Microbial Resource Management for Ex Situ Biomethanation of Hydrogen At
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methane Production on Rock and Soil Substrates by Methanogens: Implications for Life on Mars
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. Methane Production on Rock and Soil Substrates by Methanogens: Implications for Life on Mars H. A. Kozup and T. A. Kral 1West Virginia University, WV 26505 2Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville 72701 Abstract. In order to understand the methanogens as models for possible life on Mars, and some of the factors likely to be important in determining their abundance and distribution, we have measured their ability to produce methane on a few types of inorganic rock and soil substrates. Since organic ma- terials have not been detected in measurable quantities at the surface of Mars, there is no reason to believe that they would exist in the subsurface. Samples of three methanogens (Methanosarcina barkeri, Methanobacterium formicicum, and Methanothermobacter wolfeii) were placed on four substrates (sand, gravel, basalt, and a Mars soil simulant, JSC Mars-1) and methane production mea- sured. Glass beads were used as a control substrate. As in earlier experiments with JSC Mars-1 soil simulant, a crushed volcanic tephra, methane was pro- duced by all three methanogens when placed on the substrates, sand and gravel. None produced methane on basalt in these experiments, a mineral common in Martian soil. While these substrates do not represent the full range of materials likely to be present on the surface of Mars, the present results suggest that while some surface materials on Mars may not support this type of organism, others might. -
Histone Variants in Archaea and the Evolution of Combinatorial Chromatin Complexity
Histone variants in archaea and the evolution of combinatorial chromatin complexity Kathryn M. Stevensa,b, Jacob B. Swadlinga,b, Antoine Hochera,b, Corinna Bangc,d, Simonetta Gribaldoe, Ruth A. Schmitzc, and Tobias Warneckea,b,1 aMolecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom; bInstitute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom; cInstitute for General Microbiology, University of Kiel, 24118 Kiel, Germany; dInstitute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; and eDepartment of Microbiology, Unit “Evolutionary Biology of the Microbial Cell,” Institut Pasteur, 75015 Paris, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 28, 2020 (received for review April 14, 2020) Nucleosomes in eukaryotes act as platforms for the dynamic inte- additional histone dimers can be taggedontothistetramertoyield gration of epigenetic information. Posttranslational modifications oligomers of increasing length that wrap correspondingly more DNA are reversibly added or removed and core histones exchanged for (3, 6–9). Almost all archaeal histones lack tails and PTMs have yet to paralogous variants, in concert with changing demands on tran- be reported. Many archaea do, however, encode multiple histone scription and genome accessibility. Histones are also common in paralogs (8, 10) that can flexibly homo- and heterodimerize in -
Liquor Production of Chinese Strong-Flavored Different-Aged
Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao, Jiabao Li, Junpeng Rui, Zhancheng Xu, Yan Zhou, Xiaohong Hu, Xiang Wang, Menghua Liu, Daping Li and Xiangzhen Li Appl. Environ. Microbiol. 2014, 80(7):2254. DOI: 10.1128/AEM.04070-13. Published Ahead of Print 31 January 2014. Downloaded from Updated information and services can be found at: http://aem.asm.org/content/80/7/2254 These include: http://aem.asm.org/ SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 38 articles, 12 of which can be accessed free at: http://aem.asm.org/content/80/7/2254#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on March 11, 2014 by guest Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao,a Jiabao Li,a Junpeng Rui,a Zhancheng Xu,b Yan Zhou,c Xiaohong Hu,c Xiang Wang,a Menghua Liu,b Daping Li,a Xiangzhen Lia Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, People’s Republic of Chinaa; Sichuan Jiannanchun Group Co. Ltd., Sichuan, People’s Republic of Chinab; College of Life Science, Sichuan University, Sichuan, People’s Republic of Chinac Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. -
Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Methanobacterium Paludis Sp. Nov. and a Novel Strain of Methanobacterium Lacus Isolated from Northern Peatlands
