The Cardiac Cycle: Mechanisms of Heart Sounds and Murmurs 31

Total Page:16

File Type:pdf, Size:1020Kb

The Cardiac Cycle: Mechanisms of Heart Sounds and Murmurs 31 10090-02_CH02.qxd 8/24/06 5:41 PM Page 29 CHAPTER The Cardiac Cycle: Mechanisms of Heart 2 Sounds and Murmurs Nicole Martin Leonard S. Lilly CARDIAC CYCLE MURMURS HEART SOUNDS Systolic Murmurs Diastolic Murmurs First Heart Sound (S1) Continuous Murmurs Second Heart Sound (S2) Extra Systolic Heart Sounds Extra Diastolic Heart Sounds Cardiac diseases often cause abnormal CARDIAC CYCLE findings on physical examination, includ- ing pathologic heart sounds and murmurs. The cardiac cycle consists of precisely timed These findings are clues to the underlying electrical and mechanical events that are re- pathophysiology, and proper interpreta- sponsible for rhythmic atrial and ventricu- tion is essential for successful diagnosis lar contractions. Figure 2.1 displays the pres- Fig. 1 and disease management. This chapter de- sure relationships between the left-sided scribes heart sounds in the context of the cardiac chambers during the normal cardiac normal cardiac cycle and then focuses on cycle and serves as a platform for describing the origins of pathologic heart sounds and key events. Mechanical systole refers to ven- murmurs. tricular contraction, and diastole to ven- Many cardiac diseases are mentioned tricular relaxation and filling. Throughout briefly in this chapter as examples of abnor- the cardiac cycle, the right and left atria mal heart sounds and murmurs. Because accept blood returning to the heart from each of these conditions is described in the systemic veins and from the pulmonary greater detail later in the book, it is not nec- veins, respectively. During diastole, blood essary to memorize the examples presented passes from the atria into the ventricles here. Rather, it is preferable to understand across the open tricuspid and mitral valves, the mechanisms by which the abnormal causing a gradual increase in ventricular di- sounds are produced, so that their descrip- astolic pressures. In late diastole, atrial con- tions will make sense in later chapters. traction propels a final bolus of blood into 29 10090-02_CH02.qxd 8/24/06 5:41 PM Page 30 30 Chapter Two ECG the mitral component slightly precedes that of the tricuspid valve because of the earlier AV c electrical stimulation of left ventricular con- AV traction (see Chapter 4). As the right and left ventricular pressures ) 100 g H rapidly rise further, they soon exceed the Aorta m diastolic pressures within the pulmonary m ( e artery and aorta, forcing the pulmonic and r u s aortic valves to open, and blood is ejected s LV e r into the pulmonary and systemic circula- P 50 tions. The ventricular pressures continue to MV MV c increase during contraction, and because the pulmonic and aortic valves are open, the aor- tic and pulmonary artery pressures rise, par- LA v a c allel to those of the corresponding ventricles. Time At the conclusion of ventricular ejection, the ventricular pressures fall below those of the pulmonary artery and aorta (the pul- monary artery and aorta are elastic struc- S1 S2 tures that maintain their pressures longer), DIASTOLESYSTOLE DIASTOLE such that the pulmonic and aortic valves are forced to close, producing the second heart Figure 2.1. The normal cardiac cycle, showing pres- sure relationships between the left-sided heart sound, S2. Like the first heart sound (S1), this chambers. During diastole, the mitral valve (MV) is sound consists of two parts: the aortic (A2) open, so that the left atrial (LA) and left ventricular (LV) component normally precedes the pulmonic pressures are equal. In late diastole, LA contraction causes a small rise in pressure in both the LA and LV (the (P2) because the diastolic pressure gradient a wave). During systolic contraction, the LV pressure between the aorta and left ventricle is rises; when it exceeds the LA pressure, the MV closes, greater than that between the pulmonary contributing to the first heart sound (S1). As LV pressure rises above the aortic pressure, the aortic valve (AV) artery and right ventricle, forcing the aortic opens, which is a silent event. As the ventricle begins to valve to shut more readily. The ventricular relax and its pressure falls below that of the aorta, the pressures fall rapidly during the subsequent AV closes, contributing to the second heart sound (S2). As LV pressure falls further, below that of the LA, the relaxation phase. As they drop below the MV opens, which is silent in the normal heart. In addi- pressures in the right and left atria, the tri- tion to the a wave, the LA pressure curve displays two cuspid and mitral valves open, followed by positive deflections: the c wave represents a small rise in LA pressure as the MV closes and bulges toward the diastolic ventricular