Phylogenetics of Papaver and Related Genera Based on DNA Sequences from ITS Nuclear Ribosomal DNA and Plastid Trnl Intron and Trnl–F Intergenic Spacers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project: 2003-NPS-305-P Seed Fates of Arctomecon Californica By
Project: 2003-NPS-305-P Seed Fates of Arctomecon californica By: Laura Megill & Dr. Lawrence Walker University of Nevada, Las Vegas Final Report Clark County Multiple Species Habitat Conservation Plan June 30, 2006 ** A copy of the finished thesis and subsequent publications will be sent upon completion. INTRODUCTION The Las Vegas bearpoppy, Arctomecon californica Torr. and Frem., is a rare herbaceous perennial endemic to the Mojave Desert that mainly inhabits gypsum outcrops. The Las Vegas bearpoppy is listed as Critically Endangered by the State of Nevada (Mistretta et al., 1995). A vital aspect of the life history of the bearpoppy that has been overlooked in previous studies is the fate of seeds. The unknown fate of the bearpoppy seeds provides an information gap in conservation management plans that is critical to plan mitigation measures (Powell and Walker 2003). Therefore, the objective of this research project is to determine the seed fates of the Las Vegas bearpoppy to further promote conservation efforts. The scope of this project follows seed fates through seed production, seed dispersal, and granivory to incorporation within the soil seed bank. In addition, seed viability testing will occur throughout the project to substantiate seed fate data. The research data will be collected from four study areas with an additional area added for soil seed bank studies traversing the natural range of the Las Vegas bearpoppy over a two-year consecutive period. The following hypotheses will be addressed in this research study: (1) Seed production corresponds to capsule size and number of rosettes. (2) Primary seed dispersal declines leptokurtically from the source. -
Habitat Conservation Plan Washington County, Utah
Habitat Conservation Plan Washington County, Utah Submitted by: Washington County Commission 197 East Tabernacle St. George, Utah 84770 (801) 634-5700 Submitted to: U.S. Fish and Wildlife Service Utah Field Office Lincoln Plaza, Suite 404 145 East 1300 South Salt Lake City, Utah 84115 801-524-5001 Prepared by: Washington County HCP Steering Committee and SWCA, Inc. Environmental Consultants 114 North San Francisco Street, Suite 100 Flagstaff, Arizona 86001 (800) 224-4234 December 1995 TABLE OF CONTENTS EXECUTIVE SUMMARY............................................................................................................ ix CHAPTER 1.0 INTRODUCTION .................................................................................................1 1.1 THE NEED FOR AN HCP IN WASHINGTON COUNTY ...................................1 1.2 PLAN AREA AND PROPOSED ACTIVITIES .....................................................2 1.3 THE HCP PLANNING PROCESS .........................................................................2 1.4 COORDINATION WITH THE DESERT TORTOISE RECOVERY PLAN .........9 1.5 HCP GOALS AND OBJECTIVES .........................................................................9 1.6 PROPOSED PROGRAM ......................................................................................10 1.7 IS THE DESERT TORTOISE NATIVE TO THE ST. GEORGE AREA? ..........11 CHAPTER 2.0 BIOLOGICAL PROGRAM ................................................................................13 2.1 SPECIES OF CONCERN ......................................................................................13 -
Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n. -
Appendix F3 Rare Plant Survey Report
Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5 -
Argemone Mexicana L.)
Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.11 No.1, Issue of January 15, 2008 © 2008 by Pontificia Universidad Católica de Valparaíso -- Chile Received March 21, 2007 / Accepted Mayo 20, 2007 DOI: 10.2225/vol11-issue1-fulltext-3 SHORT COMMUNICATION Agrobacterium-mediated transient transformation of Mexican prickly poppy (Argemone mexicana L.) Gregorio Godoy-Hernández* Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Elidé Avilés-Berzunza Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Mildred Carrillo-Pech Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Felipe Vázquez-Flota Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Website: http://www.cicy.mx Financial support: Consejo Nacional de Ciencia y Tecnología (CONACYT) from México (Grant No. 28643-B). Keywords: Argemone mexicana, β-glucuronidase, benzylisoquinoline alkaloids, genetic transformation, neomycin phosphotransferase II. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
Journal of the Royal Horticultural Society of London
