DIVERSITAS First Open Science Conference 2005: Travel Fund For

Total Page:16

File Type:pdf, Size:1020Kb

DIVERSITAS First Open Science Conference 2005: Travel Fund For Asia‐Pacific Network for Global Change Research DDIIVVEERRSSIITTAASS FFiirrsstt OOppeenn SScciieennccee CCoonnffeerreennccee 22000055:: TTrraaveell FFuunndd ffoorr SScciieennttiissttss ffrroomm DDeevveellooppiinngg CCoouunnttrriieess iinn tthhee AAssiiaa PPaacciiffiicc RReeggiioonn Final report for APN project 2005-11-NSY-Bawa The following collaborators worked on this project: Kamaljit S. Bawa, Ashoka Trust for Research in Ecology and the Environment, India, [email protected] Keping Ma, Institute of Botany Beijing, China, [email protected] Tohru Nakashizuka, Research Institute for Humanity and Nature Kyoto, Japan, [email protected] Other logos may be placed here 1 DIVERSITAS Open Science Conference 2005: Travel Fund for Scientists from Developing Countries in the Asia Pacific Region 2005-11-NSY-Bawa Final Report submitted to APN ©Asia-Pacific Network for Global Change Research 2 Overview of project work and outcomes Non-technical summary DIVERSITAS, the international programme dedicated to biodiversity science, placed under the auspices of ICSU, IUMS, IUBS, SCOPE and UNESCO, received a grant from APN to provide travel assistance to scientists from developing countries of the Asia Pacific region to attend the DIVERSITAS First Open Science Conference entitled: “Integrating biodiversity science for human well being”, which took place in Oaxaca, Mexico, 9-12 November 2005. Only scientists who actively participated in the conference, with a selected abstract were funded. Part of the funds was used to invite key speakers known to the DIVERSITAS community, and part was used to support scientists new to DIVERSITAS, selected on the quality of their abstract, with the intent to get them interested in the objectives of DIVERSITAS. Eleven participants from the following countries were funded thanks to this grant: China, India, Philippines, Thailand, and Bangladesh. Overall, the conference succeeded in attracting close to 700 scientists and policy makers from 60 countries, including a large proportion of young scientists, and scientists from developing countries. In addition to the APN objectives stated below, the conference produced a statement representing an important step on the way towards the establishment of a new international mechanism of scientific expertise for biodiversity. Objectives The main objectives of the project were: 1. To identify in the APN region, scientists related to DIVERSITAS scientific areas, not yet part of a network, to get them to know the DIVERSITAS programme. 2. To identify possible national representatives in countries where DIVERSITAS needs to be stronger. This includes, in particular, India and China, who are submitting this grant proposal. 3. To generally promote in the APN region the integrated approach of biodiversity science taken within DIVERSITAS to address biodiversity issues of high relevance in the Asia Pacific region (e.g. biodiversity changes and human health; carbon sequestration capacity of diverse tropical forests, etc.). Amount received and number years supported <2005-2006: 15,000 USD >; one year Activity undertaken Funds were used to fund participation of 11 scientists from the Asia Pacific region to the First DIVERSITAS Open Science Conference. APN funded participants actively contributed to the conference, by presenting one or several talks or organising a symposium. K Ma (China) gave a presentation on main biodiversity scientific programmes in China (National Committees meeting); K Bawa (India/USA) organised a symposium on sustaining partnerships for community-based conservation; A Sridhar (India) gave a talk on community-based approaches to marine conservation in India; B Sinha (India) talked about assessing traditional institutions for conservations in India; Priyadarsanan Dharma Rajan (India) gave a talk related to agrobiodiversity; J Gladwin 3 (India) was an invited speaker at a symposium on agrobiodiversity; V Amoroso (Philippines) talked about participatory inventory of plants in Natural Parks in the Philippines; E Webb (Thailand) was an invited speaker at a symposium on remote sensing and biodiversity; A Ramana was an invited speaker at a symposium on implementation of multilateral agreements as they apply to plant genetic resources (India). All abstracts are posted on the DIVERSITAS web site. Results The objectives were met since: 1) The conference attracted a wider than foreseen audience from 60 countries who signaled their interest to get involved into the activities of the DIVERSITAS cross-cutting networks and core projects, and to take the interdisciplinary approach promoted by DIVERSITAS; 2) Additional contacts were taken in countries which do not have yet a national committee, particularly in Asia (e.g. India, Philippines), Africa (Kenya, Morocco), and