UK Spectrum Usage & Demand

Total Page:16

File Type:pdf, Size:1020Kb

UK Spectrum Usage & Demand UK Spectrum Usage & Demand Second Edition - Appendices Prepared by Real Wireless for UK Spectrum Policy Forum Issue date: 16 December 2015 Real Wireless Ltd PO Box 2218 Pulborough t +44 207 117 8514 West Sussex f +44 808 280 0142 RH20 4XB e [email protected] United Kingdom www.realwireless.biz Real Wireless Ltd PO Box 2218 Pulborough t +44 207 117 8514 West Sussex f +44 808 280 0142 RH20 4XB e [email protected] United Kingdom www.realwireless.biz About the UK Spectrum Policy Forum Launched at the request of Government, the UK Spectrum Policy Forum is the industry sounding board to Government and Ofcom on future spectrum management and regulatory policy with a view to maximising the benefits of spectrum for the UK. The Forum is open to all organisations with an interest in using spectrum and already has over 150 member organisations. A Steering Board performs the important function of ensuring the proper prioritisation and resourcing of our work. The current members of the Steering Board are: Airbus Defence and Space Huawei Sky Avanti Ofcom Telefonica BT QinetiQ Three DCMS Qualcomm Vodafone Digital UK Real Wireless About techUK techUK facilitates the UK Spectrum Policy Forum. It represents the companies and technologies that are defining today the world we will live in tomorrow. More than 850 companies are members of techUK. Collectively they employ approximately 700,000 people, about half of all tech sector jobs in the UK. These companies range from leading FTSE 100 companies to new innovative start-ups. About Real Wireless Real Wireless is the pre-eminent independent expert advisor in wireless technology, strategy & regulation worldwide. We bridge the technical and commercial gap between the wireless industry (operators, vendors and regulators) and users of wireless (venues, transportation, retail and the public sector) - indeed any organization which is serious about getting the best from wireless to the benefit of their business. We demystify wireless and help our customers get the best from it, by understanding their business needs and using our deep knowledge of wireless technology to create an effective wireless strategy, business plan, implementation plan and management process. We have specific experience in LTE, LTE-A, 5G, UMTS, HSPA, Wi-Fi, WiMAX, DAB, DTT, GSM, TETRA, PMR, PMSE, IoT/M2M, Bluetooth, Zigbee, small cells, radio, core and transport networks – and much more besides. For details contact us at: [email protected] Tap into our news and views at: realwireless.biz/blog Stay in touch via our tweets at twitter.com/real_wireless Copyright ©2015 Real Wireless Limited. Registered in England & Wales No. 6016945 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Acknowledgements This report has built on the contributions of many individuals from many organisations within the UK Spectrum Policy Forum. Our thanks in particular are due to the following organisations. Space: Defence: UK Space Agency QinetiQ BBC Ministry of Defence Viasat BAE Systems Astrium Thales Eutelsat Inmarsat Avanti SES Airbus DJCSL Business Radio: Short Range Wireless: Airwave BAE Systems Ofcom Sky TETRA and Critical Communications Association (TCCA) Federation of Communication Services Meteorology: Broadcasting & Entertainment The Met Office Arqiva BBC Microsoft BEIRG Sennheiser Digital UK Sky DTG Public Mobile: Fixed Wireless Access & Wireless EE Transport Networks Telefónica -O2 Independent Networks Cooperative BT Association (INCA) Three UK Broadband Ofcom EE Samsung Vodafone Amateur Radio: Utilities: The Radio Society of Great Britain Joint Radio Company UK Spectrum Usage & Demand: Second Edition Appendices v3 Issue date: 16 December 2015. UK Spectrum Usage & Demand: Second Edition Appendices v3 Issue date: 16 December 2015. 1 Contents A.1. Introduction........................................................................................... 2 A.2. Spectrum policy in the UK and internationally ........................................ 4 A.3. Public Mobile ......................................................................................... 7 A.4. Utilities ................................................................................................ 22 A.5. Business Radio ..................................................................................... 38 A.6. Space ................................................................................................... 58 A.7. Meteorology ........................................................................................ 84 A.8. Defence ............................................................................................... 89 A.9. Transportation ................................................................................... 100 A.10. Broadcasting and entertainment ........................................................ 