filling and repetition of atrium, and the v wave is the result of passive filling of this cycle. the LA from the pulmonary veins during systole, when Notice in Figure 2.1 that in addition to the MV is closed. the a wave, the atrial pressure curve displays two other positive deflections during the cardiac cycle: The c wave represents a small each ventricle, an action that produces a rise in atrial pressure as the tricuspid and mi- brief further rise in atrial and ventricle pres- tral valves close and bulge into their respec- sures, termed the a wave (see Fig. 2.1). tive atria. The v wave is the result of passive Contraction of the ventricles follows, sig- filling of the atria from the systemic and naling the onset of mechanical systole. As pulmonary veins during systole, a period the ventricles start to contract, the pressures during which blood accumulates in the atria within them rapidly exceed atrial pressures. because the tricuspid and mitral valves are This results in the forced closure of the tri- closed. cuspid and mitral valves, which produces At the bedside, systole can be approxi- the first heart sound, termed S1. This sound mated by the period from S1 to S2, and dias- has two nearly superimposed components: tole from S2 to the next S1. Although the du- 10090-02_CH02.qxd 8/24/06 5:41 PM Page 31 The Cardiac Cycle: Mechanisms of Heart Sounds and Murmurs 31 ration of systole remains constant from beat the left side of the heart. Equivalent events to beat, the length of diastole varies with the occur simultaneously in the right side of the heart rate: the faster the heart rate, the shorter heart in the right atrium, right ventricle, the diastolic phase. The main sounds, S1 and and pulmonary artery. At the bedside, clues S2, provide a framework from which all other to right-heart function can be ascertained by heart sounds and murmurs can be timed. examining the jugular venous pulse, which The pressure relationships and events de- is representative of the right atrial pressure picted in Figure 2.1 are those that occur in (see Box 2.1). Box 1 Box 2.1 Jugular Venous Pulsations and Assessment of Right-Heart Function Bedside observation of jugular venous pulsations in the neck is a vital part of the car- diovascular examination. With no structures impeding blood flow between the internal jugular (IJ) veins and the superior vena cava and right atrium (RA), the height of the IJ venous column (termed the jugular venous pressure, or JVP) is an accurate representa- tion of the RA pressure. Thus, the JVP provides an easily obtainable measure of right- heart function. Typical fluctuations in the jugular ve- a nous pulse during the cardiac cycle, man- ifested by oscillations in the overlying v skin, are shown in the figure (notice the similarity to the left atrial pressure tracing y in Fig. 2.1). There are two major upward x components, the a and v waves, fol- lowed by two descents, termed x and y. The x descent, which represents the pressure decline following the a wave, may be inter- rupted by a small upward deflection (the c wave, denoted in the figure by the arrow) at the time of tricuspid valve closure, but that is usually not distinguishable in the JVP. The a wave represents transient venous distension caused by back pressure from RA contrac- tion. The v wave corresponds to passive filling of the RA from the systemic veins during systole, when the tricuspid valve is closed. Opening of the tricuspid valve in early diastole allows blood to rapidly empty from the RA into the right ventricle; that fall in RA pressure corresponds to the y descent. Conditions that abnormally raise right-sided cardiac pressures (e.g., heart failure, tri- cuspid valve disease, pulmonic stenosis, pericardial diseases) elevate the JVP, while re- duced intravascular volume (e.g., dehydration) decreases it. In addition, specific disease states can influence the individual components of the JVP, examples of which are listed here for reference and explained in subsequent chapters: Prominent a: right ventricular hypertrophy, tricuspid stenosis Prominent v: tricuspid regurgitation Prominent y: constrictive pericarditis Technique of Measurement The JVP is measured as the maximum vertical height of the internal jugular vein (in cm) above the center of the right atrium, and in a normal person is ≤9 cm. Because the ster- nal angle is located approximately 5 cm above the center of the RA, the JVP is calculated 10090-02_CH02.qxd 8/24/06 5:41 PM Page 32 32 Chapter Two at the bedside by adding 5 cm to the vertical height of the top of the IJ venous column above the sternal angle. The right IJ vein is usually the easiest to evaluate because it extends directly upward from the RA and superior vena cava. First, observe the pulsations in the skin overlying the IJ with the patient supine and the head of the bed at about a 45° angle.
