Octopus Insularis (Octopodidae), Evidences of a Specialized Predator and a Time-Minimizing Hunter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reproductive Strategy of Deep-Sea and Antarctic Octopods of the Genera Graneledone, Adelieledone and Muusoctopus (Mollusca: Cephalopoda)
Vol. 18: 21–29, 2013 AQUATIC BIOLOGY Published online January 23 doi: 10.3354/ab00486 Aquat Biol Reproductive strategy of deep-sea and Antarctic octopods of the genera Graneledone, Adelieledone and Muusoctopus (Mollusca: Cephalopoda) Vladimir Laptikhovsky* Falkland Islands Government Fisheries Department, Stanley FIQQ 1ZZ, Falkland Islands ABSTRACT: Reproductive systems of spent brooding octopodid females of Muusoctopus longi- brachus akambei, Adelieledone polymorpha and Graneledone macrotyla (Eledoninae) were col- lected in Southwest Atlantic and Antarctic waters. Their study demonstrated that the size distribu- tion of post-ovulatory follicles (POF) is mostly unimodal, suggesting that they only lay 1 batch of eggs. These data, together with a reevaluation of the literature, revealed that deep-sea and polar benthic octopods are generally not multiple spawners. Females spawn a single egg mass simulta- neously or as a series of several consequent mini-batches separated by short periods of time, mak- ing it difficult to distinguish them by either size or condition of their POF. Analysis of the length−frequency distribution of POF is a useful tool to reconstruct the spawning history of brood- ing females of cold-water octopods. KEY WORDS: Octopus · Spawning · Post-ovulatory follicle · POF · Reproductive strategy · Deep sea · Antarctic Resale or republication not permitted without written consent of the publisher INTRODUCTION 2008). Growth of ovarian eggs is generally synchro- nous, although in maturing females the oocyte size Most benthic octopods brood a single egg mass, and distribution might be bimodal or polymodal (Kuehl the female dies as the eggs hatch. This egg mass 1988, Laptikhovsky 1999a, 2001, Önsoy & Salman (clutch) might be laid in one bout or in several consec- 2004, Bello 2006, Barratt et al. -
Phylogenetic Relationships Among Octopodidae Species in Coastal Waters of China Inferred from Two Mitochondrial DNA Gene Sequences Z.M
Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences Z.M. Lü, W.T. Cui, L.Q. Liu, H.M. Li and C.W. Wu Zhejiang Provincial Key Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, China Corresponding author: Z.M. Lü E-mail: [email protected] Genet. Mol. Res. 12 (3): 3755-3765 (2013) Received January 21, 2013 Accepted August 20, 2013 Published September 19, 2013 DOI http://dx.doi.org/10.4238/2013.September.19.7 ABSTRACT. Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a “catch-all” genus. The monophyly of octopus species in China’s coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China’s coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China’s coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species. Key words: Molecular phylogeny; Mitochondrial DNA gene sequences; Octopodidae species; COI; 16S rRNA Genetics and Molecular Research 12 (3): 3755-3765 (2013) ©FUNPEC-RP www.funpecrp.com.br Z.M. -
Cephalopoda: Octopodidae): the Smallest Southwestern Atlantic Octopod, Found in Sea Debris
A new species of pygmy Paroctopus (Cephalopoda: Octopodidae): the smallest southwestern Atlantic octopod, found in sea debris Tatiana S. Leite ( [email protected] ) Universidade Federal de Santa Catarina Centro de Ciencias Biologicas https://orcid.org/0000-0001-9117-9648 Erica A.G. Vidal Universidade Federal do Parana Setor de Ciencias da Terra Françoise Dantas Lima Universidade Federal do Rio Grande do Norte Centro de Biociencias Sergio M.Q. Lima Universidade Federal do Rio Grande do Norte Centro de Biociencias Ricardo M Dias Universidade Federal do Sul da Bahia Giulia A. Giuberti Universidade Federal do Estado do Rio de Janeiro Davi De Vasconcellos Universidade Federal do Rio Grande Jennifer A. Mather University of Lethbridge Manuel Haimovici Universidade Federal do Rio Grande Original Paper Keywords: Paroctopus, octopus Posted Date: January 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-172910/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Marine Biodiversity on July 27th, 2021. See the published version at https://doi.org/10.1007/s12526-021-01201-z. Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js Page 1/27 Abstract The new species, Paroctopus cthulu sp. nov. Leite, Haimovici, Lima and Lima, was recorded from very shallow coastal waters on sandy/muddy and shelter- poor bottoms with natural and human-origin debris. It is a small octopus, adults are less than 35 mm mantle length (ML) and weigh around 15 g. It has short to medium sized arms, enlarged suckers on the arms of both males and females, large posterior salivary glands (25 %ML), a relatively large beak (9 % ML) and medium to large mature eggs (3.5 to > 9 mm). -
Giant Pacific Octopus