115 A.11. Short range wireless (SRDs and Wi-Fi) ................................................ 135 A.12. Fixed Wireless Access and Wireless Transport Networks .................... 154 A.13. Amateur radio ................................................................................... 171 References ....................................................................................................... 184 UK Spectrum Usage & Demand: Second Edition Appendices v3 Issue date: 16 December 2015. 2 A.1. Introduction 1.1 Scope This document provides detailed appendices to the main report and it suggested that the main report is reviewed first. 1.2 About the UK Spectrum Policy Forum The UK Spectrum Policy Forum [1] is the industry sounding board on long-term UK spectrum issues to Government and Ofcom. Launched in September 2013 by Ed Vaizey, Minister for Culture and the Digital Economy, the UK Spectrum Policy Forum provides input and support to Government and Ofcom on future spectrum management and regulatory policy with a view to maximising the benefits – both social and economic - of spectrum for the UK. The main objective of the forum is to harness industrial insights from across the diverse range of spectrum users, into the future developments in spectrum-based services and technology, the resulting evolution in spectrum demand, and the composition of fit-for- purpose spectrum policies and regulation. The key themes for the work of the forum are: provision of horizon scanning to review developments in (worldwide) wireless usage and develop a UK focussed assessment of future spectrum needs development of a strategic roadmap for the future use of spectrum, harnessing cross-industry insights informing future mechanisms for spectrum release, assignments and authorisation enabling innovative future applications from spectrum and access to public sector spectrum The UK Spectrum Policy Forum is open to all and has over 100 member organisations. It is chaired independently by David Meyer, facilitated by techUK and supported by DCMS. A Steering Board comprises thirteen funding partners ranging from major multinationals to SMEs with representation from across the industry [2]. While the Steering Board provides coordination and support, all decisions are taken by the membership as a whole. The work of the Spectrum Policy Forum is organised into three clusters, with other clusters under consideration. The clusters are: Cluster One: Spectrum Applications and Demand Cluster Two: Spectrum Access and Use Cluster Three: Economic Analysis and Social Impact 1.3 Scope of this document The goal of Cluster One is to promote a joined-up understanding of current and future spectrum needs across UK users, thereby assisting in maximising associated benefits (social and economic) and ensuring spectrum supply can be efficiently matched to those needs. UK Spectrum Usage & Demand: Second Edition Appendices v3 Issue date: 16 December 2015. 3 This document has been commissioned by the UK Spectrum Policy Forum from Real Wireless to represent the work of Cluster One. It provides a snapshot of the current spectrum usage and expected long-term future needs of the major users of spectrum in the UK. It identifies the business and societal activities which depend on this spectrum and the associated drivers of value. The audience for this document is threefold: 1. UK Government, to inform future spectrum and infrastructure policy 2. Spectrum users, to foster mutual understanding and cooperation amongst users with distinct needs 3. The other Clusters of the Spectrum Policy Forum, as input to their work on spectrum access options and economic and social impact. 1.4 Approach This document has been prepared as follows. Representatives of several spectrum-using sectors were invited to give presentations and participate in panel discussions to the Spectrum Policy Forum at a series of events held from late 2013 to the end of 2014. Real Wireless then used this material and some wider sources to draft a chapter for each sector, with the following contents: Scope of the sector: What people, services and devices are included? Contributions to social and economic value: What are the sources of value and what is their magnitude? Current and recent past status: Any significant changes which have been observed in the market Sector trends: Future growth/contraction prospects, changes to delivery model etc. Usage of technologies and spectrum: Current status, expectations
Recommended publications
  • The Gyrotrons As Promising Radiation Sources for Thz Sensing and Imaging