I 3 2044 105 172"381 : JOURNAL OF THE llopl lortimltoal fbck EDITED BY Key. GEORGE HEXSLOW, ALA., E.L.S., F.G.S. rtanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. VOLUME VI Gray Herbarium Harvard University LOXD N II. WEEDE & Co., PRINTERS, BEOMPTON. ' 1 8 8 0. HARVARD UNIVERSITY HERBARIUM. THE GIFT 0F f 4a Ziiau7- m 3 2044 i"05 172 38" J O U E N A L OF THE EDITED BY Eev. GEOEGE HENSLOW, M.A., F.L.S., F.G.S. Botanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. YOLUME "VI. LONDON: H. WEEDE & Co., PRINTERS, BROMPTON, 1 8 80, OOUITOIL OF THE ROYAL HORTICULTURAL SOCIETY. 1 8 8 0. Patron. HER MAJESTY THE QUEEN. President. The Eight Honourable Lord Aberdare. Vice- Presidents. Lord Alfred S. Churchill. Arthur Grote, Esq., F.L.S. Sir Trevor Lawrence, Bt., M.P. H. J". Elwes, Esq. Treasurer. Henry "W ebb, Esq., Secretary. Eobert Hogg, Esq., LL.D., F.L.S. Members of Council. G. T. Clarke, Esq. W. Haughton, Esq. Colonel R. Tretor Clarke. Major F. Mason. The Rev. H. Harpur Crewe. Sir Henry Scudamore J. Denny, Esq., M.D. Stanhope, Bart. Sir Charles "W. Strickland, Bart. Auditors. R. A. Aspinall, Esq. John Lee, Esq. James F. West, Esq. Assistant Secretary. Samuel Jennings, Esq., F.L S. Chief Clerk J. Douglas Dick. Bankers. London and County Bank, High Street, Kensington, W. Garden Superintendent. A. F. Barron. iv ROYAL HORTICULTURAL SOCIETY. SCIENTIFIC COMMITTEE, 1880. Chairman. Sir Joseph Dalton Hooker, K.C.S.I., M.D., C.B.,F.R.S., V.P.L.S., Royal Gardens, Kew. -
Argemone Mexicana
Argemone mexicana General description Scientific Name with Author Argemone mexicana L. Synonyms Argemone leiocarpa Greene; Argemone ochroleuca Sweet; Echtrus trivialis Lour.; Echtrus mexicanus (L.) Nieuwl.; Argemone vulgaris Spach; Argemone versicolor Salisb.; Argemone spinosa Moench; Argemone sexvalis Stokes; Argemone mucronata Dum. Cours. ex Steud.; Argemone mexicana var. typica Prain; Argemone mexicana var. parviflora Kuntze; Argemone mexicana var. ochroleuca (Sweet) Lindl.; Argemone mexicana var. lutea Kuntze; Argemone mexicana fo. leiocarpa (Greene) G.B. Ownbey (Pires, 2009). Family Papaveraceae Vernacular Names Mexican poppy, prickly poppy, yellow thistle, Mexican thistle (En). Argémone, pavot épineux, pavot du Mexique, tache de l’œil, chardon du pays (Fr) (Bosch, 2008) Botanical Description Argemone mexicana is an annual herb, growing up to 150 cm with a slightly branched tap root. Its stem is branched and usually extremely prickly. It exudes a yellow juice when cut. It has showy yellow flowers. Leaves are thistle-like and alternate, without leaf stalks (petioles), toothed (serrate) and the margins are spiny. The grey-white veins stand out against the bluish-green upper leaf surface. The stem is oblong in cross-section. Flowers are at the tips of the branches (are terminal) and solitary, yellow and of 2.5-5 cm diameter. Fruit is a prickly oblong or egg-shaped (ovoid) capsule. Seeds are very numerous, nearly spherical, covered in a fine network of veins, brownish black and about 1 m m in diameter (Nacoulma, 1996; Bosch, 2008). 1 MEAMP – Appear Project – 75 September 2012 – August 2014 Photo LABIOCA 1. Argemone mexicana Origin and Distribution Argemone mexicana is native in Mexico and the West Indies, but has become pantropical after accidental introduction or introduction as an ornamental. -
The Alien Vascular Flora of Tuscany (Italy)
Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned. -
Anali Za Istrske in Mediteranske Študije Annali Di Studi Istriani E Mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2
Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2 UDK 5 Annales, Ser. hist. nat., 30, 2020, 2, pp. 131-290, Koper 2020 ISSN 1408-533X UDK 5 ISSN 1408-533X e-ISSN 2591-1783 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2 KOPER 2020 ANNALES · Ser. hist. nat. · 30 · 2020 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 30, leto 2020, številka 2 e-ISSN 2591-1783 Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), UREDNIŠKI ODBOR/ Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda COMITATO DI REDAZIONE/ Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, BOARD OF EDITORS: Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Lektor/Supervisione/Language editor: Petra Berlot Kužner (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: -
Functional Analyses of Genetic Pathways Controlling Petal Specification in Poppy Sinéad Drea1, Lena C
RESEARCH ARTICLE 4157 Development 134, 4157-4166 (2007) doi:10.1242/dev.013136 Functional analyses of genetic pathways controlling petal specification in poppy Sinéad Drea1, Lena C. Hileman1,*, Gemma de Martino1 and Vivian F. Irish1,2,† MADS-box genes are crucial regulators of floral development, yet how their functions have evolved to control different aspects of floral patterning is unclear. To understand the extent to which MADS-box gene functions are conserved or have diversified in different angiosperm lineages, we have exploited the capability for functional analyses in a new model system, Papaver somniferum (opium poppy). P. somniferum is a member of the order Ranunculales, and so represents a clade that is evolutionarily distant from those containing traditional model systems such as Arabidopsis, Petunia, maize or rice. We have identified and characterized the roles of several candidate MADS-box genes in petal specification in poppy. In Arabidopsis, the APETALA3 (AP3) MADS-box gene is required for both petal and stamen identity specification. By contrast, we show that the AP3 lineage has undergone gene duplication and subfunctionalization in poppy, with one gene copy required for petal development and the other responsible for stamen development. These differences in gene function are due to differences both in expression patterns and co- factor interactions. Furthermore, the genetic hierarchy controlling petal development in poppy has diverged as compared with that of Arabidopsis. As these are the first functional analyses of AP3 genes in this evolutionarily divergent clade, our results provide new information on the similarities and differences in petal developmental programs across angiosperms. Based on these observations, we discuss a model for how the petal developmental program has evolved.