Recommended publications
  • Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
    Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins
    [Show full text]
  • Physiology Lessons for Use with the Biopac Student Lab Lesson 5
    Physiology Lessons Lesson 5 for use with the ELECTROCARDIOGRAPHY I Biopac Student Lab Components of the ECG Richard Pflanzer, Ph.D. Associate Professor Emeritus Indiana University School of Medicine Purdue University School of Science William McMullen Vice President BIOPAC Systems, Inc. BIOPAC® Systems, Inc. 42 Aero Camino, Goleta, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web: www.biopac.com Manual Revision PL3.7.5 03162009 BIOPAC Systems, Inc. Page 2 Biopac Student Lab 3.7.5 I. INTRODUCTION The main function of the heart is to pump blood through two circuits: 1. Pulmonary circuit: through the lungs to oxygenate the blood and remove carbon dioxide; and 2. Systemic circuit: to deliver oxygen and nutrients to tissues and remove carbon dioxide. Because the heart moves blood through two separate circuits, it is sometimes described as a dual pump. In order to beat, the heart needs three types of cells: 1. Rhythm generators, which produce an electrical signal (SA node or normal pacemaker); 2. Conductors to spread the pacemaker signal; and 3. Contractile cells (myocardium) to mechanically pump blood. The Electrical and Mechanical Sequence of a Heartbeat The heart has specialized pacemaker cells that start the electrical sequence of depolarization and repolarization. This property of cardiac tissue is called inherent rhythmicity or automaticity. The electrical signal is generated by the sinoatrial node (SA node) and spreads to the ventricular muscle via particular conducting pathways: internodal pathways and atrial fibers, the atrioventricular node (AV node), the bundle of His, the right and left bundle branches, and Purkinje fibers (Fig 5.1).
    [Show full text]
  • Blood Vessels: Part A
    Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand
    [Show full text]
  • Central Venous Pressure: Uses and Limitations
    Central Venous Pressure: Uses and Limitations T. Smith, R. M. Grounds, and A. Rhodes Introduction A key component of the management of the critically ill patient is the optimization of cardiovascular function, including the provision of an adequate circulating volume and the titration of cardiac preload to improve cardiac output. In spite of the appearance of several newer monitoring technologies, central venous pressure (CVP) monitoring remains in common use [1] as an index of circulatory filling and of cardiac preload. In this chapter we will discuss the uses and limitations of this monitor in the critically ill patient. Defining Central Venous Pressure What is the Central Venous Pressure? Central venous pressure is the intravascular pressure in the great thoracic veins, measured relative to atmospheric pressure. It is conventionally measured at the junction of the superior vena cava and the right atrium and provides an estimate of the right atrial pressure. The Central Venous Pressure Waveform The normal CVP exhibits a complex waveform as illustrated in Figure 1. The waveform is described in terms of its components, three ascending ‘waves’ and two descents. The a-wave corresponds to atrial contraction and the x descent to atrial relaxation. The c wave, which punctuates the x descent, is caused by the closure of the tricuspid valve at the start of ventricular systole and the bulging of its leaflets back into the atrium. The v wave is due to continued venous return in the presence of a closed tricuspid valve. The y descent occurs at the end of ventricular systole when the tricuspid valve opens and blood once again flows from the atrium into the ventricle.
    [Show full text]
  • Practical Cardiac Auscultation
    LWW/CCNQ LWWJ306-08 March 7, 2007 23:32 Char Count= Crit Care Nurs Q Vol. 30, No. 2, pp. 166–180 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Practical Cardiac Auscultation Daniel M. Shindler, MD, FACC This article focuses on the practical use of the stethoscope. The art of the cardiac physical exam- ination includes skillful auscultation. The article provides the author’s personal approach to the patient for the purpose of best hearing, recognizing, and interpreting heart sounds and murmurs. It should be used as a brief introduction to the art of auscultation. This article also attempts to illustrate heart sounds and murmurs by using words and letters to phonate the sounds, and by presenting practical clinical examples where auscultation clearly influences cardiac diagnosis and treatment. The clinical sections attempt to go beyond what is available in standard textbooks by providing information and stethoscope techniques that are valuable and useful at the bedside. Key words: auscultation, murmur, stethoscope HIS article focuses on the practical use mastered at the bedside. This article also at- T of the stethoscope. The art of the cardiac tempts to illustrate heart sounds and mur- physical examination includes skillful auscul- murs by using words and letters to phonate tation. Even in an era of advanced easily avail- the sounds, and by presenting practical clin- able technological bedside diagnostic tech- ical examples where auscultation clearly in- niques such as echocardiography, there is still fluences cardiac diagnosis and treatment. We an important role for the hands-on approach begin by discussing proper stethoscope selec- to the patient for the purpose of evaluat- tion and use.
