Evolution of the Mid-Channel Bars in the Middle and Lower Reaches of the Changjiang (Yangtze) River from 1989 to 2014 Based on T

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Mid-Channel Bars in the Middle and Lower Reaches of the Changjiang (Yangtze) River from 1989 to 2014 Based on T Environmental Earth Sciences (2018) 77:394 https://doi.org/10.1007/s12665-018-7576-2 ORIGINAL ARTICLE Evolution of the mid-channel bars in the middle and lower reaches of the Changjiang (Yangtze) River from 1989 to 2014 based on the Landsat satellite images: impact of the Three Gorges Dam Yaying Lou1 · Xuefei Mei1 · Zhijun Dai1,2 · Jie Wang1 · Wen Wei1 Received: 11 August 2017 / Accepted: 16 May 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The mid-channel bars have long been identified as essential landforms in the large rivers of the world, and the significance of connectivity between morphology and flow-sediment dynamics has been intensively emphasized. In this study, remote sensing images and associated hydrological data from 1989 to 2014 were used to explore mid-channel bars evolution in the middle and lower reach of the Changjiang and their responses to the Three Gorges Dam (TGD), the world’s largest hydrologi- cal engineering. The results indicated that mid-channel bars, respectively, exhibited deposition and erosion in the flood and dry season in pre-TGD period, while mild deposition in flood season and deposition in dry season were found in post-TGD period. As a consequence, mid-channel bars area was characterized by ‘remarkable seasonal differences in pre-TGD period, mild seasonal pattern in post-TGD period’. The obvious shift in seasonal features could be attributed to the TGD operation in 2003. Specifically, flood duration decrease and sediment load reduction following TGD regulation suppressed the bars growth in flood season. TGD-induced variations in differences between sediment carry capacity and suspended sediment concentration resulted in the bars transformation in dry season. Meanwhile, the change trends of downstream mid-channel bars became weak as their locations’ distance to TGD increases because of the river adjustment and tributaries supplement. Moreover, mid-channel bars in different river patterns presented various change trends with the most remarkable variation being detected in goose-head-shaped river pattern. The results of this paper provide a theoretical basis for the river channel improvement in the middle and lower reaches of the Changjiang River. Keywords Mid-channel bars · Morphodynamic process · Sediment · Changjiang (Yangtze) River · Three Gorges Dam (TGD) Introduction bars can be vegetated, with flow discharge passing through both sides (Hooke and Yorke 2011). As unique geomorphic Mid-channel bars, i.e., a free bar in the middle of a chan- cells and components are present in braided river and estuary nel, are typical accumulation landforms that are distributed area, mid-channel bars are of vital importance to maintain worldwide over river channels (Bristow and Best 1993). the river and estuarine channel stability and protect adja- Generally seen in diamond or lozenge-shaped, mid-channel cent wetlands (Hooke 1986; Bristow and Best 1993; Sanford 2007). Thus, morphodynamic evolution of the mid-channel bars along fluvial rivers has received attention in the litera- * Zhijun Dai ture (Leopold and Wolman 1957; Hooke 1986; Lippmann [email protected] and Holman 1990). Yaying Lou The earlier studies about river bars leaned to analyze [email protected] their formation mechanism and natural evolution and aggradation (Knighton 1972; Church and Jones 1982; Ash- 1 State Key Lab of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China worth 1996). Knighton (1972) recognized that a number of mid-channel bars on the Bollin River were arisen where 2 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, the bank was rapidly eroded and the channel became wid- Qingdao 266100, China ened. More and more researches have focused on the Vol.:(0123456789)1 3 394 Page 2 of 18 Environmental Earth Sciences (2018) 77:394 contribution of detached bars to the meander form devel- Study area opment and variations. Church and Jones (1982) identi- fied three major causes of bars’ formation: reduce in shear Changjiang River is the longest river (about 6300 km) in stress, widening of the channel