Giant Pacific octopus − Enteroctopus dofleini Overall Vulnerability Rank = Low Biological Sensitivity = Low Climate Exposure = Low Sensitivity Data Quality = 50% of scores ≥ 2 Exposure Data Quality = 64% of scores ≥ 2 Expert Data Expert Scores Plots Enteroctopus dofleini Scores Quality (Portion by Category) Low Habitat Specificity 2.0 2.5 Moderate High Prey Specificity 1.3 2.5 Very High Adult Mobility 2.3 2.0 Dispersal of Early Life Stages 1.9 1.7 Early Life History Survival and Settlement Requirements 2.6 0.8 Complexity in Reproductive Strategy 1.9 2.0 Spawning Cycle 1.9 1.7 Sensitivity to Temperature 1.3 2.8 Sensitivity attributes Sensitivity to Ocean Acidification 2.0 3.0 Population Growth Rate 2.2 1.7 Stock Size/Status 1.5 1.2 Other Stressors 2.0 0.7 Sensitivity Score Low Sea Surface Temperature 2.0 2.0 Sea Surface Temperature (variance) 1.7 2.0 Bottom Temperature 2.1 2.0 Bottom Temperature (variance) 2.4 2.0 Salinity 1.1 2.0 Salinity (variance) 2.3 2.0 Ocean Acidification 4.0 2.0 Ocean Acidification (variance) 1.3 2.0 Phytoplankton Biomass 1.3 1.2 Phytoplankton Biomass (variance) 1.2 1.2 Plankton Bloom Timing 1.5 1.0 Plankton Bloom Timing (variance) 2.3 1.0 Large Zooplankton Biomass 1.1 1.0 Large Zooplanton Biomass (variance) 1.4 1.0 Exposure factors Exposure factors Mixed Layer Depth 1.8 1.0 Mixed Layer Depth (variance) 2.3 1.0 Currents 1.3 2.0 Currents (variance) 1.8 2.0 Air Temperature 2.0 2.0 Air Temperature (variance) 1.1 2.0 Precipitation NA NA Precipitation (variance) NA NA Sea Surface Height 2.0 2.0 Sea Surface Height (variance) 1.5 2.0 Exposure Score Low Overall Vulnerability Rank Low For assistance with this document, please contact NOAA Fisheries Office of Science and Technology at (301) 427-8100 or visit https://www.fisheries.noaa.gov/contact/office-science-and-technology Giant Pacific octopus (Enteroctopus dofleini) Overall Climate Vulnerability Rank: Low. -
2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California
MARINE TAXONOMIC SERVICES, LTD 2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California December 25, 2020 Prepared For: City of Newport Beach Public Works Department 100 Civic Center Drive, Newport Beach, CA 92660 Contact: Chris Miller, Public Works Manager [email protected], (949) 644-3043 Newport Harbor Shallow-Water and Deep-Water Eelgrass Survey Prepared By: MARINE TAXONOMIC SERVICES, LLC COASTAL RESOURCES MANAGEMENT, INC 920 RANCHEROS DRIVE, STE F-1 23 Morning Wood Drive SAN MARCOS, CA 92069 Laguna Niguel, CA 92677 2020 NEWPORT BAY EELGRASS RESOURCES REPORT Contents Contents ........................................................................................................................................................................ ii Appendices .................................................................................................................................................................. iii Abbreviations ...............................................................................................................................................................iv Introduction ................................................................................................................................................................... 1 Project Purpose .......................................................................................................................................................... 1 Background ............................................................................................................................................................... -
List of Species Likely to Benefit from Marine Protected Areas in The
Appendix C: Species Likely to Benefit from MPAs andSpecial-Status Species This appendix contains two sections: C.1 Species likely to benefit from marine protected areas in the MLPA South Coast Study Region C.2 Special status species likely to occur in the MLPA South Coast Study Region C.1 Species Likely to Benefit From MPAs The Marine Life Protection Act requires that species likely to benefit from MPAs be identified; identification of these species will contribute to the identification of habitat areas that will support achieving the goals of the MLPA. The California Marine Life Protection Act Master Plan for Marine Protected Areas (DFG 2008) includes a broad list of species likely to benefit from protection within MPAs. The master plan also indicates that regional lists will be developed by the MLPA Master Plan Science Advisory Team (SAT) for each study region described in the master plan. A list of species likely to benefit for the MLPA South Coast Study Region (Point Conception in Santa Barbara County to the California/Mexico border in San Diego County) has been compiled and approved by the SAT. The SAT used a scoring system to develop the list of species likely to benefit. This scoring system was developed to provide a metric that is more useful when comparing species than a simple on/off the list metric. Each species was scored using “1” to indicate a criterion was met or “0” to indicate a criterion was not met. Species on the list meet the following filtering criteria: they occur in the study region, they must score a “1” for either -
Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ........................................................................................................................... -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
PREY PREFERENCE and PREDATORY BEHAVIOR of Aurantilaria Aurantiaca (MOLLUSCA: GASTROPODA: FASCIOLARIIDAE)