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Methanobacterium Paludis Sp. Nov. And A Novel Strain Of Methanobacterium Lacus Isolated From Northern Peatlands By: Suzanna L. Brauer, Hinsby Cadillo-Quiroz, Noah Goodson, Joseph B. Yavitt & Stephen H. Zinder Abstract Two mesophilic, hydrogenotrophic methanogens, designated strains SWAN1T and AL-21, were isolated from two contrasting peatlands: a near circumneutral temperate minerotrophic fen in New York State, USA, and an acidic boreal poor fen site in Alaska, USA, respectively. Cells of the two strains were rod-shaped, non- motile, stained Gram-negative and resisted lysis with 0.1 % SDS. Cell size was 0.6 1.5–2.8 mm for strain SWAN1T and 0.45–0.85 1.5–35 mm for strain AL-21. The strains used H2/CO2 but not formate or other substrates for methanogenesis, grew optimally around 32–37 6C, and their growth spanned through a slightly low to neutral pH range (4.7–7.1). Strain AL-21 grew optimally closer to neutrality at pH 6.2, whereas strain SWAN1T showed a lower optimal pH at 5.4–5.7. The two strains were sensitive to NaCl with a maximal tolerance at 160 mM for strain SWAN1T and 50 mM for strain AL-21. Na2S was toxic at very low concentrations (0.01–0.8 mM), resulting in growth inhibition above these values. The DNA G+C content of the genomes was 35.7 mol% for strain SWAN1T and 35.8 mol% for strain AL-21. -
METHANOGENS AS MODELS for LIFE on MARS. R. L. Mickol1, W. H. Waddell2, and T
Eighth International Conference on Mars (2014) 1005.pdf METHANOGENS AS MODELS FOR LIFE ON MARS. R. L. Mickol1, W. H. Waddell2, and T. A. Kral1,3, 1Arkansas Center for Space and Planetary Sciences, 202 Old Museum Building, University of Arkansas, Fayetteville, Arkansas, 72701, USA, [[email protected]], 2Dept. of Health, Human Performance, and Recreation, HPER 308, University of Arkansas, Fayetteville, Arkansas, 72701, USA, 3Dept. of Biological Sciences, SCEN 632, University of Arkansas, Fayetteville, Arkansas, 72701, USA. Introduction: The discovery of methane in the Sciences, University of Arkansas, Fayetteville, Arkan- martian atmosphere [1-4] has fueled the study of meth- sas. All four methanogen species were tested in these anogens as ideal candidates for life on Mars. Methano- experiments. Methanogens were grown in their respec- gens are chemoautotrophs from the domain Archaea. tive anaerobic growth media and placed into the cham- These microorganisms utilize hydrogen as an energy ber with a palladium catalyst box to remove residual source and carbon dioxide as a carbon source to pro- oxygen. The chamber was evacuated to a pre- duce methane. Methanogens can be considered ideal determined pressure and filled with 80:20 H2:CO2 gas. candidates for life on Mars because they are anaerobic, This procedure was repeated three times to ensure re- they do not require organic nutrients and are non- moval of the atmosphere. The chamber was then main- photosynthetic, indicating they could exist in sub- tained at the desired pressure (133-143 mbar, 67-72 surface environments. mbar, 33-38 mbar, 6-10 mbar, 7-20 mbar) for the dura- Our lab has studied methanogens as models for life tion of the experiments. -
Microbial Diversity of Drilling Fluids from 3000 M Deep Koyna Pilot
Science Reports Sci. Dril., 27, 1–23, 2020 https://doi.org/10.5194/sd-27-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole provides insights into the deep biosphere of continental earth crust Himadri Bose1, Avishek Dutta1, Ajoy Roy2, Abhishek Gupta1, Sourav Mukhopadhyay1, Balaram Mohapatra1, Jayeeta Sarkar1, Sukanta Roy3, Sufia K. Kazy2, and Pinaki Sar1 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India 3Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, 415114, Maharashtra, India Correspondence: Pinaki Sar ([email protected], [email protected]) Received: 24 June 2019 – Revised: 25 September 2019 – Accepted: 16 December 2019 – Published: 27 May 2020 Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re- turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface (m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH 2− to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO4 in the samples from deeper horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed geochemical shift in the DF. -
Enzyme Additives in Uence Bacterial Communities of Medicago Sativa