and tributary entrances Asia with a drainage area of about 1.8 × 107 km2 (Wang (all of which lead to flow divergence). Thereafter, Ash- et al. 2009; Dai and Liu 2013; Dai et al. 2014; Mei et al. worth (1996) demonstrated the bars’ development process 2016). The reach between Chenglingji and Datong (CD) and linked the process to changes in channel geometry belongs to the middle and lower reach of the Changji- and local flow strength and direction. In addition, a series ang River, which is one of the densely populated area of of recent research works further conducted the specific Changjiang River (Dai and Liu 2013). Chenglingji–Datong bars’ formation and evolution mechanisms globally, and (CD) reach is about 753.4 km in length with the Han showed that their evolutions were related to the hydrologi- River and Poyang Lake mingling in at Hankou and cal regime (Ashworth et al. 2000; Lunt and Bridge 2004; Hukou, respectively (Fig. 1). Accordingly, this reach Burge 2006; Szupiany et al. 2009; Baubinienė et al. 2015). can be further divided into three reaches: CH reach from With intensive human intervention and occupation, the Chenglingji to Hankou, HJ reach from Hankou to Jiuji- natural river regimes were gradually replaced by the regu- ang and JD reach from Jiujiang to Datong. The hydrologic lated flow, which dramatically affected the mid-channel regimes in these reaches are monitored by five hydrologi- bars’ evolution and gained international concerns (Sanford cal stations, namely, Luoshan, Hankou, Huangshi, Jiujiang 2007; Skalak et al. 2013; Kiss and Balogh 2015; Raška and Datong. The annual runoff (from 1951 to 2002) in et al. 2016). For example, Sanford (2007) showed that in Luoshan, Hankou and Datong were about 6.5 × 1012 m3, the Missouri River, dam regulated rate of flow resulted in 7.1 × 1012 m3 and 9 × 1012 m3, respectively, while the con- the decrease in the sand bars’ area, less centroid migra- temporary sediment load were 4.15 × 109 t, 3.98 × 109 t and tion and more easy bars aggregation. Kiss and Balogh 4.28 × 109 t. Due to the effect of monsoon, the runoff and (2015) showed the point-bars developed quickly upstream sediment in Chenglingji–Datong reach are mainly con- and laterally in the Dráva River, because of the coarse centrated in the flood season (May to October), when the sediment supply and the decreasing stream energy by the runoff, respectively, accounted for 74.2, 73.3 and 71.1% dam effect. Raška et al. (2016) discovered most islands of the total runoff in the three reaches from upstream to have disappeared because of the construction of dams downstream, while the sediment took up 85.5, 87.6, 87.7% and lock chambers in Elbe River. Meanwhile, a series of of the total sediment load (Pan 2011). water conservancy projects have been constructed along As a braided river with sandy beds, CD reach has devel- the Changjiang River, especially, the Three Gorges Dam oped a number of mid-channel bars (Fig. 1) (Yu 2005). To (TGD), currently the world’s largest water conservancy facilitate statistic, stable and relatively large bars that can project, which influences the hydrological regime (Chen be observed in both flood and dry seasons were selected et al. 2017) and may affect dozens of sand bars in the in this study. Besides, based on the channel classification downstream reaches (Xu 2013; Zhu et al. 2015; Li 2011). theory of Rust (1978) and Chien (1987), it was further pro- For instance, Zhu et al. (2015) analyzed the evolution posed that braided river with different sinuosities can be characteristics and trend of the braided channels in the divided into straight braided river, bending braided river middle Changjiang reach, and found that the mid-channel and goose-head-shaped braided river. These three river bars in lower Jingjiang reach experienced the most severe types are described in Fig. 2, while the related specific erosion after the TGD impoundment. However, the previ- mid-channel bars number in each river type are shown in ous understanding on bars change have been mainly con- Table 1. ducted along Jingjiang reach and ignored variations along the further downstream reach (Shao et al. 2005; Jiang et al. 2010). Besides, according to classification of river chan- nel by Rust (1978), Chenglingji–Datong reach belongs Materials and methods to a braided river with different sinuosities, which