    applied sciences Review The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging Toshitaka Idehara 1,2, Svilen Petrov Sabchevski 1,3,* , Mikhail Glyavin 4 and Seitaro Mitsudo 1 1 Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; idehara@fir.u-fukui.ac.jp or [email protected] (T.I.); mitsudo@fir.u-fukui.ac.jp (S.M.) 2 Gyro Tech Co., Ltd., Fukui 910-8507, Japan 3 Institute of Electronics of the Bulgarian Academy of Science, 1784 Sofia, Bulgaria 4 Institute of Applied Physics, Russian Academy of Sciences, 603950 N. Novgorod, Russia; [email protected] * Correspondence: [email protected] Received: 14 January 2020; Accepted: 28 January 2020; Published: 3 February 2020 Abstract: The gyrotrons are powerful sources of coherent radiation that can operate in both pulsed and CW (continuous wave) regimes. Their recent advancement toward higher frequencies reached the terahertz (THz) region and opened the road to many new applications in the broad fields of high-power terahertz science and technologies. Among them are advanced spectroscopic techniques, most notably NMR-DNP (nuclear magnetic resonance with signal enhancement through dynamic nuclear polarization, ESR (electron spin resonance) spectroscopy, precise spectroscopy for measuring the HFS (hyperfine splitting) of positronium, etc. Other prominent applications include materials processing (e.g., thermal treatment as well as the sintering of advanced ceramics), remote detection of concealed radioactive materials, radars, and biological and medical research, just to name a few. Among prospective and emerging applications that utilize the gyrotrons as radiation sources are imaging and sensing for inspection and control in various technological processes (for example, food production, security, etc).
    [Show full text]
  • A W-Band Spatial Power-Combining Amplifier Using Gan Mmics
    A W-Band Spatial Power-Combining Amplifier using GaN MMICs Lorene A. Samoska1, Mark Taylor, Jose Velazco, Andy Fung, Robert Lin, Alejandro Peralta, Rohit Gawande Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA [email protected] Abstract — In this paper, we describe a miniature power- shown in red, and the mode forms two central lobes of combiner for monolithic millimetre-wave integrated circuit enhanced field strength. By tapping into these lobes of (MMIC) chips using spatial power-combining with cavity modes. maximum field intensity in the cavity using a cavity probe, we We have designed GaN MMIC power amplifier chips for 94 can couple the field energy into a microstrip mode, which can GHz, and illustrate the concept of the W-Band Spatial Power then be wire-bonded to a MMIC chip in a coplanar waveguide Combining Amplifier (WSPCA). Using 1 Watt, 94 GHz MMIC chips in a two-way cavity mode combiner, we were able to or microstrip configuration. The cavity probe consists of a achieve 2 Watts of output power with 9 dB gain and 15 % PAE. dielectric material with a metal antenna element, similar to a This technique could be extended to high power MMICs and waveguide E-plane probe [7]. To transform the TM110 cavity larger numbers of chips to achieve higher output power in a mode to a rectangular waveguide for testing, a rectangular iris compact size. The applications include earth science radar, but of suitable dimension is used. may be extended to other applications requiring wider bandwidth. Keywords — MMIC, GaN power amplifiers, cavity mode, TM110 I.
    [Show full text]
  • On Characterizing the Error in a Remotely Sensed Liquid Water Content Profile
    Atmospheric Research 98 (2010) 57–68 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos On characterizing the error in a remotely sensed liquid water content profile Kerstin Ebell a,⁎, Ulrich Löhnert a, Susanne Crewell a, David D. Turner b a Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany b University of Wisconsin-Madison, Madison, Wisconsin, USA article info abstract Article history: The accuracy of a liquid water content profile retrieval using microwave radiometer brightness Received 15 September 2009 temperatures and/or cloud radar reflectivities is investigated for two realistic cloud profiles. Received in revised form 7 May 2010 The interplay of the errors of the a priori profile, measurements and forward model on the Accepted 1 June 2010 retrieved liquid water content error and on the information content of the measurements is analyzed in detail. It is shown that the inclusion of the microwave radiometer observations in Keywords: the liquid water content retrieval increases the number of degrees of freedom (independent Liquid water content Retrieval pieces of information) by about 1 compared to a retrieval using data from the cloud radar alone. Sensor synergy Assuming realistic measurement and forward model errors, it is further demonstrated, that the Information content error in the retrieved liquid water content is 60% or larger, if no a priori information is available, Remote sensing of clouds and that a priori information is essential for better accuracy. However, there are few observational datasets available to construct accurate a priori profiles of liquid water content, and thus more observational data are needed to improve the knowledge of the a priori profile and consequentially the corresponding error covariance matrix.
