Environmental Flows an Introduction for Water Resources Managers

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Flows an Introduction for Water Resources Managers Environmental Flows An Introduction for Water Resources Managers 2013 Editor: Brij Gopal National Institute of Ecology New Delhi Environmental Flows An Introduction for Water Resources Managers Editor: Brij Gopal 2013 National Institute of Ecology Cap-Net New Delhi (India) Pretoria (South Africa) Environmental Flows An Introduction for Water Resources Managers © 2013, National Institute of Ecology First published 2013 No part of this book may be reproduced, stored or transmitted, in any form or by any means, except to the extent permissible under the Indian Copyright Act, without prior permission of the publisher. Published By: National Institute of Ecology (URL: www.nieindia.org) 366 Metro Apartments, DDA Flats, Jahangirpuri, Delhi 110033, India Email: [email protected] The views expressed in this book are solely those of individual authors and do not refect in any manner whatsoever the concurrence of the CapNet or the National Institute of Ecology (NIE). The preparation and publication of this book was funded by CapNet, This edition of the book is distributed freely. A non-editable PDF fle of the book will be available for free download also from the websites of the NIE (www.nieindia.org) and the Cap-Net (www.cap-net.org). Cover Photo: Dam of Chamera I HEP on River Ravi (viewed from downstream) (B. Gopal) Back Cover Photos: Stretches of Rivers Tons, Yamuna and Ganga downstream of Dams and Barrages (B. Gopal) Printed in India at New United Process, A26 Naraina Industrial Area II, New Delhi-110028 Ph. 09811426024, Email: [email protected] ii | Dedicated to Prof. Ramaswamy R. Iyer (former Secretary, Ministry of Water Resources, New Delhi) | iii iv | CONTENTS Preface vii Contributors ix 1. Introduction 1 Scope of the Book and the IWRM Context 7 2. The River Ecosystems and their Natural Flow Regimes 11 Evolution of the Ecosystem Approach to Rivers 12 The River Ecosystem 20 Ecosystem Functioning 43 River-Floodplain Interactions 47 Interaction of Flow with other Ecosystem Components 49 3. Ecosystems Services of Rivers and their Relation to Flows 67 Ecosystem Services of Rivers 72 4. Impacts of Regulation of River Flows 81 How is Flow Regime Altered? 81 Impact of Dams 83 5. Environmental Flows: Concept and History 113 Early Concerns 113 Emergence of Environmental Flows Concept 114 Current State 115 Annexure 1 120 6. Methodologies for the Assessment of Environmental Flows 129 Introduction 129 Hydrological Methods 133 Hydraulic Rating Methods 145 Habitat Simulation Methods 149 PHABSIM 154 Holistic Methodologies 157 Concluding Observations 172 7. Environmental Flows: The South Asian Experience 183 Introduction 183 India 184 | v Bangladesh 189 Nepal 189 Sri Lanka 190 Regional Initiatives of IUCN 190 Laws, Policy and Institutions 190 8. Epilogue 199 Focus on Hydropower Projects 199 Environmental Flows and Methodology for Assessment 201 Planning for Environmental Flows 202 Implementation of Environmental Flows 203 Monitoring for Environmental Flows 203 Case Studies 1. Environmental Flows Assessment in India: The Ganga Experience 207 Background 207 WWF’s Work on E-Flows 208 Environmental Flows Assessment Methodology 210 Environmental Flows Assessment – The Process 210 Results 223 Refections and Lessons Learnt from the Study 226 2. Impacts of Flow Alteration on Benthic Biota and Fish Fauna 227 Introduction 227 Producer Communities 230 Consumer Communities 233 Consumer Communities (FISH) 236 Factors Affectng the Benthic Communities 237 Response of Communities to Flow Timings 238 Linkages between Biodiversity and Flow Alteration 240 Appendix I 247 vi | PREFACE Water, besides being the very basis of the existence of life on the Planet earth, is the most critical resource for all kinds of human development – economic, cultural and spiritual. Despite its presence in abundance on the Earth, the amount of fresh water suitable for human use varies between extremes both spatially and temporally. Traditionally, community- based water management adequately addressed the problems associated with variability in the quantity and quality. However, the management was taken over by the centralised custodians