3Rd Grade Shoebox Ecosystem/Habitat Project

Total Page:16

File Type:pdf, Size:1020Kb

3Rd Grade Shoebox Ecosystem/Habitat Project 3rd Grade Shoebox Ecosystem/Habitat Project We have been studying different types of ecosystems/habitats and animals within the different habitats. In this project, you will create one of the ecosystems/habitats in a shoebox. You will also be writing about your project. Below is a list of items that must be included and a list of optional materials that you may use to make your “Shoebox Ecosystem/Habitat .” You must choose to make one of the following ecosystems: Forest Urban Wetlands Desert Coral Reef You must complete the 5 Questions Worksheet on the back of this paper about your ecosystem/habitat. You will use the questions to write about your habitat. It must be turned in with your project . You will need to write at least two detailed paragraphs using your answers to your questions and other details you have learned about your ecosystem/habitat. You will read your writing when you present your project to the class. Don’t forget a title and to indent. Use your best handwriting. Required Materials: Shoebox – or some small box Your name on the lid of the box Type of ecosystem/habitat you made on the lid of the box Soil (dirt for forest, sand for desert, etc.) Animals that live in the habitat (can be drawn, made out of clay, or bought.) Plants that live in the habitat Optional Materials : Paper markers Crayons pencils Sand plastic baggies Dirt waxed paper Rocks tinfoil Clay toothpicks Water grass Modeling clay Play dough Have FUN with this project! Be creative when deciding how you will make your “Shoebox Ecosystem.” You may use any of the above materials and more! This project and the writing is due December 12th ... Questions to be answered and included in your paragraph you write. 1. Where in the world is this habitat/ecosystem found? 2. What are the animals that can be found here? 3. What are the plants that are found here? 4. What is the temperature and climate like in this habitat? 5. Why did you pick this habitat/ ecosystem? Now take your answers and write at least two paragraphs about your project. You will be graded on your creativity, effort, writing, and presentation of your project to the class. .
Recommended publications
  • Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
    Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Analysis of Habitat Fragmentation and Ecosystem Connectivity Within the Castle Parks, Alberta, Canada by Breanna Beaver Submit
    Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada by Breanna Beaver Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Environmental Science Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada Breanna Beaver I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Breanna Beaver, Student Date Approvals: Dawna Cerney, Thesis Advisor Date Peter Kimosop, Committee Member Date Felicia Armstrong, Committee Member Date Clayton Whitesides, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract Habitat fragmentation is an important subject of research needed by park management planners, particularly for conservation management. The Castle Parks, in southwest Alberta, Canada, exhibit extensive habitat fragmentation from recreational and resource use activities. Umbrella and keystone species within The Castle Parks include grizzly bears, wolverines, cougars, and elk which are important animals used for conservation agendas to help protect the matrix of the ecosystem. This study identified and analyzed the nature of habitat fragmentation within The Castle Parks for these species, and has identified geographic areas of habitat fragmentation concern. This was accomplished using remote sensing, ArcGIS, and statistical analyses, to develop models of fragmentation for ecosystem cover type and Digital Elevation Models of slope, which acted as proxies for species habitat suitability.
    [Show full text]
  • Community Ecology
    Schueller 509: Lecture 12 Community ecology 1. The birds of Guam – e.g. of community interactions 2. What is a community? 3. What can we measure about whole communities? An ecology mystery story If birds on Guam are declining due to… • hunting, then bird populations will be larger on military land where hunting is strictly prohibited. • habitat loss, then the amount of land cleared should be negatively correlated with bird numbers. • competition with introduced black drongo birds, then….prediction? • ……. come up with a different hypothesis and matching prediction! $3 million/yr Why not profitable hunting instead? (Worked for the passenger pigeon: “It was the demographic nightmare of overkill and impaired reproduction. If you’re killing a species far faster than they can reproduce, the end is a mathematical certainty.” http://www.audubon.org/magazine/may-june- 2014/why-passenger-pigeon-went-extinct) Community-wide effects of loss of birds Schueller 509: Lecture 12 Community ecology 1. The birds of Guam – e.g. of community interactions 2. What is a community? 3. What can we measure about whole communities? What is an ecological community? Community Ecology • Collection of populations of different species that occupy a given area. What is a community? e.g. Microbial community of one human “YOUR SKIN HARBORS whole swarming civilizations. Your lips are a zoo teeming with well- fed creatures. In your mouth lives a microbiome so dense —that if you decided to name one organism every second (You’re Barbara, You’re Bob, You’re Brenda), you’d likely need fifty lifetimes to name them all.
