Antioxidant Activity of Synthetic Polymers of Phenolic Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raman Imaging of Small Biomolecules
BB48CH15_Min ARjats.cls April 16, 2019 13:8 Annual Review of Biophysics Raman Imaging of Small Biomolecules Yihui Shen, Fanghao Hu, and Wei Min Department of Chemistry, Columbia University, New York, NY 10027, USA; email: [email protected] Annu. Rev. Biophys. 2019. 48:347–69 Keywords First published as a Review in Advance on Raman microscopy, small molecule imaging, vibrational tags, lipid March 20, 2019 metabolism, drug imaging The Annual Review of Biophysics is online at biophys.annualreviews.org Abstract Access provided by Columbia University on 06/21/19. For personal use only. https://doi.org/10.1146/annurev-biophys-052118- Imaging techniques greatly facilitate the comprehensive knowledge of Annu. Rev. Biophys. 2019.48:347-369. Downloaded from www.annualreviews.org 115500 biological systems. Although imaging methodology for biomacromolecules Copyright © 2019 by Annual Reviews. such as protein and nucleic acids has been long established, micro- All rights reserved scopic techniques and contrast mechanisms are relatively limited for small biomolecules, which are equally important participants in biological pro- cesses. Recent developments in Raman imaging, including both microscopy and tailored vibrational tags, have created exciting opportunities for non- invasive imaging of small biomolecules in living cells, tissues, and organ- isms. Here, we summarize the principle and workflow of small-biomolecule imaging by Raman microscopy. Then, we review recent efforts in imaging, for example, lipids, metabolites, and drugs. The unique advantage of Raman imaging has been manifested in a variety of applications that have provided novel biological insights. 347 BB48CH15_Min ARjats.cls April 16, 2019 13:8 Contents THENEEDFORIMAGINGSMALLBIOMOLECULES........................ 348 IMAGINGSMALLMOLECULESBYVIBRATIONALCONTRAST............. 349 LINEAR AND NONLINEAR RAMAN SCATTERING SPECTROSCOPY ANDMICROSCOPY......................................................... -
Small Molecules, Big Impact
FOR RESEARCH USE ONLY. NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES. STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485 MEDICAL DEVICE STANDARDS. TGFβ: The TGFβ superfamily members are major regulators of self-renewal and differentiation to mesendodermal lineages. p38 / p53: p38 MAPK is activated in response to cellular stresses, and influences apoptosis and cellular differentiation. p53 is activated in Pathway Activators: IDE1, IDE2; Pathway Inhibitors: SB431542, LY364947, RepSox, Dorsomorphin, LDN193189 response to cellular stresses and regulates growth arrest, apoptosis and/or DNA repair. Inhibition of p53 is used to facilitate reprogramming. Pathway Inhibitors: BIRB-796, SB202190, SB203580, Cyclic Pifithrin-α, Pifithrin-μ Hedgehog: The Hedgehog pathway is important in the differentiation of mesenchymal subtypes (e.g. osteocytes) and in neural subtypes (e.g. dopaminergic neurons). FGF: FGF signaling via MEK/ERK is critical for self-renewal and proliferation of human PSCs. However, other receptor tyrosine kinases can Pathway Activator: Purmorphamine; Pathway Inhibitors: Cyclopamine, HPI-1 also act through the MEK/ERK and PI3K signaling pathways. Pathway Activators: Pyrintegrin, PS-48; Pathway Inhbitors: Pluripotin, PD0325901, PD98059, Reversine IWP-2 WNT: The WNT pathway regulates differentiation to the mesoendodermal lineages, induces self-renewal of PSCs, and aids in reprogramming. IWP-3 Pathway Activators: BIO, CHIR99021, Kenpaullone, SB216763; Pathway Inhibitors: IWP-2, IWP-3, IWP-4, -
Monoclonal Antibodies and Small-Molecule Drugs: WHAT GENERAL NEUROLOGISTS NEED to KNOW
THIS CONTENT IS SPONSORED BY AMGEN INC. AND NOVARTIS PHARMACEUTICALS CORPORATION USA-334-83498 Monoclonal Antibodies and Small-Molecule Drugs: WHAT GENERAL NEUROLOGISTS NEED TO KNOW APRIL 2020 I VOL. 28 NO. 4 A Member of the Network Introduction plasma concentration 1–8 days) than IV, but this route permits self- Numerous drug modalities have been approved to treat neurologic administration at home.9,22 diseases, including small-molecule drugs (SMDs) and biologics SMDs generally have wide distribution into tissues, organs and such as monoclonal antibodies (mAbs).1-3 While both are consid- plasma.10,23 They are metabolized by CYP450 enzymes via oxidation, ered targeted therapies,2-7 each has unique characteristics that may leading to renal elimination in the urine, and by conjugation reac- affect their use in clinical practice.5,8,9 This article describes the gen- tions (eg, glucuronidation), leading to hepatic/biliary elimination in eral characteristics of SMDs and mAbs and discusses some of their the stool.10,24,25 mAbs have a small range of distribution.10,23 Particu- safety implications relevant to their use by general neurologists in larly relevant to neurology, therapeutic mAbs do not readily cross clinical practice. the blood–brain barrier and therefore have minimal distribution in the central nervous system (CNS).8,9 Therapeutic mAbs are also Characteristics of SMDs and mAbs too large for clearance by renal or hepatic mechanisms, and instead The general characteristics and pharmacokinetics (PK) of are metabolized by two primary -