of water resources who administer them through a storage and distribution network, and formulate laws and policies for ‘allocating’ water to different users according to their own perceived priorities. The increasing exploitation of water, frst for agriculture and domestic use, then for industrial development and in recent decades for energy generation, has severely affected the rivers and aquifers. The rivers have been dammed and channelised for storage and diversion of their fows. The ground water abstraction, together with reduction in recharge, has lowered the water tables rapidly. The consequent changes in the biophysical structure, ecological functions and ecosystem services of rivers and their associated wetland ecosystems, and in turn, the impacts on humans themselves, especially the river-dependent communities, resulted in the realisation of the need for maintaining certain fows in the rivers – the Environmental Flows. Whereas the need for environmental fows was recognised in North America around the middle of the last century, and signifcant advancements have been made in the assessment and implementation of environmental fow requirements in North America, Europe, South Africa and Australia, most other countries, especially those of the South and Southeast Asia, have lagged far behind. Most of the major rivers of South and Southeast Asia arise in the Himalaya and are under serious threat from the hydropower projects that are in different stages of development. The issues of Environmental Flows therefore assume great signifcance and urgency in the region. Though these issues are being debated for the past few years, there has been hardly any signifcant study of the ecological impacts, the methodology for assessment of E-Flows requirements or how to make provision for them in the water resource projects. Whereas the Environmental Flows are now considered to be a critical component of the Integrated Water Resources Management (IWRM), the water resource managers in the South and Southeast Asian region have hardly little understanding of the issues and methodology. The policy- and decision makers are generally unable to appreciate the consequences of lack of fows in the rivers. The water resources project developers as well as researchers fnd it diffcult to understand the vast amount of literature on the subject emanating from a few countries which lead in the feld. The National Institute of Ecology in India took the lead in 2005, with the support of the International Water Management Institute (IWMI) to initiate discussion on Environmental | vii Flows. A study of Environmental Flows assessment for the upper reaches of River Ganga was recently undertaken by the WWF-India, and a few other initiatives have been made at the policy level in India and other countries with the help of different organisations. Realising the urgent need for educating the researchers as well as water resource managers about the basic concepts, approaches and methodologies, the National Institute of Ecology organised a Training Workshop on ‘Factoring Environmental Flows into the IWRM’ in India (Haridwar, 6-11 December 2012) - the frst such exercise in the region - with the support from the CapNet. Discussions at the Workshop identifed the need for a short introductory book on the subject that would help the students as well practitioners understand various issues and enable them to explore the subject further. Though a few publications on environmental fows appeared during the past decade (e.g., those of the World Bank and the IUCN), the only comprehensive book on the subject was published only recently (Arthington, October 2012) but it makes no reference to the South Asian situation. This book is not intended to be a comprehensive review of the global knowledge on the subject. Drawing heavily from the global experiences, it discusses Environmental Flows in the context of South Asia in focusing on its specifc ecological and socio-cultural conditions. It introduces the river ecosystems, their structure and functioning with fows as the main driver, their ecosystem services and impacts of fow alterations. It summarises major methodologies for environmental fow assessments as developed and applied in different countries and describes briefy the scientifc, legal and