRIPTIONAL ACTIVATION UNIT 5 (TAU5) IN MEDIATING TRANSCRIPTIONAL ACTIVITY OF ANDROGEN RECEPTOR SPLICE VARIANTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SARITA KUMARI MUTHA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE SCOTT DEHM & JIM McCARTHY DECEMBER 2012 © Sarita Kumari Mutha 2012 ACKNOWLEDGEMENTS I would like to thank the Dehm Lab: Scott Dehm, Yingming Li, Siu Chiu Chan, and Luke Brand for the support, discussions, journal clubs, and training. I would like to thank MCBD&G faculty Kathleen Conklin and Meg Titus for their support. Finally, I would also to acknowledge my committee Scott Dehm, Jim McCarthy, and Kaylee Schwertfeger for their time and support. i DEDICATION This thesis is dedicated to my mentor and advisor Scott Dehm. This work would not have been possible without his support. I am very grateful for my time under his mentorship and the opportunity to learn from him. ii ABSTRACT The standard treatment for advanced prostate cancer is chemical castration, which inhibits the activity of the androgen receptor (AR). Eventually, prostate cancer reemerges with a castration-resistant phenotype (CRPC) but still depends on AR signaling. One mechanism of AR activity in CRPC is the synthesis of AR splice variants, which lack the ligand binding domain. These splice variants function as constitutively active transcription factors that promote expression of endogenous AR target genes and support androgen independent prostate cancer cell growth. Previous work has shown transcriptional activation unit 5 (TAU5) is necessary for ligand independent activity of the full length AR in low or no androgen conditions and that this activation is mediated by the WHTLF motif.
    [Show full text]
  • Functional Impact of a Germline RET Mutation in Alveolar Rhabdomyosarcoma
    Downloaded from molecularcasestudies.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Follow-up Report for CSHL Molecular Case Studies Functional impact of a germline RET mutation in alveolar rhabdomyosarcoma Mutant RET in alveolar rhabdomyosarcoma Noah E. Berlow1*, Kenneth A. Crawford1, Carol J. Bult2, Christopher Noakes3, Ido Sloma3, Erin R. Rudzinski4, Charles Keller1* 1 Children’s Cancer Therapy Development Institute, Beaverton, OR 97005 USA 2 The Jackson Laboratory, Bar Harbor, ME 04609 USA 3 Champions Oncology, One University Plaza, Hackensack, NJ 07601 USA 4 Seattle Children's Hospital, Seattle, WA 98105 USA * Correspondence: Noah E. Berlow, Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton OR 97005 USA, Tel (806) 370-8119, Fax (270) 675-3313, email [email protected] Charles Keller, Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton OR 97005 USA, Tel (801) 232-8038, Fax (270) 675-3313, email [email protected] Keywords: RET, alveolar rhabdomyosarcoma, endotypes in rhabdomyosarcoma, genetic profiles, transcriptomic profiles, drug screening, combination therapy word count (2333 words in main text, excluding Abstract, Methods, References and figure legends) 1 Downloaded from molecularcasestudies.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Specific mutations in the RET proto-oncogene are associated with multiple endocrine neoplasia type 2A, a hereditary syndrome characterized by tumorigenesis in multiple glandular elements. In rare instances, MEN2A- associated germline RET mutations have also occurred with non-MEN2A associated cancers. One such germline mutant RET mutation occurred concomitantly in a young adult diagnosed with alveolar rhabdomyosarcoma, a pediatric and young adult soft-tissue cancer with a generally poor prognosis.
    [Show full text]
  • TBX3 Represses TBX2 Under the Control of the PRC2 Complex In
    Oh et al. Oncogenesis (2019) 8:27 https://doi.org/10.1038/s41389-019-0137-z Oncogenesis ARTICLE Open Access TBX3 represses TBX2 under the control of the PRC2 complex in skeletal muscle and rhabdomyosarcoma Teak-Jung Oh1, Abhinav Adhikari 2, Trefa Mohamad3, Aiysha Althobaiti2 and Judith Davie2 Abstract TBX2 and TBX3 function as repressors and are frequently implicated in oncogenesis. We have shown that TBX2 represses p21, p14/19, and PTEN in rhabdomyosarcoma (RMS) and skeletal muscle but the function and regulation of TBX3 were unclear. We show that TBX3 directly represses TBX2 in RMS and skeletal muscle. TBX3 overexpression impairs cell growth and migration and we show that TBX3 is directly repressed by the polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27 (H3K27me). We found that TBX3 promotes differentiation only in the presence of early growth response factor 1 (EGR1), which is differentially expressed in RMS and is also a target of the PRC2 complex. The potent regulation axis revealed in this work provides novel insight into the effects of the PRC2 complex in normal cells and RMS and further supports the therapeutic value of targeting of PRC2 in RMS. Introduction phenotypes and the presence of myogenic markers such 4 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Rhabdomyosarcoma (RMS) is the most common soft as myogenic regulatory factors (MRFs) , yet these factors tissue pediatric sarcoma, which is thought to largely arise appear to be inactive in RMS5. from the skeletal muscle lineage1. The more common The T-box family of transcription factors are highly form of the disease is the embryonal subtype (ERMS), conserved and related throughout all metazoan lineages.