Eastern Europe; 3) Following symposiums and round tables, the conference adopted the “Oaxaca declaration” which commits the community to lobby for and get involved in the initial steps towards an International Mechanism of Scientific Expertise on Biodiversity (IMoSEB), similar to an IPCC for biodiversity. Relevance to APN scientific research framework and objectives The entire conference was dedicated to the theme of the “change in terrestrial and marine biodiversity”. This included the “human dimension” aspect of biodiversity change, as DIVERSITAS was designed, from the onset, as an integrated programme, with, as a mission, to promote an integrative biodiversity science, linking biological, ecological and social disciplines in an effort to produce socially relevant new knowledge. All core projects of DIVERSITAS include a human dimension. Some sessions, including one symposium, proposed by Paul W. Leadley (University of Paris, Orsay) and Sandra Lavorel (CNRS, Grenoble, France) was dedicated to the impact of climate change on biological diversity, and to the feedback mechanisms of biodiversity changes on climate. Emphasis was placed throughout the programme on input to policy making, at the regional level, and in the context of international conventions. Self evaluation The proponents of the proposal (as well as all participants) were very pleased with all aspects of the conference, and feel that they met the objectives of the proposal. Potential for further work All the contacts taken in Oaxaca are now being nurtured to firm up the establishment of new national committees, and the involvement of scientists new to DIVERSITAS from the APN region. The DIVERSITAS secretariat is also actively following up on the Oaxaca declaration, and the initiative to create an International Mechanism of Scientific Expertise on Biodiversity, with involvement of all regions of the world. Publications Perrings, C, Jackson L, Bawa K, Brussaard L, Brush S, Gavin T, Papa R, Pascual U, and de Ruiter P. 2006. Biodiversity in agricultural landscapes: saving natural capital without losing interest; Editorial. Conservation Biology 20: 263 Bawa K, 2006. Globally dispersed local challenges in conservation biology. Conservation Biology 20:696-9. 4 Jackson L, Brussaard L, de Ruiter P, Pascual U, Perrings C, Bawa K. Agrobiodiversity. In review. Encyclopedia of Biodiversity, S Levin, ed. Acknowledgments The DIVERSITAS community thanks APN for providing a grant to support the First DIVERSITAS Open Science Conference, and START for managing the APN funds. Minimum 2pages (maximum 4 pages) 5 Technical Report Preface DIVERSITAS, the international programme dedicated to biodiversity science, received a grant from APN to contribute to its first Open Science Conference. The Conference entitled “Integrating biodiversity science for human well-being” took place in Oaxaca, Mexico, from 9 to 12 November 2005. The conference assembled many perspectives from the natural and social sciences to highlight the causes and consequences of biodiversity loss, following closely the launch of the Millennium Ecosystem Assessment. The grant received from APN was used to support scientists from the Asia Pacific region to attend and present their research. Table of Contents 1.0 Introduction 2.0 Conference Outputs 3.0 APN-Funded Participants 4.0 Conclusions References Appendix 1 Conferences/Symposia/Workshops Agenda/Programme (including title, date and venue) Participants list (comprising contact details of each participant, including organisation, address, phone number, fax number, and email address) 2 Funding sources outside the APN A list of agencies, institutions, organisations (governmental, inter-governmental and/or non-governmental), that provided any in-kind support or co-funding and the amount(s) awarded. 3 Glossary of Terms Include list of acronyms and abbreviations 4 In the Appendix section, the report may also include: Abstracts, Power Point Slides of conference/symposia/workshop presentations Conference/symposium/workshop reports 6 1.0 Introduction Introduce the project, moving from the broader issues to your specific objectives, finishing the section with the precise aims of the project. Background Approximately four years ago, in 2001, International Council for Science (ICSU), the International Union of Biological Sciences (IUBS), the International Union for Microbiological Societies (IUMS), the Scientific Committee on Problems of the Environment (SCOPE), and the United Nations Educational, Scientific and Cultural Organization (UNESCO), asked the scientific community to build a new global change programme dedicated to biodiversity science, i.e., a new DIVERSITAS. DIVERSITAS had been instrumental since its inception in the early 90’s in framing biodiversity research
Recommended publications
  • Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
    Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e.