    [Show full text]
  • Ecological Systems of the United States a Working Classification of U.S
    ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS NatureServe is a non-profit organization dedicated to providing the scientific knowledge that forms the basis for effective conservation action. Citation: Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia. © NatureServe 2003 Ecological Systems of the United States is a component of NatureServe’s International Terrestrial Ecological Systems Classification. Á Funding for this report was provided by a grant from The Nature Conservancy. Front cover: Maroon Bells Wilderness, Colorado. Photo © Patrick Comer NatureServe 1101 Wilson Boulevard, 15th Floor Arlington, VA 22209 (703) 908-1800 www.natureserve.org ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS Á Á Á Á Á Patrick Comer Don Faber-Langendoen Rob Evans Sue Gawler Carmen Josse Gwen Kittel Shannon Menard Milo Pyne Marion Reid Keith Schulz Kristin Snow Judy Teague June 2003 Acknowledgements We wish to acknowledge the generous support provided by The Nature Conservancy for this effort to classify and characterize the ecological systems of the United States. We are particularly grateful to the late John Sawhill, past President of The Nature Conservancy, who was an early supporter of this concept, and who made this funding possible through an allocation from the President’s Discretionary Fund. Many of the concepts and approaches for defining and applying ecological systems have greatly benefited from collaborations with Conservancy staff, and the classification has been refined during its application in Conservancy-sponsored conservation assessments.
    [Show full text]
  • Islands in the Stream 2002: Exploring Underwater Oases
    Islands in the Stream 2002: Exploring Underwater Oases NOAA: Office of Ocean Exploration Mission Three: SUMMARY Discovery of New Resources with Pharmaceutical Potential (Pharmaceutical Discovery) Exploration of Vision and Bioluminescence in Deep-sea Benthos (Vision and Bioluminescence) Microscopic view of a Pachastrellidae sponge (front) and an example of benthic bioluminescence (back). August 16 - August 31, 2002 Shirley Pomponi, Co-Chief Scientist Tammy Frank, Co-Chief Scientist John Reed, Co-Chief Scientist Edie Widder, Co-Chief Scientist Pharmaceutical Discovery Vision and Bioluminescence Harbor Branch Oceanographic Institution Harbor Branch Oceanographic Institution ABSTRACT Harbor Branch Oceanographic Institution (HBOI) scientists continued their cutting-edge exploration searching for untapped sources of new drugs, examining the visual physiology of deep-sea benthos and characterizing the habitat in the South Atlantic Bight aboard the R/V Seaward Johnson from August 16-31, 2002. Over a half-dozen new species of sponges were recorded, which may provide scientists with information leading to the development of compounds used to study, treat, or diagnose human diseases. In addition, wondrous examples of bioluminescence and emission spectra were recorded, providing scientists with more data to help them understand how benthic organisms visualize their environment. New and creative Table of Contents ways to outreach and educate the public also Key Findings and Outcomes................................2 Rationale and Objectives ....................................4
    [Show full text]
  • Interactions Between Organisms . and Environment
    INTERACTIONS BETWEEN ORGANISMS . AND ENVIRONMENT 2·1 FUNCTIONAL RELATIONSHIPS An understanding of the relationships between an organism and its environment can be attained only when the environmental factors that can be experienced by the organism are considered. This is difficult because it is first necessary for the ecologist to have some knowledge of the neurological and physiological detection abilities of the organism. Sound, for example, should be measured with an instrument that responds to sound energy in the same way that the organism being studied does. Snow depths should be measured in a manner that reflects their effect on the animal. If six inches of snow has no more effect on an animal than three inches, a distinction between the two depths is meaningless. Six inches is not twice three inches in terms of its effect on the animal! Lower animals differ from man in their response to environmental stimuli. Color vision, for example, is characteristic of man, monkeys, apes, most birds, some domesticated animals, squirrels, and, undoubtedly, others. Deer and other wild ungulates probably detect only shades of grey. Until definite data are ob­ tained on the nature of color vision in an animal, any measurement based on color distinctions could be misleading. Infrared energy given off by any object warmer than absolute zero (-273°C) is detected by thermal receptors on some animals. Ticks are sensitive to infrared radiation, and pit vipers detect warm prey with thermal receptors located on the anterior dorsal portion of the skull. Man can detect different levels of infrared radiation with receptors on the skin, but they are not directional nor are they as sensitive as those of ticks and vipers.