A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits. -
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery
International Journal of Molecular Sciences Review Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery Qingxin Li 1,* and CongBao Kang 2,* 1 Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China 2 Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore * Correspondence: [email protected] (Q.L.); [email protected] (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.) Received: 12 June 2020; Accepted: 20 July 2020; Published: 24 July 2020 Abstract: Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. -
Small Molecule and Protein Docking Introduction
Small Molecule and Protein Docking Introduction • A significant portion of biology is built on the paradigm sequence structure function • As we sequence more genomes and get more structural information, the next challenge will be to predict interactions and binding for two or more biomolecules (nucleic acids, proteins, peptides, drugs or other small molecules) Introduction • The questions we are interested in are: – Do two biomolecules bind each other? – If so, how do they bind? – What is the binding free energy or affinity? • The goals we have are: – Searching for lead compounds – Estimating effect of modifications – General understanding of binding – … Rationale • The ability to predict the binding site and binding affinity of a drug or compound is immensely valuable in the area or pharmaceutical design • Most (if not all) drug companies use computational methods as one of the first methods of screening or development • Computer-aided drug design is a more daunting task, but there are several examples of drugs developed with a significant contribution from computational methods Examples • Tacrine – inhibits acetylcholinesterase and boost acetylcholine levels (for treating Alzheimer’s disease) • Relenza – targets influenza • Invirase, Norvir, Crixivan – Various HIV protease inhibitors • Celebrex – inhibits Cox-2 enzyme which causes inflammation (not our fault) Docking • Docking refers to a computational scheme that tries to find the best binding orientation between two biomolecules where the starting point is the atomic coordinates of the two molecules • Additional data may be provided (biochemical, mutational, conservation, etc.) and this can significantly improve the performance, however this extra information is not required Bound vs. Unbound Docking • The simplest problem is the “bound” docking problem. -
Peroxides and Peroxide- Forming Compounds
FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides. -
Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins
International Journal of Molecular Sciences Article Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins Aslı Neslihan Avan 1, Sema Demirci Çekiç 1, Seda Uzunboy 1 and Re¸satApak 1,2,* 1 Department of Chemistry, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey; [email protected] (A.N.A.); [email protected] (S.D.Ç.); [email protected] (S.U.) 2 Turkish Academy of Sciences (TUBA) Piyade St. No. 27, 06690 Çankaya Ankara, Turkey * Correspondence: [email protected]; Tel.: +90-212-473-7028 Academic Editor: Maurizio Battino Received: 29 June 2016; Accepted: 5 August 2016; Published: 12 August 2016 Abstract: Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. -
ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways
International Journal of Molecular Sciences Review ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways Igor R. Ilyasov *, Vladimir L. Beloborodov, Irina A. Selivanova and Roman P. Terekhov Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; [email protected] (V.L.B.); [email protected] (I.A.S.); [email protected] (R.P.T.) * Correspondence: [email protected]; Tel.: +7-985-764-0744 Received: 30 November 2019; Accepted: 5 February 2020; Published: 8 February 2020 + Abstract: The 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS• ) radical cation-based assays are among the most abundant antioxidant capacity assays, together with the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-based assays according to the Scopus citation rates. The main objective of this review was to elucidate the reaction pathways