    [Show full text]
  • Viding Diagnostic Insights Into the Pathophysiologic Mechanisms
    viding diagnostic insights into the pathophysiologic mechanisms under- lying the acoustic findings heard in clinical practice.162-165 Contemporary physicians should take advantage of the valuable clinical information that can be obtained by such an inexpensive instrument and expedient and reli- able tool as the stethoscope. The following section reviews the funda- mental technique of cardiac auscultation, emphasizing the diagnostic value and practical clinical applications of this time-honored (but endan- gered) art in this time of need.166 The Art and Technique of Cardiac Auscultation. Auscultation of the heart and vascular system is one of the most challenging and rewarding clinical diagnostic skills that can (and should) be learned and applied by every prac- ticing physician. Proficiency in cardiac auscultation requires experience, repeated practice, and a great deal of patience (and patients). Most impor- tantly, it requires a proper state of mind. (“we hear what we listen for”). Although the most vital component of the auscultatory apparatus lies between the earpieces, the proper use of a well-designed, efficient stetho- scope cannot be overemphasized. To ensure optimal sound transmission, the well-crafted stethoscope should be airtight, with snug but comfortably-fit- ting earpieces, properly aligned metal binaurals, and flexible, double-barrel, 1 thick-walled tubing, ⁄8 inch in internal diameter and no more than 12 to 15 inches in length. A high-quality stethoscope should be equipped with both bell and diaphragm chest pieces. The bell, when applied gently to the skin, will “bring out” low frequency sounds and murmurs (eg, faint S4 or S3 gal- lop or diastolic rumble) and the diaphragm, when pressed firmly against the skin, will accentuate high-pitched acoustic events (eg, diastolic blowing murmur of AR).
    [Show full text]
  • Young Adults. Look for ST Elevation, Tall QRS Voltage, "Fishhook" Deformity at the J Point, and Prominent T Waves
    EKG Abnormalities I. Early repolarization abnormality: A. A normal variant. Early repolarization is most often seen in healthy young adults. Look for ST elevation, tall QRS voltage, "fishhook" deformity at the J point, and prominent T waves. ST segment elevation is maximal in leads with tallest R waves. Note high take off of the ST segment in leads V4-6; the ST elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2- 6 is concave upwards, another characteristic of this normal variant. Characteristics’ of early repolarization • notching or slurring of the terminal portion of the QRS wave • symmetric concordant T waves of large amplitude • relative temporal stability • most commonly presents in the precordial leads but often associated with it is less pronounced ST segment elevation in the limb leads To differentiate from anterior MI • the initial part of the ST segment is usually flat or convex upward in AMI • reciprocal ST depression may be present in AMI but not in early repolarization • ST segments in early repolarization are usually <2 mm (but have been reported up to 4 mm) To differentiate from pericarditis • the ST changes are more widespread in pericarditis • the T wave is normal in pericarditis • the ratio of the degree of ST elevation (measured using the PR segment as the baseline) to the height of the T wave is greater than 0.25 in V6 in pericarditis. 1 II. Acute Pericarditis: Stage 1 Pericarditis Changes A. Timing 1. Onset: Day 2-3 2. Duration: Up to 2 weeks B. Findings 1.