policy related developments in the region. Adequate and latest sources of information are cited throughout the book to help the readers in accessing detailed studies on all aspects. On behalf of the National Institute of Ecology and my own, I place on record our grateful thanks to the CapNet (Pretoria, South Africa) for generously supporting the training workshop and the publication of this book. I also thank all contributors to the book for their help, cooperation and support, and all resource persons and participants of the training workshop for their interest, contributions and suggestions. Special thanks are due to Sri Ramaswamy Iyer (Former Secretary, Ministry of Water Resources, New Delhi), Dr. BP Das, Dr. Ravi Chopra, Dr. Vikrant Jain, Prof. BD Joshi, Prof. PC Joshi and Dr. Rachna Nautiyal for their valuable suggestions and inputs to the workshop and this book. I thank Prof. K.S. Rao, Secretary General of the NIE, for his full support in organising the workshop and publication of the book. Finally, I owe my grateful thanks to various researchers and publishers from whose works fgures, tables and other
Recommended publications
  • Forest of Madhya Pradesh
    Build Your Own Success Story! FOREST OF MADHYA PRADESH As per the report (ISFR) MP has the largest forest cover in the country followed by Arunachal Pradesh and Chhattisgarh. Forest Cover (Area-wise): Madhya Pradesh> Arunachal Pradesh> Chhattisgarh> Odisha> Maharashtra. Forest Cover (Percentage): Mizoram (85.4%)> Arunachal Pradesh (79.63%)> Meghalaya (76.33%) According to India State of Forest Report the recorded forest area of the state is 94,689 sq. km which is 30.72% of its geographical area. According to Indian state of forest Report (ISFR – 2019) the total forest cover in M.P. increased to 77,482.49 sq km which is 25.14% of the states geographical area. The forest area in MP is increased by 68.49 sq km. The first forest policy of Madhya Pradesh was made in 1952 and the second forest policy was made in 2005. Madhya Pradesh has a total of 925 forest villages of which 98 forest villages are deserted or located in national part and sanctuaries. MP is the first state to nationalise 100% of the forests. Among the districts, Balaghat has the densest forest cover, with 53.44 per cent of its area covered by forests. Ujjain (0.59 per cent) has the least forest cover among the districts In terms of forest canopy density classes: Very dense forest covers an area of 6676 sq km (2.17%) of the geograhical area. Moderately dense forest covers an area of 34, 341 sqkm (11.14% of geograhical area). Open forest covers an area of 36, 465 sq km (11.83% of geographical area) Madhya Pradesh has 0.06 sq km.
    [Show full text]
  • Directory Establishment
    DIRECTORY ESTABLISHMENT SECTOR :URBAN STATE : UTTARANCHAL DISTRICT : Almora Year of start of Employment Sl No Name of Establishment Address / Telephone / Fax / E-mail Operation Class (1) (2) (3) (4) (5) NIC 2004 : 0121-Farming of cattle, sheep, goats, horses, asses, mules and hinnies; dairy farming [includes stud farming and the provision of feed lot services for such animals] 1 MILITARY DAIRY FARM RANIKHET ALMORA , PIN CODE: 263645, STD CODE: 05966, TEL NO: 222296, FAX NO: NA, E-MAIL : N.A. 1962 10 - 50 NIC 2004 : 1520-Manufacture of dairy product 2 DUGDH FAICTORY PATAL DEVI ALMORA , PIN CODE: 263601, STD CODE: NA , TEL NO: NA , FAX NO: NA, E-MAIL 1985 10 - 50 : N.A. NIC 2004 : 1549-Manufacture of other food products n.e.c. 3 KENDRYA SCHOOL RANIKHE KENDRYA SCHOOL RANIKHET ALMORA , PIN CODE: 263645, STD CODE: 05966, TEL NO: 1980 51 - 100 220667, FAX NO: NA, E-MAIL : N.A. NIC 2004 : 1711-Preparation and spinning of textile fiber including weaving of textiles (excluding khadi/handloom) 4 SPORTS OFFICE ALMORA , PIN CODE: 263601, STD CODE: 05962, TEL NO: 232177, FAX NO: NA, E-MAIL : N.A. 1975 10 - 50 NIC 2004 : 1725-Manufacture of blankets, shawls, carpets, rugs and other similar textile products by hand 5 PANCHACHULI HATHKARGHA FAICTORY DHAR KI TUNI ALMORA , PIN CODE: 263601, STD CODE: NA , TEL NO: NA , FAX NO: NA, 1992 101 - 500 E-MAIL : N.A. NIC 2004 : 1730-Manufacture of knitted and crocheted fabrics and articles 6 HIMALAYA WOLLENS FACTORY NEAR DEODAR INN ALMORA , PIN CODE: 203601, STD CODE: NA , TEL NO: NA , FAX NO: NA, 1972 10 - 50 E-MAIL : N.A.