could also affect the bars’ development which is why it needs an Traditional mid-channel bars’ research methods included urgent research. model simulation (Leopold and Wolman 1957), numeri- Therefore, the objectives of this paper are to (1) explore cal method (Davoren and Mosley 1986; Ashworth et al. the evolution of braided bars along the Chenglingji–Datong 2000), historical maps and aerial photos analysis (Hooke reach of Changjiang River, (2) identify the change character- 1986; Sanford 2007; Raška et al. 2016). The methods of istics of the mid-channel bars in braided river with different model simulation and numerical method are prone on the sinuosities, (3) discuss associated variation mechanism of theoretical analysis, which, however, cannot document the mid-channel bars evolution. 1 3 Environmental Earth Sciences (2018) 77:394 Page 3 of 18 394 Fig. 1 Study area of Chenglingji to Datong reaches Fig. 2 Three kinds of braided river diagram; a straight braided river; b bending braided river; c goose-head-shaped braided river real situation properly. Besides, although historical maps used to examine the significance of area changing between and aerial photos are more intuitive in exploring the bars’ two periods (Makwana et al. 2016). development, there are no lasting yearly observed maps or photos in this study. In recent decades, with technological advancement, remote sensing images have been widely Satellite imagery selection and data source used in bars’ observation and study because of high resolu- tion and easy accessibility (Moretto et al.
Recommended publications
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy e n v i r o n m e n t a l s c i e n c e & p o l i c y 1 4 ( 2 0 1 1 ) 1 1 3 2 – 1 1 3 8 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/envsci The environmental changes and mitigation actions in the Three Gorges Reservoir region, China a, b,1 Quanfa Zhang *, Zhiping Lou a Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China b Bureau of Life Sciences and Biotechnology, Chinese Academy of Sciences, Beijing 100864, PR China a r t i c l e i n f o a b s t r a c t The Three Gorges Dam (TGD) is by far the world’s largest hydroelectric scheme. Due to its Published on line 17 August 2011 unprecedented magnitude, the TGD has been controversial ever since it was proposed in the early 20th century and building commenced in 1993.
    [Show full text]
  • Three Gorges Dam in Hubei, China: a Cost and Benefit Analysis
    Economic Analysis of Public Policy Professor Yoshitsugu Kanemoto Graduate School of Public Policy, University of Tokyo Final Report Three Gorges Dam in Hubei, China: A Cost and Benefit Analysis Felipe Francisco De Souza Graduate School of Engineering, University of Tokyo Baozhi Gu, Kenji Kurotobi Graduate School of Public Policy, University of Tokyo Yuri Kim Graduate School of Frontier Sciences, University of Tokyo August 2013 Executive Summary Situated on a canyon known as the Three Gorges in Hubei, China, Yangtze River’s Three Gorges Dam is the world’s largest power station in terms of installed capacity (22,500 MW). The project was initiated by the Chinese government in 1994, with the support of different international cooperation agencies, for three main reasons. First of all, it would generate hydroelectricity to meet China’s rapidly increasing demand. Second, the Three Gorges Dam would protect millions of people living along the river from potential floods. And finally, it would transform a 600- kilometre stretch of the fast-flowing river into a smooth navigable waterway for vessels and provide business opportunities to western landlocked provinces. The Chinese government regards this project as a historic engineering, social and economic success, with the design of sophisticated large turbines, and a move toward limiting greenhouse gas emissions. However, the dam has been a controversial topic, the reason why a cost and benefit analysis was developed to understand all possible variables related to this gigantic project and its complicated development process. For the evaluation of major benefit components, special care was taken to understand flood control (and dam’s capacity to control 100 years events); electricity generation (and the reduction of CO2 emissions); and the enhanced shipping capacity (allowing the transit of large quantities of cargos).