    [Show full text]
  • Records of the Hawaii Biological Survey for 1996
    Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J.
    [Show full text]
  • Checklist of the Genus Quercus (Fagaceae) of Aguascalientes, México
    13 1 2045 the journal of biodiversity data 14 February 2017 Check List LISTS OF SPECIES Check List 13(1): 2045, 14 February 2017 doi: https://doi.org/10.15560/13.1.2045 ISSN 1809-127X © 2017 Check List and Authors Checklist of the genus Quercus (Fagaceae) of Aguascalientes, México Víctor Manuel Martínez-Calderón, María Elena Siqueiros-Delgado1 & Julio Martínez-Ramírez Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Biología, Herbario HUAA, Avenida Universidad 940, Ciudad Universitaria, Código Postal 20131, Aguascalientes, AG, México 1 Corresponding author. E-mail: [email protected] Abstract: Twenty-five species of Quercus were collected in none occur in Yucatán (Rzedowski 2006). the state of Aguascalientes, 11 members of Quercus sect. In Aguascalientes, one of the smallest of the Mexican Lobatae (red oak) and 14 members of Quercus sect. Quercus states, two major physiographic units are recognized: (white oak). Ten species were newly recorded. Quercus xerophytic and temperate. The eastern half of the state potosina is the commonest and most widely distributed is a semiarid region where drier conditions predominate. species in the state. Eight species were found only in a single This portion of the state consists of a broad valley bounded municipality, Calvillo or San José de Gracia. The species of by a system of plateaus and low hills in the far east. Plant Quercus are mainly distributed in oak and pine-oak forest communities of this region are typical of a semi-arid in the western part of Aguascalientes. The municipalities climate and include crasicaules or thorny scrub, mesquite with the greatest numbers of species are San José de forests, and grasslands.
    [Show full text]
  • Estudio Preliminar Del Género Quercus (Fagaceae) En Tamaulipas, México Preliminary Study of the Genus Quercus (Fagaceae) in Tamaulipas, Mexico
    120: 59-111 Julio 2017 Artículo de investigación Estudio preliminar del género Quercus (Fagaceae) en Tamaulipas, México Preliminary study of the genus Quercus (Fagaceae) in Tamaulipas, Mexico Erika Pérez Mojica1 , Susana Valencia-A.1,2 RESUMEN: 1 Universidad Nacional Autónoma de Antecedentes y Objetivos: El estado de Tamaulipas se ubica en el noreste de México, región consi- México, Herbario Nacional de la Fa- derada con alta riqueza de encinos, pero carente de inventarios y de herramientas para identificar las cultad de Ciencias (FCME), Circuito ex- terior s.n., Ciudad Universitaria, 04510 especies de Quercus. El objetivo de este trabajo es conocer la riqueza específica del géneroQuercus en Cd. Mx., México. Tamaulipas y proporcionar herramientas para su identificación. 2 Autor para la correspondencia: Métodos: Se revisaron los ejemplares de Quercus depositados en los herbarios CHAP, ENCB, FCME, [email protected] HUAP, INEGI, INIF y MEXU; así como los ejemplares escaneados del género Quercus de Tamaulipas de los herbarios MO y K disponibles en la página electrónica de Trópicos y los tipos de las especies en JSTOR Global Plants. Paralelamente se revisaron las publicaciones de Tamaulipas, particularmente las Citar como: listas florísticas que incluyen el géneroQuercus , resultando en una lista preliminar de especies colectadas Pérez Mojica, E. y S. Valencia-A. 2017. Es- tudio preliminar del género Quercus (Fa- y reportadas. La revisión de ejemplares y el reconocimiento de los sinónimos permitió depurar la lista de gaceae) en Tamaulipas, México. Acta Bo- especies. Con base en la información anterior, se prepararon las descripciones de las especies de encinos. tanica Mexicana 120: 59-111.