    [Show full text]
  • Wireless Backhaul Evolution Delivering Next-Generation Connectivity
    Wireless Backhaul Evolution Delivering next-generation connectivity February 2021 Copyright © 2021 GSMA The GSMA represents the interests of mobile operators ABI Research provides strategic guidance to visionaries, worldwide, uniting more than 750 operators and nearly delivering actionable intelligence on the transformative 400 companies in the broader mobile ecosystem, including technologies that are dramatically reshaping industries, handset and device makers, software companies, equipment economies, and workforces across the world. ABI Research’s providers and internet companies, as well as organisations global team of analysts publish groundbreaking studies often in adjacent industry sectors. The GSMA also produces the years ahead of other technology advisory firms, empowering our industry-leading MWC events held annually in Barcelona, Los clients to stay ahead of their markets and their competitors. Angeles and Shanghai, as well as the Mobile 360 Series of For more information about ABI Research’s services, regional conferences. contact us at +1.516.624.2500 in the Americas, For more information, please visit the GSMA corporate +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or website at www.gsma.com. visit www.abiresearch.com. Follow the GSMA on Twitter: @GSMA. Published February 2021 WIRELESS BACKHAUL EVOLUTION TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ................................................................................................................................................................................5
    [Show full text]
  • The Husir W-Band Transmitter
    THE HUSIR W-BAND TRANSMITTER The HUSIR W-Band Transmitter Michael E. MacDonald, James P. Anderson, Roy K. Lee, David A. Gordon, and G. Neal McGrew The HUSIR transmitter leverages technologies The Haystack Ultrawideband Satellite » Imaging Radar (HUSIR) operates at a developed for diverse applications, such as frequency three times higher than and plasma fusion, space instrumentation, and at a bandwidth twice as wide as those of materials science, and combines them to create any other radar contributing to the U.S. Space Surveil- what is, to our knowledge, the most advanced lance Network. Novel transmitter techniques employed to achieve HUSIR’s 92–100 GHz bandwidth include a millimeter-wave radar transmitter in the world. gallium arsenide amplifier, a first-of-its-kind gyrotron Overall, the design goals of the HUSIR transmitter traveling-wave tube (gyro-TWT), the high-power com- were met in terms of power and bandwidth, and bination of gyro-TWT/klystron hybrids, and overmoded waveguide transmission lines in a multiplexed deep- the images collected by HUSIR have validated space test bed. the performance of the transmitter system regarding phase characteristics. At the time of Transmitter Technology this publication, the transmitter has logged more A radar transmitter is simply a high-power microwave amplifier. Nevertheless, as part of a radar system, it is than 4500 hours of trouble-free operation, second only to the antenna in terms of its cost and com- demonstrating the robustness of its design. plexity [1]. The HUSIR transmitter was developed on two complementary paths. The first, funded by the U.S. Air Force, involved the development of a novel vacuum elec- tron device (VED) or “tube”; the second, funded by the Defense Advanced Research Projects Agency (DARPA), leveraged an existing VED design to implement a novel multiplexed transmitter architecture.