    [Show full text]
  • Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts
    Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey Geographical Overview of the Three Gorges Dam and Reservoir, China— Geologic Hazards and Environmental Impacts By Lynn M. Highland Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Highland, L.M., 2008, Geographical overview of the Three Gorges dam and reservoir, China—Geologic hazards and environmental impacts: U.S. Geological Survey Open-File Report 2008–1241, 79 p. http://pubs.usgs.gov/of/2008/1241/ iii Contents Slide 1...............................................................................................................................................................1
    [Show full text]
  • Safety Navigation Control of Huangshi Bridge
    Advances in Engineering Research, volume 166 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018) Safety Navigation Control of Huangshi Bridge Tongtong Lu1,a,*, Zeyuan Shao1,b, Huachao Peng1 and Wanzheng Ai2,c, Honggang Zhang2 1Marine College, Zhejiang Ocean University, Zhoushan, Zhejiang, P. R. China 2Marine College, Zhejiang Ocean University, Zhoushan, Zhejiang, P. R. China a [email protected], b [email protected], c [email protected] *corresponding author Keywords: Bridge area; Ships; Security; Navigation; Control. Abstract: Based on the analysis of the hydrological conditions, navigable conditions and navigable accidents of Huangshi Bridge, this paper puts forward the safety navigable control measures of Huangshi Bridge . 1. Introduction Huangshi Yangtze River Bridge is a super large bridge on National Highway 318, located in Huangshi City, Hubei Province, in the middle reaches of the Yangtze River. The length of the bridge is 2580.08 meters, the length of the main bridge is 1060 meters and the width of the bridge is 20m.Yellowstone bank approach bridge 840.7 meters long, consisting of continuous box girder bridge and bridge deck continuous T-beam bridge; Xishui shore approach bridge is 679.21 meters long and consists of a continuous T-beam bridge on the deck. The main pier adopts 28m diameter double-wall steel cofferdam and 16 Φ 3-meter bored cast-in-place pile foundation, which has high anti-ship impact capability. Navigable clearance 200x24 meters, can accommodate 5000 tons of single ships or 32000 tons of large fleet up and down navigation. However, since the construction of the bridge, there have been many accidents, and have been cited as teaching materials with improper distribution of bridge holes.[1].
    [Show full text]
  • A Yangtze Three Gorges Adventure ,,,,, .', ,'
    CL-15 N OT FOR PUBI' WITHOUT WRITER'S CONSENTIcATION] INSTITUTE OF CURRENT WORLD AFFAIRS LIFE & HU,,MAN RESPONS!,B!L!,TY: A YANGTZE THREE GORGES ADVENTURE ,,,,, .', ,',,, Part III "Damn Dam!" Shanghai, China Summer 1994 Mr. Peter Bird Martin Executive Director Institute of Current World Affairs 4 West Wheelock Street Hanover, NH 03755 U.S.A. Dear Peter, "How could it be possible that the Chinese government has still decided to build the dam at all with the great impact on the environment, cultural relics and migration?" Tony asked me when we stood on. the deck enjoying the beautiful scenery of the Xiling Gorge in the early morning of our last day ofthe cruise. "Is it a silly question?" Tony wanted to have my opinion. "No, not at all," I told Tony. "This is also the question that has puzzled me for several years." When I was a graduate student at Princeton, I intended to write a term paper on the feasibility of the Three Gorges Dam. But later I found it was extremely difficult to get information concerning the dam project because any data related to Cheng Li is a an ICWA fellow studying the political economy of the coast of China. Since 1925 the Institute of Current World Affairs (the Crane-Rogers Foundation) has provided long-term fellowships to enable outstanding young adults to live outside the United Sates and write about international areas and issues. Endowed by the late Charles R. Crane, the Institute is also supported by conu'ibutions from like-minded individuals and foundations. CL-15 2 A scene of the Xiling Gorge.