    [Show full text]
  • ACC/AAP/AHA/ASE/HRS/SCAI/SCCT/SCMR/SOPE 2014 Appropriate Use Criteria for Initial Transthoracic Echocardiography in Outpatient P
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL. - ,NO.- ,2014 ª 2014 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 0735-1097/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jacc.2014.08.003 1 APPROPRIATE USE CRITERIA 55 2 56 3 57 4 ACC/AAP/AHA/ASE/HRS/ 58 5 59 6 SCAI/SCCT/SCMR/SOPE 60 7 61 8 2014 Appropriate Use Criteria for 62 9 63 10 Initial Transthoracic Echocardiography 64 11 65 12 in Outpatient Pediatric Cardiology 66 13 67 14 A Report of the American College of Cardiology Appropriate Use Criteria Task Force, 68 15 American Academy of Pediatrics, American Heart Association, American Society of 69 16 Echocardiography, Heart Rhythm Society, Society for Cardiovascular Angiography and 70 17 Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular 71 18 Magnetic Resonance, and Society of Pediatric Echocardiography 72 19 73 20 74 21 75 22 76 Q1 Writing Group for Robert M. Campbell, MD, FACC, FAHA, FAAP, FHRS, Wyman W. Lai, MD, MPH, FACC, FASE 23 77 Echocardiography Chair Leo Lopez, MD, FACC, FAAP, FASE 24 78 in Outpatient Ritu Sachdeva, MD, FACC, FAAP, FASE 25 79 Pediatric Pamela S. Douglas, MD, MACC, FAHA, FASE 26 80 Cardiology Benjamin W. Eidem, MD, FACC, FASE 27 81 28 82 29 83 30 Rating Panel Robert M. Campbell, MD, FACC, FAHA, FAAP, FHRS, Richard Lockwood, MD** 84 yy 31 Chair* G. Paul Matherne, MD, MBA, FACC, FAHA 85 zz 32 Pamela S. Douglas, MD, MACC, FAHA, FASE, Moderator* David Nykanen, MD, FACC 86 yy 33 Catherine L.
    [Show full text]
  • Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
    & Experim l e ca n i t in a l l C Aliya, J Clinic Experiment Cardiol 2011, 2:11 C f a Journal of Clinical & Experimental o r d l DOI: 10.4172/2155-9880.1000170 i a o n l o r g u y o J Cardiology ISSN: 2155-9880 Review Article Open Access Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G. College, Kakatiya University, Warangal, India Abstract Heart is one of the most important organs present in human body which pumps blood throughout the body using blood vessels. With each heartbeat, blood is sent throughout the body, carrying oxygen and nutrients to all the cells in body. The cardiac cycle is the sequence of events that occurs when the heart beats. Blood pressure is maximum during systole, when the heart is pushing and minimum during diastole, when the heart is relaxed. Vasodilation caused by relaxation of smooth muscle cells in arteries causes an increase in blood flow. When blood vessels dilate, the blood flow is increased due to a decrease in vascular resistance. Therefore, dilation of arteries and arterioles leads to an immediate decrease in arterial blood pressure and heart rate. Cardiac output is the amount of blood ejected by the left ventricle in one minute. Cardiac output (CO) is the volume of blood being pumped by the heart, by left ventricle in the time interval of one minute. The effects of vasodilation, how the blood quantity increases and decreases along with the blood flow and the arterial blood flow and resistance on cardiac output is discussed in this reviewArticle.
    [Show full text]
  • Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803
    Department of Health & CMS Manual System Human Services (DHHS) Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803 SUBJECT: Ventricular Assist Devices for Bridge-to-Transplant and Destination Therapy I. SUMMARY OF CHANGES: This Change Request (CR) is effective for claims with dates of service on and after October 30, 2013; contractors shall pay claims for Ventricular Assist Devices as destination therapy using the criteria in Pub. 100-03, part 1, section 20.9.1, and Pub. 100-04, Chapter 32, sec. 320. EFFECTIVE DATE: October 30, 2013 *Unless otherwise specified, the effective date is the date of service. IMPLEMENTATION DATE: September 30, 2014 Disclaimer for manual changes only: The revision date and transmittal number apply only to red italicized material. Any other material was previously published and remains unchanged. However, if this revision contains a table of contents, you will receive the new/revised information only, and not the entire table of contents. II. CHANGES IN MANUAL INSTRUCTIONS: (N/A if manual is not updated) R=REVISED, N=NEW, D=DELETED-Only One Per Row. R/N/D CHAPTER / SECTION / SUBSECTION / TITLE D 3/90.2.1/Artifiical Hearts and Related Devices R 32/Table of Contents N 32/320/Artificial Hearts and Related Devices N 32/320.1/Coding Requirements for Furnished Before May 1, 2008 N 32/320.2/Coding Requirements for Furnished After May 1, 2008 N 32/320.3/ Ventricular Assist Devices N 32/320.3.1/Postcardiotomy N 32/320.3.2/Bridge-To -Transplantation (BTT) N 32/320.3.3/Destination Therapy (DT) N 32/320.3.4/ Other N 32/320.4/ Replacement Accessories and Supplies for External Ventricular Assist Devices or Any Ventricular Assist Device (VAD) III.