    [Show full text]
  • The Economics of Releasing the V-Band and E-Band Spectrum in India
    NIPFP Working Working paper paper seriesseries The Economics of Releasing the V-band and E-band Spectrum in India No. 226 02-Apr-2018 Suyash Rai, Dhiraj Muttreja, Sudipto Banerjee and Mayank Mishra National Institute of Public Finance and Policy New Delhi Working paper No. 226 The Economics of Releasing the V-band and E-band Spectrum in India Suyash Rai∗ Dhiraj Muttreja† Sudipto Banerjee Mayank Mishra April 2, 2018 ∗Suyash Rai is a Senior Consultant at the National Institute of Public Finance and Policy (NIPFP) †Dhiraj Muttreja, Sudipto Banerjee and Mayank Mishra are Consultants at the Na- tional Institute of Public Finance and Policy (NIPFP) 1 Accessed at http://www.nipfp.org.in/publications/working-papers/1819/ Page 2 Working paper No. 226 1 Introduction Broadband internet users in India have been on the rise over the last decade and currently stand at more than 290 million subscribers.1 As this number continues to increase, it is imperative for the supply side to be able to match consumer expectations. It is also important to ensure optimal usage of the spectrum to maximise economic benefits of this natural resource. So, as the government decides to release the presently unreleased spectrum, it should consider the overall economic impacts of the alternative strategies for re- leasing the spectrum. In this note, we consider the potential uses of both V-band (57 GHz - 64 GHz) and E-band (71 GHz - 86 GHz), as well as the economic benefits that may accrue from these uses. This analysis can help the government choose a suitable strategy for releasing spectrum in these bands.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • E-/W-Band Multifunctional Sub-System Specifications
    D1.2 E-/W-band multifunctional sub-system specifications Project number: 779305 Project acronym: SERENA gan-on-Silicon Efficient mm-wave euRopean Project title: systEm iNtegration platform Start date of the project: 1st January, 2018 Duration: 36 months Programme: H2020-ICT-2017-1 Deliverable type: Report Deliverable reference number: ICT-31-779305 / D1.2/ 1.0 Work package contributing to the WP1 deliverable: Due date: Jun 2018 – M06 Actual submission date: 2nd July, 2018 Responsible organisation: EAB Editor: Kristoffer Andersson Dissemination level: PU Revision: 1.0 This report outlines the specifications of two high- performance W-band systems: a wireless point-to- point system and a short-range radar system. A first order breakdown of the system specifications to front- Abstract: end sub-system requirements are made. It is found that the front-end sub-system share similar requirements between these two use cases. These requirements will be used for further work on the W- band multifunctional GaN-on-Si MMICS in WP4. Specification, front-end, system, point-to-point, radar, Keywords: W-band The project SERENA has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 779305. D1.2 - E-/W-band multifunctional sub-system specifications Editor Kristoffer Andersson (EAB) Contributors (ordered according to beneficiary numbers) Kristoffer Andersson, Mingquan Bao (EAB) Robert Malmqvist, Rolf Jonsson (FOI) Reviewer Robert Malmqvist (FOI) Disclaimer The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author`s view – the European Commission is not responsible for any use that may be made of the information it contains.
    [Show full text]
  • Novel RF MEMS Devices for W-Band Beam-Steering Front-Ends
    Novel RF MEMS Devices for W-Band Beam-Steering Front-Ends Nutapong Somjit MICROSYSTEM TECHNOLOGY LABORATORY SCHOOL OF ELECTRICAL ENGINEERING ROYAL INSTITUTE OF TECHNOLOGY ISBN 978-91-7501-296-4 ISSN 1653-5146 TRITA-EE 2012 : 011 Submitted to the School of Electrical Engineering KTH - Royal Institute of Technology, Stockholm, Sweden in partial fulfillment of the requirements for the degree of Doctor of Philosophy Stockholm 2012 The front cover shows a SEM image of the first prototype of the fabricated three- stage dielectric-block phase shifter composed of 15°, 30°, and 45° stage (left). The different phase-shifts of the silicon block are achieved by tailor-making the block with different etch-hole sizes. The right picture is a SEM image of silicon grass (or black silicon) observed during the 890-µm deep-reactive ion-etch (DRIE) step of the though-silicon holes for the semiconductor-substrate-integrated helical antenna fabrication. The aspect ratio between the etch-depth and the opening area is 22.25. Copyright © 2012 by Nutapong Somjit All rights reserved for the summary part of this thesis, including all pictures and figures, unless otherwise indicated. No part of this publication may be reproduced or transmitted in any form or by any means, without prior permission in writing from the copyright holder. The copyrights for the appended journal papers belong to the publishing houses of the journals concerned. The copyrights for the appended manuscripts belong to their authors. Printed by Universitetsservice US-AB, Stockholm 2012. Thesis for the degree of Doctor of Philosophy at the Royal Institute of Technology, Stockholm, Sweden, 2012.