    [Show full text]
  • Water Situation in China – Crisis Or Business As Usual?
    Water Situation In China – Crisis Or Business As Usual? Elaine Leong Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 1 Water Situation In China – Crisis Or Business As Usual? Elaine Leong Supervisor at LiU: Niclas Svensson Examiner at LiU: Niclas Svensson Supervisor at Shell Global Solutions: Gert-Jan Kramer Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 2 This page is left blank with purpose 3 Summary Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes? This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation.
    [Show full text]
  • Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Guidelines for the Assessment of Eflows in WIO Region
    Western Indian Ocean Ecosystem Guidelines and Toolkits Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Guidelines for the Assessment of EFlows in WIO region Western Indian Ocean Ecosystem Guidelines and Toolkits Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Published by the United Nations Environment Programme/Nairobi Convention Secretariat. Copyright © Nairobi Convention 2020. All rights reserved: The findings, interpretations and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the Contracting Parties to the Nairobi Convention. Rights and Permissions: The information in this report is copyrighted, therefore, copying and/or transmitting portions of this report without permission of the Nairobi Convention may be a violation of applicable law. How- ever, the Nairobi Convention encourages dissemination and use of the materials in this report. Disclaimer: This publication has been produced by the United Nations Environ- ment Programme-Nairobi Convention and WIOMSA with the kind assistance of various regional governments, Non-Governmental Organizations, Civil Society Organizations, as well as of individuals through the Global Environment Facility (GEF) funded WIOSAP pro- ject and SIDA funded MASMA project executed by the Convention and WIOMSA respectively. The report is copyrighted entirely to the Nairobi Convention and WIOMSA. Compiled and prepared by: Cate Brown and Jackie King, with contributions from Lara Van Niekerk and Susan Taljaard. Series Editor: Matthew D. Richmond Designed by: Marco Nunes Correia Coordinated by: Jared Bosire, Julius Francis and Timothy Andrew Citation: UNEP-Nairobi Convention/WIOMSA (2020). Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region.
    [Show full text]
  • (2015), Volume 3, Issue 9, 1471- 1480
    ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 9, 1471- 1480 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE Biodiversity, Ecological status and Conservation priority of the fishes of river Gomti, Lucknow (U.P., India) Archana Srivastava1 & Achintya Singhal2 1. Primary School , SION, Chiriya Gaun, Varanasi 2. Department of Computer Science, Banaras Hindu University, Varanasi Manuscript Info Abstract Manuscript History: The studies of fish fauna of different water bodies were made by different workers. However, the study of ichthyofauna of the Gomti River at Lucknow Received: 15 July 2015 is scanty. This paper deals with the fish fauna of the Gomti river at Lucknow Final Accepted: 16 August 2015 o o Published Online: September 2015 (Latitude: 26 51N and Longitude: 80 58E). A systematic list of 70 species have been prepared containing two endangered, six vulnerable, twelve Key words: indeterminate and fifty not evaluated species, belonging to nine order, twenty one families and forty two genera respectively. Scientific names, Fish fauna, river Gomti, status, morphological character, fin-formula, local name, common name etc. of each biodiversity, conservation species was studied giving a generalized idea about finfishes of Lucknow. *Corresponding Author Copy Right, IJAR, 2015,. All rights reserved Archana Srivastava INTRODUCTION Biodiversity in relation to ecosystem function is one of the emerging areas of the research in environmental biology, and very little is known about it at national and international level. It is a contracted form of biological diversity encompassing the variety of all forms on the earth. It is identified as the variability among living organisms and the ecological complexes of which they are part including diversity between species and ecosystems.