    [Show full text]
  • A Case of Stenosis of Mitral and Tricuspid Valves in Pregnancy, Treated by Percutaneous Sequential Balloon Valvotomy
    Case Report Annals of Clinical Medicine and Research Published: 30 Jun, 2020 A Case of Stenosis of Mitral and Tricuspid Valves in Pregnancy, Treated by Percutaneous Sequential Balloon Valvotomy Vipul Malpani, Mohan Nair*, Pritam Kitey, Amitabh Yaduvanshi, Vikas Kataria and Gautam Singal Department of Cardiology, Holy Family Hospital, New Delhi, India Abstract Rheumatic mitral stenosis is associated with other lesions, but combination of mitral stenosis and tricuspid stenosis is unusual. We are reporting a case of mitral and tricuspid stenosis in a pregnant lady that was successfully treated by sequential balloon valvuloplasty in a single sitting. Keywords: Mitral stenosis; Tricuspid stenosis; Balloon valvotomy Abbreviations MS: Mitral Stenosis; TS: Tricuspid Stenosis; BMV: Balloon Mitral Valvotomy; CMV: Closed Mitral Valvotomy; BTV: Balloon Tricuspid Valvotomy; PHT: Pressure Half Time; MVA: Mitral Valve Area; TVA: Tricuspid Valve Area; LA: Left Atrium; RA: Right Atrium; TR: Tricuspid Regurgitation Introduction Rheumatic Tricuspid valve Stenosis (TS) is rare, and it generally accompanies mitral valve disease [1]. TS is found in 15% cases of rheumatic heart disease but it is of clinical significance in only 5% cases [2]. Isolated TS accounts for about 2.4% of all cases of organic tricuspid valve disease and is mostly seen in young women [3,4]. Combined stenosis of mitral and tricuspid valves is extremely uncommon. Combined stenosis of both the valves has never been reported in pregnancy. Balloon Mitral Valvotomy (BMV) and surgical Closed Mitral Valvotomy (CMV) are two important OPEN ACCESS therapeutic options in the management of rheumatic mitral stenosis. Significant stenosis of the *Correspondence: tricuspid valve can also be treated by Balloon Tricuspid Valvotomy (BTV) [5,6].
    [Show full text]
  • Valve Replacement Alexander Zezulkal, John Mackinnon2 and D.G
    Postgrad Med J: first published as 10.1136/pgmj.68.797.180 on 1 March 1992. Downloaded from Postgrad Med J (1992) 68, 180 - 185 i) The Fellowship of Postgraduate Medicine, 1992 Hypertension in aortic valve disease and its response to valve replacement Alexander Zezulkal, John Mackinnon2 and D.G. Beevers' 'University Department ofMedicine and 2Department ofCardiology, Dudley Road Hospital, Birmingham BT18 7QH, UK Summary: We have investigated the prevalence ofhypertension and the response ofblood pressure to operation in 87 patients with lone aortic valve disease who underwent aortic valve replacement. In patients with aortic stenosis alone 26% were hypertensive pre-operatively (age and sex adjusted blood pressure > 160 systolic and or > 95 mmHg diastolic) and 24% were hypertensive post-operatively. In those with aortic regurgitation alone, hypertension was present in 65% before and 57% after valve replacement using the same criterion. For combined stenosis and regurgitation, the prevalence was 54% and 62%, respectively. The post-operative increase in systolic pressure in patients with aortic stenosis occurred mainly in those with a history of left ventricular failure. In those with aortic regurgitation or combined stenosis with regurgitation, diastolic pressure rose after valve replacement resulting in a prevalence of diastolic hypertension of 44% and 35%, respectively. Blood pressure changes were not predicted by the type of valve inserted nor its size. Our data show that despite severe symptomatic aortic valve disease, systolic hypertension was common in aortic stenosis and diastolic hypertension was found in aortic regurgitation. This underlines the by copyright. importance of blood pressure monitoring in patients following aortic valve replacement.
    [Show full text]