PREY PREFERENCE AND PREDATORY BEHAVIOR OF Aurantilaria aurantiaca (MOLLUSCA: GASTROPODA: FASCIOLARIIDAE) Preferência de presa e comportamento predatório de Aurantilaria aurantiaca (MOLLUSCA: GASTROPODA: Arquivos de Ciências do Mar FASCIOLARIIDAE) Carlos Augusto Oliveira de Meirelles1,3, Helena Matthews-Cascon1,2 RESUMO A família Fasciolariidae é formada por espécies carnívoras que usualmente predam outros gastrópodes e bivalves. Geralmente utilizam como estratégia de predação, o lascamento de concha, meio pelo qual o predador pode alcançar as partes moles da presa. Os objetivos desse trabalho foram determinar as possíveis presas de Aurantilaria aurantiaca da Praia do Pacheco (Caucaia-CE-Brasil) e a sua preferência alimentar em condições de laboratório. As presas observadas foram os gastrópodes Pisania pusio, Tegula viridula e Stramonita brasiliensis. O experimento de preferência de presa foi executado acondicionando um predador em um aquário de 5 litros com um indivíduo de cada presa, sendo observado durante 60 dias (replicado 10 vezes). Para a determinação do tempo de manipulação da presa, um predador foi acondicionado em uma caixa plástica mergulhada em um aquário de 80 litros juntamente com uma espécie de presa, sendo anotado o tempo de predação por duas 2 horas, durante 30 dias (replicado 10 vezes para cada espécie de presa). Aurantilaria aurantiaca mostrou preferência por Stramonita brasiliensis, o qual teve o mais baixo tempo de manipulação da presa. Pisania pusio e Tegula viridula não apresentaram resultados estatisticamente significativos (p = 0.7235 e 0.2499, respectivamente). O comportamento predatório mostrou 2 estratégias: penetração direta da probóscide e sufocamento. Não houve registro de lascamento de concha. Aurantilaria aurantiaca apresentou-se como um predador generalista, onde a variação de tempo de manipulação da presa mostrou que o predador passou por um processo de aprendizagem. -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Feeding Ecology of Enteroctopus Megalocyathus (Cephalopoda: Octopodidae) in Southern Chile Christian M
Journal of the Marine Biological Association of the United Kingdom, 2008, 88(4), 793–798. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408001227 Printed in the United Kingdom Feeding ecology of Enteroctopus megalocyathus (Cephalopoda: Octopodidae) in southern Chile christian m. ibanez~ 1 and javier v. chong2 1Instituto de Ecologı´a y Biodiversidad, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, PO Box 563, Santiago, Chile, 2Departamento de Ecologı´a Costera, Facultad de Ciencias, Universidad Cato´lica de la Santı´sima Concepcio´n, P.O. BOX 297, Concepcio´n, Chile In this research we studied the diet of Enteroctopus megalocyathus from three principal locations of the octopus fishery (Ancud, Quello´n and Melinka) in southern Chile. The gastric contents of 523 individuals, collected between October 1999 and September 2000, were examined and statistically analysed. Diet composition was described using detrended correspon- dence analysis and analysed as a function of predator gender, body size and fishing area. Food items were found in ~50% of the octopuses examined and a total of 14 prey items were recognized. The diet of E. megalocyathus consisted primarily in brachyuran and anomuran crustaceans, fish and conspecifics. The diet differed in composition between fishing zones and mantle length of the specimens and size of octopuses varied between locations. After adjusting for octopus mantle length, diet composition was found to be different between fishing areas. Large octopuses fed on large crabs at Ancud, while in Quello´n and Melinka small octopuses fed mainly on small crustaceans. There were no differences in prey composition between the gender and the size of octopuses was a better predictor of the variance in the diet composition (16%) than the fishing zone (6%). -
Eight Arms, with Attitude
The link information below provides a persistent link to the article you've requested. Persistent link to this record: Following the link below will bring you to the start of the article or citation. Cut and Paste: To place article links in an external web document, simply copy and paste the HTML below, starting with "<a href" To continue, in Internet Explorer, select FILE then SAVE AS from your browser's toolbar above. Be sure to save as a plain text file (.txt) or a 'Web Page, HTML only' file (.html). In Netscape, select FILE then SAVE AS from your browser's toolbar above. Record: 1 Title: Eight Arms, With Attitude. Authors: Mather, Jennifer A. Source: Natural History; Feb2007, Vol. 116 Issue 1, p30-36, 7p, 5 Color Photographs Document Type: Article Subject Terms: *OCTOPUSES *ANIMAL behavior *ANIMAL intelligence *PLAY *PROBLEM solving *PERSONALITY *CONSCIOUSNESS in animals Abstract: The article offers information on the behavior of octopuses. The intelligence of octopuses has long been noted, and to some extent studied. But in recent years, play, and problem-solving skills has both added to and elaborated the list of their remarkable attributes. Personality is hard to define, but one can begin to describe it as a unique pattern of individual behavior that remains consistent over time and in a variety of circumstances. It will be hard to say for sure whether octopuses possess consciousness in some simple form. Full Text Word Count: 3643 ISSN: 00280712 Accession Number: 23711589 Persistent link to this http://0-search.ebscohost.com.library.bennington.edu/login.aspx?direct=true&db=aph&AN=23711589&site=ehost-live