    [Show full text]
  • Global Response of Terrestrial Ecosystem Structure and Function to CO2 and Climate Change: Results from Six Dynamic Global Vegetation Models
    Global Change Biology (2001) 7, 357±373 Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models WOLFGANG CRAMER,* ALBERTE BONDEAU,* F. IAN WOODWARD,² I. COLIN PRENTICE,³ RICHARD A. BETTS,§ VICTOR BROVKIN,² PETER M. COX,§ VERONICA FISHER,¶ JONATHAN A. FOLEY,¶ ANDREW D. FRIEND,**1 CHRIS KUCHARIK,¶ MARK R. LOMAS,² NAVIN RAMANKUTTY,¶ STEPHEN SITCH,* BENJAMIN SMITH,²² ANDREW WHITE**2 andCHRISTINE YOUNG-MOLLING¶ *Potsdam Institut fuÈr Klimafolgenforschung (PIK) e.V., Telegrafenberg, PO Box 60 12 03, D-144 12 Potsdam, Germany, ²Department of Animal & Plant Sciences, University of Shef®eld, Shef®eld S10 2TN, UK, ³Max-Planck-Institut fuÈr Biogeochemie, PO Box 100164, D-07701 Jena, Germany, §Hadley Centre for Climate Prediction and Research, Meteorological Of®ce, Bracknell, Berkshire RG12 2SY, UK, ¶Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA, **Institute of Terrestrial Ecology, Bush Estate, Penicuik EH26 0QB, UK, ²²Climate Impacts Group, Department of Ecology, University of Lund, Ekologihuset, S-223 62 Lund, Sweden Abstract The possible responses of ecosystem processes to rising atmospheric CO2 concentra- tion and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 (Wigley et al. 1991), and by climate changes resulting from effective CO2 concen- trations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2-SUL. Simulations with changing CO2 alone show a widely distributed ter- restrial carbon sink of 1.4±3.8 Pg C y±1 during the 1990s, rising to 3.7±8.6 Pg C y±1 a cen- tury later.
    [Show full text]
  • Carbon-Nitrogen Interactions in Idealized Simulations with JSBACH (Version 3.10) Daniel S
    Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-304, 2017 Manuscript under review for journal Geosci. Model Dev. Published: 9 January 2017 c Author(s) 2017. CC-BY 3.0 License. Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10) Daniel S. Goll1,2, Alexander J. Winkler3,4, Thomas Raddatz3, Ning Dong5,6, Ian Colin Prentice5,7, Philippe Ciais1, and Victor Brovkin3 1Le Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE CEA/CNRS/UVSQ Saclay, Gif sur Yvette, France. 2also guest scientist at Max Planck Institute for Meteorology, Hamburg, Germany 3Max Planck Institute for Meteorology, Hamburg, Germany 4International Max Planck Research School on Earth System Modelling, Hamburg, Germany 5Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia 6Faculty of Agriculture and Environment, Department of Environmental Sciences, University of Sydney, NSW 2006, Australia 7AXA Chair in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK Correspondence to: Daniel S. Goll ([email protected]) Abstract. Recent advances in the representation of soil carbon decomposition (Goll et al., 2015) and carbon-nitrogen interac- tions (Parida, 2011; Goll et al., 2012) implemented previously into separate versions of the land surface scheme JSBACH are here combined in a single version which is set to be used in the upcoming 6th phase of coupled model intercomparison project (CMIP6) (Eyring et al., 2016). 5 Here we demonstrate that the new version of JSBACH is able to reproduce the spatial variability in the reactive nitrogen loss pathways as derived from a compilation of δ15N data (r=.63, RMSE=.26, Taylor score=.81).
    [Show full text]
  • Special Publications Special
    ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS WITH WET PLAYAS ARACHNIDS ASSOCIATED SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 2008 ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS (LLANO ESTACADO), C okendolpher et al. U.S.A. JAMES C. COKENDOLPHER, SHANNON M. TORRENCE, JAMES T. ANDERSON, W. DAVID SISSOM, NADINE DUPÉRRÉ, JAMES D. RAY & LOREN M. SMITH SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A. JAMES C. COKENDOLPHER , SHANNON M. TORREN C E , JAMES T. ANDERSON , W. DAVID SISSOM , NADINE DUPÉRRÉ , JAMES D. RAY , AND LOREN M. SMI T H Texas Tech University, Oklahoma State University, B&W Pantex, Texas Parks and Wildlife Department, West Texas A&M University, West Virginia University Layout and Design: Lisa Bradley Cover Design: James C. Cokendolpher et al. Copyright 2008, Museum of Texas Tech University All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 10 April 2008 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 54 Series Editor: Robert J. Baker Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A.