    [Show full text]
  • LIST of INDIAN CITIES on RIVERS (India)
    List of important cities on river (India) The following is a list of the cities in India through which major rivers flow. S.No. City River State 1 Gangakhed Godavari Maharashtra 2 Agra Yamuna Uttar Pradesh 3 Ahmedabad Sabarmati Gujarat 4 At the confluence of Ganga, Yamuna and Allahabad Uttar Pradesh Saraswati 5 Ayodhya Sarayu Uttar Pradesh 6 Badrinath Alaknanda Uttarakhand 7 Banki Mahanadi Odisha 8 Cuttack Mahanadi Odisha 9 Baranagar Ganges West Bengal 10 Brahmapur Rushikulya Odisha 11 Chhatrapur Rushikulya Odisha 12 Bhagalpur Ganges Bihar 13 Kolkata Hooghly West Bengal 14 Cuttack Mahanadi Odisha 15 New Delhi Yamuna Delhi 16 Dibrugarh Brahmaputra Assam 17 Deesa Banas Gujarat 18 Ferozpur Sutlej Punjab 19 Guwahati Brahmaputra Assam 20 Haridwar Ganges Uttarakhand 21 Hyderabad Musi Telangana 22 Jabalpur Narmada Madhya Pradesh 23 Kanpur Ganges Uttar Pradesh 24 Kota Chambal Rajasthan 25 Jammu Tawi Jammu & Kashmir 26 Jaunpur Gomti Uttar Pradesh 27 Patna Ganges Bihar 28 Rajahmundry Godavari Andhra Pradesh 29 Srinagar Jhelum Jammu & Kashmir 30 Surat Tapi Gujarat 31 Varanasi Ganges Uttar Pradesh 32 Vijayawada Krishna Andhra Pradesh 33 Vadodara Vishwamitri Gujarat 1 Source – Wikipedia S.No. City River State 34 Mathura Yamuna Uttar Pradesh 35 Modasa Mazum Gujarat 36 Mirzapur Ganga Uttar Pradesh 37 Morbi Machchu Gujarat 38 Auraiya Yamuna Uttar Pradesh 39 Etawah Yamuna Uttar Pradesh 40 Bangalore Vrishabhavathi Karnataka 41 Farrukhabad Ganges Uttar Pradesh 42 Rangpo Teesta Sikkim 43 Rajkot Aji Gujarat 44 Gaya Falgu (Neeranjana) Bihar 45 Fatehgarh Ganges
    [Show full text]
  • Research Report on International Affairs, Global Environment and Food Issues
    Second Year of 9th Term Research Committee Research Report on International Affairs, Global Environment and Food Issues INTERIM REPORT June 2012 Research Committee on International Affairs, Global Environment and Food Issues House of Councillors Japan Contents I Background and Deliberation Process........................................................................1 II Research Summary .....................................................................................................3 1. Damage caused by the flood in Thailand and relevant response ........................3 (1) Summary and outline of government explanations and views of voluntary testifiers...................................................................................4 (2) Discussion highlights...................................................................................7 2. Current status and challenges of water issues in Indochina and other regions of Southeast Asia.........................................................................12 (1) Summary and outline of views of voluntary testifiers...............................13 (2) Discussion highlights.................................................................................17 3. Water Issues in Central and South Asia and Efforts Made by Japan ................24 (1) Summary and outline of views of voluntary testifiers...............................25 (2) Discussion highlights.................................................................................31 4. China’s Water Issues and Japan’s Efforts..........................................................38
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo­ Graph and Reproduce This Manuscript from the Microfilm Master
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" X 9" black and w h itephotographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing the World'sUMI Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8824569 The architecture of Firuz Shah Tughluq McKibben, William Jeffrey, Ph.D. The Ohio State University, 1988 Copyright ©1988 by McKibben, William Jeflfrey. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy.