    [Show full text]
  • The Global Character of the Flux of Downward Longwave Radiation
    1APRIL 2012 S T E P H E N S E T A L . 2329 The Global Character of the Flux of Downward Longwave Radiation 1 # @ GRAEME L. STEPHENS,* MARTIN WILD, PAUL W. STACKHOUSE JR., TRISTAN L’ECUYER, # @ SEIJI KATO, AND DAVID S. HENDERSON * Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland # NASA Langley Research Center, Hampton, Virginia @ Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado (Manuscript received 9 May 2011, in final form 12 September 2011) ABSTRACT Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global- mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W m22 with an error of approximately 610 W m22 that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W m22 and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W m22 for the global cloud radiative effect (all-sky minus clear-sky DLR).
    [Show full text]
  • Terahertz Band: the Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M
    1 Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M. Shubair, and Mohamed-Slim Alouini Abstract—Ultra-high bandwidth, negligible latency and seamless communication for devices and applications are envisioned as major milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic that we are witnessing recently has advocated the investigation of suitable regimes in the radio spectrum to satisfy users’ escalating requirements and allow the development and exploitation of both massive capacity and massive connectivity of heterogeneous infrastructures. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. Particularly, with the evolution of technologies and devices, advancements in THz communication is bridging the gap between the millimeter wave (mmW) and optical frequency ranges. Moreover, the IEEE 802.15 suite of standards has been issued to shape regulatory frameworks that will enable innovation and provide a complete solution that crosses between wired and wireless boundaries at 100 Gbps. Nonetheless, despite the expediting progress witnessed in THz Fig. 1. Wireless Roadmap Outlook up to the year 2035. wireless research, the THz band is still considered one of the least probed frequency bands. As such, in this work, we present an up-to-date review paper to analyze the fundamental elements I. INTRODUCTION and mechanisms associated with the THz system architecture. THz generation methods are first addressed by highlighting The race towards improving human life via developing the recent progress in the electronics, photonics as well as different technologies is witnessing a rapid pace in diverse plasmonics technology.
    [Show full text]
  • EARLY ULTRAVIOLET OBSERVATIONS of a TYPE Iin SUPERNOVA (2007Pk)
    The Astrophysical Journal, 750:128 (8pp), 2012 May 10 doi:10.1088/0004-637X/750/2/128 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. EARLY ULTRAVIOLET OBSERVATIONS OF A TYPE IIn SUPERNOVA (2007pk) T. A. Pritchard1,2,P.W.A.Roming1,2,P.J.Brown3,N.P.M.Kuin4, Amanda J. Bayless2, S. T. Holland5,6,S.Immler7,8,9,P.Milne10, and S. R. Oates4 1 Department of Astronomy & Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802, USA; [email protected] 2 Southwest Research Institute, Department of Space Science, 6220 Culebra Rd, San Antonio, TX 78238, USA 3 Department of Physics & Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT, USA 4 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK 5 Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD 20771, USA 6 Code 660.1, NASA/GSFC, Greenbelt, MD 20771, USA 7 Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 10 Steward Observatory, 933 North Cherry Avenue, RM N204, Tucson, AZ 85721, USA Received 2011 June 16; accepted 2012 March 1; published 2012 April 24 ABSTRACT We present some of the earliest UV observations of a Type IIn supernova (SN)—SN 2007pk, where UV and optical observations using Swift’s Ultra-Violet/Optical Telescope began 3 days after discovery or ∼5 days after shock breakout.
    [Show full text]