    [Show full text]
  • February 1995 Vol.7 No.2 the THREE GORGES DAM in CHINA: Forced Resettlement, Suppression of Dissent and Labor Rights Concern
    February 1995 Vol.7 No.2 THE THREE GORGES DAM IN CHINA: Forced Resettlement, Suppression of Dissent and Labor Rights Concerns I . Summary. .3 II. Muzzling the Critics . .5 III. Case of the "Democratic Youth Party". .9 IV. Population Relocation Program. 11 V. Labor Rights. 17 VI. Conclusions. 19 VII. Recommendations . 21 Appendix I . 24 Appendix II. 30 Appendix III . 37 Appendix IV. 45 I . Summary In April 1992, China's National People's Congress (npc) formally approved the "Resolution on the Construction of the Yangtze River Three Gorges Project," marking the conclusion of decades of controversy within the Chinese leadership in favor of supporters of the world's biggest-ever river dam project. Despite strenuous government attempts to muzzle the debate, almost one-third of the normally compliant npc delegates, in an unprecedented display of legislative dissent, either abstained or cast opposition votes. The following year, a pilot project for the resettlement of an estimated 1.1 to 1.6 million inhabitants of the proposed 600-kilometer-long reservoir area drew to a close and, in early 1994, the full resettlement program began in earnest. By mid-year, excavation and preparation of the dam's foundations were underway at Sandouping, the chosen dam site just downstream of the world-famous Three Gorges scenic area; in December, Premier Li Peng formally declared the project open. The Chinese government has offered overseas manufacturers US$3 billion worth of machinery and equipment contracts and will reportedly seek an additional US$5 billion or so in overseas funding for the project. International tendering has already begun for a preliminary range of dam-related construction contracts.
    [Show full text]
  • Downloaded in This Study the Was Level Conducted 1C Top of Onatmosphere the Google (L1C Earth Enginetoa) Data (GEE) from Platform 2017 to and 2018 Locally
    remote sensing Article Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images Yelong Zhao 1,2, Shenglei Wang 2, Fangfang Zhang 2,* , Qian Shen 2 and Junsheng Li 2,3,4 1 School of Geomatics, Liaoning Technical University, Fuxin 123000, China; [email protected] 2 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; [email protected] (S.W.); [email protected] (Q.S.); [email protected] (J.L.) 3 Key Laboratory of Earth Observation Hainan Province, Sanya 572029, China 4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-137-1765-5892 Abstract: The Yangtze River is the third longest river in the world. Monitoring and protecting its water quality are important for economic and social development. Water clarity (Secchi disk depth, SDD) is an important reference index for evaluating water quality. In this study, Sentinel-2 multispectral instrument (MSI) remote sensing images were utilized together with the Forel-Ule index (FUI) and hue angle α to construct an SDD retrieval model, which was applied to the Yangtze River from 2017 to 2020, which was used to describe color in the International Commission on Illumination (CIE) color space to construct an SDD retrieval model that was applied to the Yangtze River for the period 2017–2020. Further, the spatial distribution, seasonal variation, inter-annual variation, and Citation: Zhao, Y.; Wang, S.; Zhang, driving factors of the observed SDD variations were analyzed.