    [Show full text]
  • Diversidad De Arañas (Arachnida: Araneae) Asociadas Con Viviendas De La Ciudad De México (Zona Metropolitana)
    Revista Mexicana de Biodiversidad 80: 55-69, 2009 Diversidad de arañas (Arachnida: Araneae) asociadas con viviendas de la ciudad de México (Zona Metropolitana) Spider diversity (Arachnida: Araneae) associated with houses in México city (Metropolitan area) César Gabriel Durán-Barrón*, Oscar F. Francke y Tila Ma. Pérez-Ortiz Colección Nacional de Arácnidos (CNAN), Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apartado postal 70-153, 04510 México, D. F., México. *Correspondencia: [email protected] Resumen. La ecología urbana es un área de investigación relativamente reciente. Los ecosistemas urbanos son aquellos defi nidos como ambientes dominados por el hombre. Con el proceso de urbanización, insectos y arácnidos silvestres aprovechan los nuevos microhábitats que las viviendas humanas ofrecen. Se revisaron arañas recolectadas dentro de 109 viviendas durante los años de 1985 a 1986, 1996 a 2001 y 2002 a 2003. Se cuantifi caron 1 196 organismos , los cuales se determinaron hasta especie. Se obtuvo una lista de 25 familias, 52 géneros y 63 especies de arañas sinantrópicas. Se utilizaron 3 índices (ocupación, densidad y estacionalidad) y un análisis de intervalos para sustentar la siguiente clasifi cación: accidentales (índice de densidad de 0-0.9), ocasionales (1-2.9), frecuentes (3.0-9.9) y comunes (10 en adelante). Se comparan las faunas de arañas sinantrópicas de 5 países del Nuevo Mundo. Palabras clave: sinantropismo, ecología, urbanización, microhábitats. Abstract. Urban ecology is a relatively new area of research, with urban ecosystems being defi ned as environments dominated by humans. Insects and arachnids are 2 groups that successfully exploit the habitats offered by human habitations.
    [Show full text]
  • An Updated Infrageneric Classification of the North American Oaks
    Article An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity Paul S. Manos 1,* and Andrew L. Hipp 2 1 Department of Biology, Duke University, 330 Bio Sci Bldg, Durham, NC 27708, USA 2 The Morton Arboretum, Center for Tree Science, 4100 Illinois 53, Lisle, IL 60532, USA; [email protected] * Correspondence: [email protected] Abstract: The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the Citation: Manos, P.S.; Hipp, A.L. An Quercus Updated Infrageneric Classification white oaks), the two largest sections of subgenus . We also distill emerging evolutionary and of the North American Oaks (Quercus biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple Subgenus Quercus): Review of the species complexes and instances of hybridization.
    [Show full text]
  • FY96 NCAR ASR Highlights
    FY96 NCAR ASR Highlights 1996 ASR Highlights Highlights of NCAR's FY96 Achievements These are the most significant highlights from each NCAR division and program. Atmospheric Chemistry Division Highlights data missing Atmospheric Technology Division Highlights AVAPS/GPS Dropsonde System The development of the advanced Airborne Vertical Atmospheric Profiling System (AVAPS)/GPS Dropsonde System was close to completion at the end of FY 96. This work has been supported by NOAA and the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR, Germany). AVAPS has now progressed to the point where all the NOAA data systems (two four-channel systems plus spares for the NOAA G-IV aircraft and two four-channel systems plus spares for the NOAA P-3 aircraft) have been delivered, and the initial flight testing has been completed. Both high-level (45,000-foot-altitude) and low-level (22,000-foot-altitude) drop tests have been completed, including intercomparison tests in which sondes were dropped from both the G-IV and the P-3s. Data taken by the AVAPS system on the G-IV and by a second system installed in a leased Lear 36 aircraft are expected to play a key role in the Fronts and Atlantic Storm Tracks Experiment (FASTEX), scheduled for early 1997. The DLR four-channel AVAPS system is currently being built and will be installed on the DLR Falcon aircraft in March 1997. NCAR has transferred the technology to the public sector by licensing a commercial firm (Vaisala, Inc.) to build future GPS sondes and data systems. This effort is led by Hal Cole and Terry Hock.