    [Show full text]
  • Interactions Between Photosynthesis and Respiration in an Aquatic Ecosystem
    Interactions between Photosynthesis and Respiration in an Aquatic Ecosystem Jane E. Caldwell and Kristi Teagarden 53 Campus Drive, P.O. Box 6057 Dept. of Biology West Virginia University Morgantown, WV 26506 [email protected] (304)293-5201 extension 31459 [email protected] (304)293-5201 extension 31542 Abstract: Students measure the results of respiration and photosynthesis separately, combined, and in comparison to a non-living control “ecosystem”. The living ecosystem uses only snails and water plants. Oxygen, carbon dioxide, and ammonia nitrogen concentrations are measured with simple colorimetric and titration water tests using commercially available kits. The exercise is designed for large enrollment non-majors labs, but modifications for large and small classrooms are described. Introduction This lab exercise was developed for a freshman course for non-science majors at West Virginia University. The exercise asks students to apply their knowledge of basic metabolic processes to a series of simple aquatic ecosystems, which students monitor through water testing. These ecosystems consist of aquaria containing plants and/or snails with or without light exposure, and are compared against a non-living control system (an aquarium with water, light, and gravel). As they analyze their results, students observe the interplay of respiration, photosynthesis, protein digestion (or waste excretion), and decomposition through their effects on dissolved oxygen, carbon dioxide, and ammonia. Students synthesize these observations into written explanations of their results. During the course of the lab, students: • predict the relative levels of oxygen, carbon dioxide, and ammonia for various aquaria compared to a control aquarium. • observe and conduct titrimetric and colorimetric tests for dissolved compounds in water.
    [Show full text]
  • Biodiversity Implications Is Biogeography: For
    FEATURE BIODIVERSITY IS BIOGEOGRAPHY: IMPLICATIONS FOR CONSERVATION By G. Carleton Ray THREE THEMES DOMINATEthis review. The first is similarities, as is apparent within the coastal zone, that biodiversity is biogeography. Or, as Nelson the biodiversity of which depends on land-sea in- and Ladiges (1990) put it: "Indeed, what beyond teractions. biogeography is "biodiversity' about?" Second, "Characteristic Biodiversity"--a Static View watershed and seashed patterns and their scale-re- A complete species inventory for any biogeo- lated dynamics are major modifiers of biogeo- graphic province on Earth is virtually impossible. graphic pattern. And, third, concepts of biodiver- In fact, species lists, absent a biogeographic frame sity and biogeography are essential guides for of reference, can be ecologically meaningless, be- conservation and management of coastal-marine cause such lists say little about the dynamics of systems, especially for MACPAs (MArine and environmental change. To address such dynamics, Coastal Protected Areas). biodiversity is best expressed at a hierarchy of Conservation and conservation bioecology have scales, which this discussion follows. entered into an era of self-awareness of their suc- cesses. Proponents of "biodiversity" have achieved Global Patterns worldwide recognition. Nevertheless: "Like so Hayden el al. (1984) attempted a summary of the many buzz words, biodiversity has many shades of state-of-the-art of global, coastal-marine biogeogra- • . the coastal zone, meaning and is often used to express vague and phy at the behest of UNESCO's Man and the Bios- which is the most bio- ill-thought-out concepts" (Angel, 1991), as phere Programme (MAB) and the International reflected by various biodiversity "strategies" Union for the Conservation of Nature (IUCN).