    [Show full text]
  • 湖北北 Hhuubbeeii Pprroovviinnccee
    HHuubbeeii PPrroovviinnccee 湖湖北北 HHuubbeeii PPrroovviinnccee Facts at a Glance Economic Indicators • Population: 57.2 million • GDP: RMB 1283.15 billion • Capital: Wuhan • GDP Ranking: 12th 湖湖北北 • Area: 185,900 sq. km • GDP growth rate: 13.2% • Governor: Li Hongzhong • GDP per capita: RMB 22,677 Hubei province in central China is located at the junction of • Major cities: • Disposable income (urban the Yangtze River Economic Belt from east to west and the - Wuhan (Capital) residents): RMB 14,367 Beijing-Guangzhou Railway Economic Belt from north to south. The province is bordered by Shaanxi to the northwest, - Yichang • Total FDI used: $3.66 billion Henan to the north, Anhui to the east, Jiangxi to the - Xiangfan southeast, Hunan to the south, and Chongqing Municipality to the west. Hubei's economy ranks 1st among the six - Jingzhou provinces in central China and 11th in the country. - Huanggang Major industries Hubei possesses strong regional advantages: it connects the east with the west and the north with the south, has strong • Automobiles scientific and education institutions, is rich in natural resources, offers good transport and communication • Iron & Steel infrastructures and has strong industrial bases. The province • Electronics is a key base for agricultural products, energy, raw materials • Food & beverage and equipment manufacturing in China. Often called the "land of fish and rice", Hubei is one of the key production • Textiles bases for commodity grain, cotton and oil and the largest • Shipbuilding production base for fresh water products. With the opening up of the Yangtze Economic Belt and the construction of the • Chemical raw materials Three Gorges Dam, Hubei has experienced rapid economic development.
    [Show full text]
  • Population Displacement in the Three Gorges Reservoir Area of the Yangtze River, Central China: Relocation Policies and Migrant Views
    INTERNATIONAL JOURNAL OF POPULATION GEOGRAPHY Int. J. Popul. Geogr. 6, 439±462 (2000) Population Displacement in the Three Gorges Reservoir Area of the Yangtze River, Central China: Relocation Policies and Migrant Views Li Heming and Philip Rees* 1School of Geography, University of Leeds, Leeds LS2 9JT, UK ABSTRACT involvement of those affected in policy- making and relocation affairs. Despite Employing empirical data derived from a expressing their support for the project, the questionnaire survey and in-depth majority of rural migrants have mixed interviews (1997±1998) in the Three Gorges feelings about their relocation. The results of reservoir area, and using secondary sources our survey and interviews have revealed the in both Chinese and English, the paper fact that a number of relocatees are facing the describes the number, categories and spatial risk of impoverishment because of a shortage distribution of migrant ¯ows, evaluates the of ®nancial and economic resources, the major methods of settling relocatees, and environmental constraints on relocation explores the state of relocatees' feelings capacity, and mismanagement of the about their relocation. We found that the operation. Under such circumstances, it is number of people to be relocated is still very dif®cult for those affected to view their uncertain and environmental, social and displacement as a good opportunity to behavioural factors in¯uence the number. improve their standard of living. Copyright The relocation programmes are involved in # 2000 John Wiley & Sons, Ltd. settling people in nearby areas, in moving them far away, or in settling rural migrants in Received 11 July 2000; revised 19 September 2000; accepted 25 urban industrial enterprises.
    [Show full text]
  • China Journal I
    A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to [email protected]. ©Sigma Xi, The Scientific Research Society and other rightsholders ENGINEERING CHINA JOURNAL I Henry Petroski he Yangtze is the third longest river in the the direction of John Lucian Savage, designer of T world. Originating from 5,800-meter-high the Hoover and Grand Coulee dams. In his ex- Mount Tanggula on the Tibet Plateau, the ploratory role, Savage became the first non-Chi- Yangtze follows a sinuous west-to-east route for nese engineer to visit the Three Gorges with the more than 6,000 kilometers before emptying into thought of locating an appropriate dam site. Sav- the East China Sea at Shanghai. The river has 3,600 age’s work is the likely inspiration for John tributaries and drains almost 2 million square kilo- Hersey’s novel, A Single Pebble, whose opening meters, almost 19 percent of China’s land area. sentence is, “I became an engineer.” In the story, During flood season, the water level in the riv- the unnamed engineer travels up the Yangtze in er can rise as much as 15 meters, affecting 15 mil- a junk pulled by trackers in the ancient and, once, lion people and threatening 1.5 million hectares the only way to make the river journey upstream.