    [Show full text]
  • Climate Change and Challenges for Conservation DR MARIA DICKINSON, PROFESSOR IAIN COLIN PRENTICE and PROFESSOR GEORGINA M
    Grantham Institute Briefing paper No 13 June 2015 In partnership with the Centre for Biodiversity and Environment Research at University College London Climate change and challenges for conservation DR MARIA DICKINSON, PROFESSOR IAIN COLIN PRENTICE AND PROFESSOR GEORGINA M. MACE The headlines • Biodiversity has been significantly depleted by non-climatic factors, such as land-use change. Climate change will exacerbate this loss and compromise ecosystem integrity. • Integrated approaches will be necessary to evaluate species’ responses to climate change, which will be more complex and more uncertain than range shifts alone. • This paper recommends applying new perspectives to traditional conservation practices. A global and flexible approach to biodiversity protection and resource management may be needed for successful conservation policy and planning. Executive summary Contents CHANGES IN BIODIVERSITY SINCE THE 1950s DUE TO HUMAN ACTIVITIES HAVE Executive summary ..................... 1 been more rapid than at any time in human history 1 and according to some, we are currently living “amid a global wave of anthropogenically driven biodiversity Introduction ............................. 2 loss” 2. To date, much of this loss has been driven by pressures such as population and economic growth and land-use change 3. These pressures are Current and past responses anticipated to intensify as a growing human population puts increasing pressure to climate change ...................... 4 on Earth’s biological systems and finite resources4–6 . Lessons for conservation Climate change is predicted to have major implications for species and in a climate change context ............ 7 ecosystems, acting as a driver of biodiversity loss in its own right and amplifying the effects of existing threats 1,7–9.
    [Show full text]
  • DIVERSITAS First Open Science Conference 2005: Travel Fund For
    Asia‐Pacific Network for Global Change Research DDIIVVEERRSSIITTAASS FFiirrsstt OOppeenn SScciieennccee CCoonnffeerreennccee 22000055:: TTrraaveell FFuunndd ffoorr SScciieennttiissttss ffrroomm DDeevveellooppiinngg CCoouunnttrriieess iinn tthhee AAssiiaa PPaacciiffiicc RReeggiioonn Final report for APN project 2005-11-NSY-Bawa The following collaborators worked on this project: Kamaljit S. Bawa, Ashoka Trust for Research in Ecology and the Environment, India, [email protected] Keping Ma, Institute of Botany Beijing, China, [email protected] Tohru Nakashizuka, Research Institute for Humanity and Nature Kyoto, Japan, [email protected] Other logos may be placed here 1 DIVERSITAS Open Science Conference 2005: Travel Fund for Scientists from Developing Countries in the Asia Pacific Region 2005-11-NSY-Bawa Final Report submitted to APN ©Asia-Pacific Network for Global Change Research 2 Overview of project work and outcomes Non-technical summary DIVERSITAS, the international programme dedicated to biodiversity science, placed under the auspices of ICSU, IUMS, IUBS, SCOPE and UNESCO, received a grant from APN to provide travel assistance to scientists from developing countries of the Asia Pacific region to attend the DIVERSITAS First Open Science Conference entitled: “Integrating biodiversity science for human well being”, which took place in Oaxaca, Mexico, 9-12 November 2005. Only scientists who actively participated in the conference, with a selected abstract were funded. Part of the funds was used to invite key speakers known to the DIVERSITAS community, and part was used to support scientists new to DIVERSITAS, selected on the quality of their abstract, with the intent to get them interested in the objectives of DIVERSITAS. Eleven participants from the following countries were funded thanks to this grant: China, India, Philippines, Thailand, and Bangladesh.
    [Show full text]