that underlie the ABTS/potassium persulfate decolorization assay of antioxidant capacity. Comparative analysis of the literature data showed that there are two principal reaction pathways. Some antioxidants, at least of phenolic nature, + can form coupling adducts with ABTS• , whereas others can undergo oxidation without coupling, thus the coupling is a specific reaction for certain antioxidants. These coupling adducts can undergo further oxidative degradation, leading to hydrazindyilidene-like and/or imine-like adducts with 3-ethyl-2-oxo-1,3-benzothiazoline-6-sulfonate and 3-ethyl-2-imino-1,3-benzothiazoline-6-sulfonate as marker compounds, respectively. The extent to which the coupling reaction contributes to the total antioxidant capacity, as well as the specificity and relevance of oxidation products, requires further in-depth elucidation. -
Autoxidation Vs. Antioxidants – the Fight for Forever
Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2021 Supplementary Information for Autoxidation vs. antioxidants – the fight for forever Julian Helberg and Derek A. Pratt* Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, ON K1N 6N5, Canada. Table S1: References for the kp values / BDEs plotted in Figure 1 (ordered by kp): -1 -1 Compound kp / M s Source BDE kcal / Source mol retinal 5656 (Do, Lee et al. 2021) -- -- 7-dehydrocholesterol 2737 (Do, Lee et al. 2021) -- -- 1,4-cyclohexadiene 1400 (Valgimigli and Pratt 2012) 76.0 (Luo 2007) conjugated linolenic acid 18:3 1235 (Do, Lee et al. 2021) -- -- vitamin d3 1031 (Do, Lee et al. 2021) -- -- docosahexaenoic acid 22:6 334 (Xu, Davis et al. 2009) -- -- arachidonic acid 20:4 197 (Xu, Davis et al. 2009) -- -- 2,4-hexadiene 165 (Do, Lee et al. 2021) -- -- linolenic acid 18:3 144 (Do, Lee et al. 2021) -- -- conjugated linoleic acid 18:2 118 (Do, Lee et al. 2021) -- -- 2,4-dimethyl-1,3-pentadiene 97 (Do, Lee et al. 2021) -- -- indene 80 (Do, Lee et al. 2021) 83.0 (Luo 2007) 1,3-hexadiene 65 (Do, Lee et al. 2021) -- -- linoleic acid 18:2 62 (Xu, Davis et al. 2009) -- -- 1,3-pentadiene 34 (Do, Lee et al. 2021) 83.3 (Luo 2007) styrene 17 (Do, Lee et al. 2021) -- -- 1,4-pentadiene 14 (Howard and Ingold 1967) 76.6 (Luo 2007) cholesterol 11 (Xu, Davis et al. 2009) 83.2 (Porter, Xu et al. -
Betanin, the Main Pigment of Red Beet
Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska To cite this version: Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska. Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity. Food Additives and Contaminants, 2006, 23 (11), pp.1079-1087. 10.1080/02652030600986032. hal-00577387 HAL Id: hal-00577387 https://hal.archives-ouvertes.fr/hal-00577387 Submitted on 17 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Journal: Food Additives and Contaminants Manuscript ID: TFAC-2005-377.R1 Manuscript Type: Original Research Paper Date Submitted by the 20-Aug-2006 Author: Complete List of Authors: Gliszczyńska-Świgło, Anna; The Poznañ University of Economics, Faculty of Commodity Science -
Isolation and Characterization of a Novel Streptomyces Strain Eri11 Exhibiting Antioxidant Activity from the Rhizosphere of Rhizoma Curcumae Longae
African Journal of Microbiology Research Vol. 5(11), pp. 1291-1297, 4 June, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.095 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Isolation and characterization of a novel streptomyces strain Eri11 exhibiting antioxidant activity from the rhizosphere of Rhizoma Curcumae Longae Kai Zhong1, Xia-Ling Gao1, Zheng-Jun Xu1*, Li-Hua Li1, Rong-Jun Chen1 Xiao-JianDeng1, Hong Gao2, Kai Jiang1,3 and Isomaro Yamaguchi3 1Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, PR, China. 2College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, PR, China. 3Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan. Accepted 10 May, 2011 In the present study, the phylogenetic analysis of the Streptomyces strain Eri11 isolated from the rhizosphere of Rhizoma Curcumae Longae and the antioxidant activity of the broth cultured with Eri11 were investigated. Analysis of 16S rDNA gene sequences demonstrated that the strains Eri11 was most closely related to representatives of the genera Streptomyces. The total phenols and flavonoids contents in cultured broth were detected to be13.59 ± 0.17 mg gallic acid equivalent/g and 9.93 ± 0.83 mg rutin equivalent/g, respectively. The cultured broth showed the antioxidant activity against the ABTS (2, 2’-Azinobis-3-ethyl benzthiazoline-6-sulfonic acid) free radicals and hydroxyl free radicals with IC50 (The half-inhibitory concentration) of 223.81 ± 24.50 μg/ml and 582.42 ± 83.10 μg/ml respectively. So, it was suggested that the isolated Streptomyces strain Eri11 could be a candidate for the nature resource of the antioxidants.