    [Show full text]
  • Three Gorges Tourism: Boom Or Bust?
    Three Gorges Tourism: Boom or Bust? A study by PROFESSOR CHEN GUOJIE, BAO WEN, and MAI LING April 2012 PROBE INTERNATIONAL EDITORS: PATRICIA ADAMS AND LISA PERYMAN CONTENTS Page FOREWORD 1 I. THE IMPACT OF A RISING AND FALLING THREE GORGES DAM RESERVOIR 3 LEVEL ON TOURIST LANDSCAPES − Part 1: Changes to the Natural River Bluff Scenery 3 − Part 2: The Drawdown Zone 6 − Part 3: Construction 8 − Part 4: Managing the Drawdown Zone's Impact 8 − Part 5: Types of Environment 10 − Part 6: Changes to the Scenic Landscape 11 − Part 7: Threats to the Environment and Public Safety 12 − Part 8: The Resettlement of Displaced River Populations: A Growing 13 Problem − Conclusion 15 II. ENDNOTES 16 III. IMAGES 17 Probe International 225 Brunswick Avenue, Toronto, ON, Canada M5S 2M6 Tel: (416) 964-9223 Fax: (416) 964-8239 journal.probeinternational.org 1 FOREWORD BY PATRICIA ADAMS AND LISA PERYMAN PROBE INTERNATIONAL Did China’s Three Gorges Dam provide a lift to tourism, as trumpeted going into the vast project by its creators? To complete the world’s largest hydropower project to date, the gargantuan Three Gorges Dam drowned out villages, towns, cities, biodiversity, wildlife, and sites of ancient historical and cultural value. But the undertaking was also expected to, among other benefits and triumphs, expand the region as a site of interest to visitors. It was said, tourists would be able to savour, in greater safety and comfort, China’s legendary Yangtze River along waters, once rushing and dangerous, now tamed by the dam’s 660- km-long reservoir.
    [Show full text]
  • Wudang Mountain (Famous for Martial Arts)  Shennongjia (A Place of Primitive Forest), Etc
    Welcome to China! Welcome to Hubei! Welcome to Wuhan! Part I. About Hubei Province Part II.About Wuhan City I.Brief Introduction II.Hubei Food III.Hubei Celebrities IV.Hubei Attractions V.Hubei Customs I. Brief Introduction Basic Facts E (鄂)for short the Province of a Thousand Lakes---千湖之省 provincial capital---Wuhan Hometown of the first ancestor of the Chinese nation,the emperor Yan( Shennong) Rich in agriculture, fishery ,forestry and hydropower resources. Main industries : iron and steel, machinery, power and automobile. Historic interest and scenic beauty the Three Gorges of the Yangtze River the East Lake and the Yellow Crane Tower in Wuhan the Temple of Emperor Yan in Suizhou the Hometown of Quyuan in Zigui Wudang Mountain (famous for martial arts) Shennongjia (a place of primitive forest), etc. Geography 186,000 square kilometers. Population : 60,700,000 HUBEI---the north of the Dongting Lake. High in the west and low in the east and wide open to the south, the Jianghan Plain. North--- Henan South---Jiangxi &Hunan East --- Anhui West ---Sichuan Northwest ---Shaanxi Climate Hubei has a sub-tropical monsoonal climate, with a mean annual temperature of 15oC- 17oC -- the hottest month, July, averaging 27- 30oC and the coldest month, January, 1-5oC -- and a mean annual precipitation of 800-1600 mm. Administrative Division and Population 1 autonomous prefecture: Enshi Tujiazu 12 prefecture-level cities: Wuhan, Huangshi, Shiyan, Jingzhou, Yichang, Xiangfan, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, Suizhou 24 county-level cities 39 counties 2 autonomous counties 1 forest district: Shennongjia ethnic groups :Han, Tu, Miao, Hui, Dong, Manchu, Zhuang, and Mongolian.
    [Show full text]