    [Show full text]
  • Current Condition of the Yamuna River - an Overview of Flow, Pollution Load and Human Use
    Current condition of the Yamuna River - an overview of flow, pollution load and human use Deepshikha Sharma and Arun Kansal, TERI University Introduction Yamuna is the sub-basin of the Ganga river system. Out of the total catchment’s area of 861404 sq km of the Ganga basin, the Yamuna River and its catchment together contribute to a total of 345848 sq. km area which 40.14% of total Ganga River Basin (CPCB, 1980-81; CPCB, 1982-83). It is a large basin covering seven Indian states. The river water is used for both abstractive and in stream uses like irrigation, domestic water supply, industrial etc. It has been subjected to over exploitation, both in quantity and quality. Given that a large population is dependent on the river, it is of significance to preserve its water quality. The river is polluted by both point and non-point sources, where National Capital Territory (NCT) – Delhi is the major contributor, followed by Agra and Mathura. Approximately, 85% of the total pollution is from domestic source. The condition deteriorates further due to significant water abstraction which reduces the dilution capacity of the river. The stretch between Wazirabad barrage and Chambal river confluence is critically polluted and 22km of Delhi stretch is the maximum polluted amongst all. In order to restore the quality of river, the Government of India (GoI) initiated the Yamuna Action Plan (YAP) in the1993and later YAPII in the year 2004 (CPCB, 2006-07). Yamuna river basin River Yamuna (Figure 1) is the largest tributary of the River Ganga. The main stream of the river Yamuna originates from the Yamunotri glacier near Bandar Punch (38o 59' N 78o 27' E) in the Mussourie range of the lower Himalayas at an elevation of about 6320 meter above mean sea level in the district Uttarkashi (Uttranchal).
    [Show full text]
  • Guidance on Environmental Flows
    Guidance on Environmental Flows Integrating E-flow Science with Fluvial Geomorphology to Maintain Ecosystem Services 2019 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1235 Guidance on Environmental Flows Integrating E-flow Science with Fluvial Geomorphology to Maintain Ecosystem Services 2019 edition WMO-No. 1235 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at http://public.wmo.int/en/ resources/meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 1235 © World Meteorological Organization, 2019 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11235-4 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • 15. Fish Diversity of Triyuga River
    OurShrestha Nature / Our│December Nature (2016), 2016 │ 1414 (1):(1): 124-134 124-134 ISSN: 1991-2951 (Print) ISSN: 2091-2781 (Online) Our Nature Journal homepage: http://nepjol.info/index.php/ON Fish diversity of Triyuga River, Udayapur District, Nepal Jay Narayan Shrestha Department of Zoology, Post Graduate Campus, Biratnagar, Tribhuvan University, Nepal E-mail: [email protected] Abstract The present paper deals with a synopsis of 48 fish species under 35 genera belonging to 17 families and 6 orders from Triyuga River. Some interesting fish species reported from this river are Barilus shacra, Garra annandalei, Psilorhynchoides pseudecheneis, Badis badis, Olyra longicoudata, Tor putitora, Labeo dero and Anguilla bengalensis . Fish diversity of Triyuga river is rich, thus further extensive study is essential for their conservation. Key words : Barilus shacra , Fish, Fattehpur, Mahabharat hill DOI: http://dx.doi.org/10.3126/on.v14i1.16452 Manuscript details: Received: 28.08.2016 / Accepted: 25.11.2016 Citation: Shrestha, J.N. 2016. Fish diversity of Triyuga River, Udayapur District, Nepal . Our Nature 14(1) :124-134. DOI: http://dx.doi.org/10.3126/on.v14i1.16452 Copyright: © Shrestha 2016. Creative Commons Attribution-NonCommercial 4.0 International License. Introduction Initially two small streams, in the form of Udayapur district (26 o39'-27 o22'N and drainage of the lake, take their form from 86 o9'-87 o10'E) is located in the eastern de- two separate spots of the lake and both of velopment region of Nepal. It is bounded them run down towards the south slope by nine districts,Dhankuta and Sunsari in then confluence and become the river Tri- the east, Saptari and Siraha in the south, yuga.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]