    [Show full text]
  • Habitat Evaluation: Guidance for the Review of Environmental Impact Assessment Documents
    HABITAT EVALUATION: GUIDANCE FOR THE REVIEW OF ENVIRONMENTAL IMPACT ASSESSMENT DOCUMENTS EPA Contract No. 68-C0-0070 work Assignments B-21, 1-12 January 1993 Submitted to: Jim Serfis U.S. Environmental Protection Agency Office of Federal Activities 401 M Street, SW Washington, DC 20460 Submitted by: Mark Southerland Dynamac Corporation The Dynamac Building 2275 Research Boulevard Rockville, MD 20850 CONTENTS Page INTRODUCTION ... ...... .... ... ................................................. 1 Habitat Conservation .......................................... 2 Habitat Evaluation Methodology ................................... 2 Habitats of Concern ........................................... 3 Definition of Habitat ..................................... 4 General Habitat Types .................................... 5 Values and Services of Habitats ................................... 5 Species Values ......................................... 5 Biological diversity ...................................... 6 Ecosystem Services.. .................................... 7 Activities Impacting Habitats ..................................... 8 Land Conversion ....................................... 9 Land Conversion to Industrial and Residential Uses ............. 9 Land Conversion to Agricultural Uses ...................... 10 Land Conversion to Transportation Uses .................... 10 Timber Harvesting ...................................... 11 Grazing ............................................. 12 Mining .............................................
    [Show full text]
  • Pesticide Use Harming Key Species Ripples Through the Ecosystem Regulatory Deficiencies Cause Trophic Cascades That Threaten Species Survival Boulder Creek
    Pesticide Use Harming Key Species Ripples through the Ecosystem Regulatory deficiencies cause trophic cascades that threaten species survival Boulder Creek, Boulder, Colorado © Beyond Pesticides DREW TOHER stabilizing the water table, and both worked in tandem to provide cool, deep, shaded water for native fish. espite a growing body of scientific literature, complex, ecosystem-wide effects of synthetic When a predator higher up on the food chain is eliminated, pesticides are not considered by the U.S. Envi- that predator’s prey is released from predation, often causing ronmental Protection Agency (EPA). Beyond a trophic cascade that throws the ecosystem out of balance. direct toxicity, pesticides can significantly reduce, It is not always the top-level predator that creates a trophic Dchange the behavior of, or destroy populations of plants cascade. The loss or reduction of populations at any trophic and animals. These effects can ripple up and down food level—including amphibians, insects, or plants—can result chains, causing what is known as a trophic cascade. in changes that are difficult to perceive, but nonetheless A trophic cascade is one easily-understood example equally damaging to the stability and long-term health of of ecosystem-mediated pesticide effects. an ecosystem. Salient research on the disruptive, cascading effects that pesticides have at the ecosystem level must lead In determining legal pesticide use patterns that protect regulators to a broader consideration of the indirect impacts ecosystems (the complex web of organisms in nature) EPA caused by the introduction of these chemicals into complex requires a set of tests intended to measure both acute and living systems.
    [Show full text]
  • Microzooplankton and Phytoplankton Distribution and Dynamics in Relation to Seasonal Hypoxia in Lake Erie
    IFYLE05: MICROZOOPLANKTON AND PHYTOPLANKTON DISTRIBUTION AND DYNAMICS IN RELATION TO SEASONAL HYPOXIA IN LAKE ERIE Principal Investigator: Peter J. Lavrentyev Department of Biology University of Akron Akron, OH 44325-3908 Phone: (330) 972-7922 FAX: (330) 972-8445 E-mail: [email protected] Executive Summary: Lake Erie is experiencing extensive hypoxic zones in its central basin despite the reductions in external P loading. The exact mechanisms of hypoxia development and its effects on biological communities including phytoplankton remain unclear. In marine and freshwater environments, the microbial food web (including microzooplankton) plays a key role in hypoxic environments. Microzooplankton have been indicated as an important component of Lake Erie ecosystem, but no data on their response to the seasonal hypoxia and trophic interactions with phytoplankton is available. This project aims to examine the composition, abundance, and growth and grazing-mortality rates of microzooplankton and phytoplankton in conjunction with the planned/ ongoing NOAA research on zooplankton and fish distribution in the three basins of Lake Erie. We will combine real-time flow-cytometric examination of plankton along four nearshore- offshore transects and diel vertical sampling with ship-board experiments at selected contrasting sites to determine plankton response to hypoxia and other environmental factors. Microscopic and molecular tools will be used to verify taxonomic determinations. The project will provide critical information for increasing the knowledge Lake Erie biological processes, improving the existing and future models, and enhancing the government’s ability to manage Lake Erie resources. SCIENTIFIC RATIONALE: Project Description: Hypoxia caused by terrestrial nutrient loading is an emerging national and global problem (Anderson and Taylor 2001; Rabalais et al.
    [Show full text]