    [Show full text]
  • Mechanisms of 4-Hydroxytamoxifen- Induced Apoptosis in Rhabdomyosarcoma Cells
    MECHANISMS OF 4-HYDROXYTAMOXIFEN- INDUCED APOPTOSIS IN RHABDOMYOSARCOMA CELLS by Kevin Min Chen A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Kevin Min Chen (2011) Mechanisms of 4-hydroxytamoxifen-induced apoptosis in rhabdomyosarcoma cells Kevin Min Chen Master of Science Department of Medical Biophysics University of Toronto 2011 ABSTRACT Rhabdomyosarcoma (RMS) is a malignant soft-tissue sarcoma in children, accounting for about 40% of pediatric soft-tissue tumours. Five-year survival for metastatic RMS is only about 25%. Furthermore, there has been no significant improvement in RMS survival since 1975, pointing to a need for improved therapy. Previous work in our lab has shown that 4-hydroxytamoxifen (4OHT) leads to increased apoptosis and decreased viability in RMS cells. Expanding on this work, the current project aims to elucidate the mechanisms behind 4OHT-induced apoptosis in RMS cells, focusing on the roles of estrogen receptors (ER) and MAP kinases (MAPK). We found that: 1) 4OHT-induced apoptotic signaling was associated with increased MAPK phosphorylation, 2) Inhibition of MAPK protected cells against 4OHT, 3) Inhibition of ER also protected against 4OHT, and 4) ER inhibition blocked 4OHT- associated MAPK phosphorylation. ii ACKNOWLEDGEMENTS This work would not have been possible without the generous support and assistance received from the individuals and organizations below: Funding was provided in part by a Frederick Banting and Charles Best Canada Graduate Scholarship (CGS) - Master's Award, from the Canadian Institutes of Health Research (CIHR). Much gratitude goes to Dr. David Malkin for his guidance, and for cultivating a healthy and stimulating research environment.
    [Show full text]
  • Determinants of PAX3 Behavior: a Molecular and Cellular Analysis of the PAX3 Transcription Factor and Disease-Associated Mutants
    University of Alberta Determinants of PAX3 behavior: A molecular and cellular analysis of the PAX3 transcription factor and disease-associated mutants by Gareth Neill Corry A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences - Medical Genetics Edmonton, Alberta Spring 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-45411-4 Our file Notre reference ISBN: 978-0-494-45411-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Role of SOX10 in the Development of Neural Crest-Derived Melanocytes and Glia
    Oncogene (2003) 22, 3024–3034 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia Ramin Mollaaghababa1 and William J Pavan*,1 1National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4472, USA SOX10w is a member of the high-mobility group-domain differentiate to form melanocytes of the skin, hair, and SOX family of transcription factors, which are ubiqui- inner ear while others move ventrally, either through the tously found in the animal kingdom. Disruption of neural somites or in the space between the somites and the crest development in the Dominant megacolon (Dom) neural tube, and contribute to the formation of mice is associated with a Sox10 mutation. Mutations in additional distinct lineage. These include sensory human Sox10 w gene have also been linked with the neurons and glia, neurons and glia of cranial ganglia, occurrence of neurocristopathies in the Waardenburg– cartilage and bone, connective tissue, and neuroendo- Shah syndrome type IV (WS-IV), for which the Sox10Dom crine cells (Le Douarin and Kalcheim, 1999). mice serve as a murine model. The neural crest disorders The specification of neural crest to distinct lineage in the Sox10Dom mice and WS-IV patients consist of and their proper differentiation is dependent on both hypopigmentation, cochlear neurosensory deafness, and intrinsic factors and environmental interactions (La- enteric aganglionosis. Consistent with these observations, Bonne and Bronner-Fraser, 1998). The use of mouse a critical role for SOX10 in the proper differentiation of neural crest mutants has been instrumental in the neural crest-derived melanocytes and glia has been identification and analysis of genes essential for proper demonstrated.
    [Show full text]
  • Regulation of Target Genes of PAX3−FOXO1 in Alveolar Rhabdomyosarcoma
    ANTICANCER RESEARCH 33: 2029-2036 (2013) Regulation of Target Genes of PAX3−FOXO1 in Alveolar Rhabdomyosarcoma EUN HYUN AHN1,2 1Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A.; 2Department of Pathology, School of Medicine, University of Washington, Seattle, WA, U.S.A. Abstract. Background: The majority of alveolar major subtypes based on their histological appearance: rhabdomyosarcoma (ARMS) are distinguished through the embryonal rhabdomyosarcoma (ERMS) and alveolar paired box 3−forkhead box protein O1 (PAX3−FOXO1) rhabdomyosarcoma (ARMS) (1). ARMS has a higher fusion oncoprotein, being generated by a 2;13 chromosomal frequency of metastases at the initial diagnosis than ERMS, translocation. This fusion-positive ARMS is the most commonly conferring a poorer prognosis than ERMS (2, 3). clinically difficult type of rhabdomyosarcoma. The present A common characteristic of ERMS is a loss of study characterized four genes [gremlin 1 (GREM1), death- heterozygosity at 11p15, however ERMS has not been associated protein kinase-1 (DAPK1), myogenic reported to exhibit a diagnostic genetic alteration. In contrast, differentiation-1 (MYOD1), and hairy/enhancer-of-split chromosomal translocation is frequently observed for ARMS related with YRPW motif-1 (HEY1)] as targets of (4, 5). The translocation t(2;13)(q35;q14) generating the PAX3−FOXO1. Materials and Methods: The expression of paired box 3−forkhead box protein O1 (PAX3−FOXO1) gene the four genes, PAX3−FOXO1, and v-myc myelocytomatosis fusion was found to occur in 55% of ARMS cases, while the viral-related oncogene, neuroblastoma-derived (avian) translocation t(1;13)(q36;q14) generating the paired box (MYCN) was determined in various ARMS cell models and 7−forkhead box protein O1 (PAX7−FOXO1) gene fusion primary tumors.
    [Show full text]