Enzyme additives inuence bacterial communities of Medicago sativa silage as determined by Illumina sequencing Zongfu hu Northeast agricultural university https://orcid.org/0000-0002-1904-7082 Deying Ma ( [email protected] ) Northeast Agricultural University Huaxin Niu Inner Mongolia University for Nationalities Jie Chang Inner Mongolia University for nationalities Jianhua Yu Inner Mongolia University for Nationalities Qing Tong northeast agricultural university Shuguo Li Inner Mongolia University for Nationalities Original article Keywords: Illumina sequencing, bacterial community, cellulase, -galactosidase, L. plantarum, alfalfa silage Posted Date: October 19th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-29755/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 6th, 2021. See the published version at https://doi.org/10.1186/s13568-020-01158-5. Page 1/17 Abstract This study aimed to evaluate the effects of enzymes (cellulase combined with galactosidase), and the combination of these enzymes with Lactobacillus plantarum (LP) on bacterial diversity using high-throughput sequencing. Alfalfa forages were treated with or without cellulase + -galactosidase (CEGA), cellulase + LP (CELP), or -galactosidase + LP (GALP). After 56 days of ensiling, all the treated silages exhibited improved fermentation quality, as reected by decreased pH, ammonium-N and increased lactic acid levels compared to the control silage. Enzymatic treatment improved nutrient value by increasing the level of crude protein and decreasing the neutral detergent bre (NDF) level. Treatment of the silage signicantly changed the bacterial community, as determined by the PCoA test. LAB dominated the bacterial community of the treated silage after ensiling. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Dynamics of Fermentation Parameters and Bacterial Community in High-Moisture Alfalfa Silage with Or Without Lactic Acid Bacteria
microorganisms Article Dynamics of Fermentation Parameters and Bacterial Community in High-Moisture Alfalfa Silage with or without Lactic Acid Bacteria Shanshan Zhao 1,2, Fengyuan Yang 1,2, Yuan Wang 1,2, Xiaomiao Fan 1,2, Changsong Feng 3 and Yanping Wang 1,2,* 1 Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; [email protected] (S.Z.); [email protected] (F.Y.); [email protected] (Y.W.); [email protected] (X.F.) 2 Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China 3 Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0371-67761726 Abstract: The aim of this study was to gain deeper insights into the dynamics of fermentation parameters and the bacterial community during the ensiling of high-moisture alfalfa. A commercial lactic acid bacteria (YX) inoculant was used as an additive. After 15 and 30 days of ensiling, the control silage (CK) exhibited a high pH and a high concentration of ammoniacal nitrogen (NH3-N); Enterobacter and Hafnia-Obesumbacterium were the dominant genera. At 60 d, the pH value and the concentration of NH3-N in CK silage increased compared with 15 and 30 d, propionic acid and butyric acid (BA) were detected, and Garciella had the highest abundance in the bacterial community. Compared with CK silage, inoculation of YX significantly promoted lactic acid and acetic acid accumulation and reduced pH and BA formation, did not significantly reduce the concentration Citation: Zhao, S.; Yang, F.; Wang, Y.; Fan, X.; Feng, C.; Wang, Y. -
Et Al., 2015; Mandell and Green, 2011)
Analysis of the Gut Microbiota of Japanese Alzheimer’s Disease Patients and Characterization of Their Butyrate-Producing Bacteria 2018, July NGUYEN THI THUY TIEN Graduate School of Environmental and Life Science (Doctor’s Course) OKAYAMA UNIVERSITY 0 I. GENERAL INTRODUCTION 1. Overview of Alzheimer’s disease a. Description/Definition Alzheimer’s disease (AD) is the most common type of age-related disease (aged over 65 years old), accounting for about 55 – 70% of dementia (Bertram, 2007; Bu et al., 2015; Mandell and Green, 2011). AD is characterized by progressive loss of memory and neurodegeneration of the central nervous system, leading to disorder in cognition and behavior of AD patients (Bertram, 2007; Mandell and Green, 2011). The life span of AD patients from onset may last about 10 years but can be as long as 20 years. b. Stages and symptoms of Alzheimer’s disease Stages of AD vary among individual and determination of stages that patients are suffering from is the most importance of AD treatment. The standard approach to classify AD stages relies on a mental status examination, the Mini-Mental State Examination (MMSE) (Folstein et al., 1975; Knopman). AD manifestations can be categorized into three stages with symptoms (López and DeKosky, 2008) presented in Table 1. 1 Table 1. MMSE scores and symptoms of each stage of AD (López and DeKosky, 2008) Stage by MMSE Cognitive Behavioral Neurological scores Mild Cognitive function is Apathy and heavy The neurological exam (score ≥ still in fairly good stresses may occur. cannot detect the changes. 20) condition. In this However, their mood is However, mild stage, IADL of still stable.