Pharmacy 187 Morphologic Profile of Two Leuzea

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacy 187 Morphologic Profile of Two Leuzea Med. Surg. J. – Rev. Med. Chir. Soc. Med. Nat., Iaşi – 2019 – vol. 123, no. 1 PHARMACY ORIGINAL PAPERS MORPHOLOGIC PROFILE OF TWO LEUZEA SPECIES HARVESTED FROM WILD FLORA OF EASTERN ROMANIA A. F. Paduraru1, Oana Cioanca1*, Elvira Gille2, Cristina Iancu1, Flavia Burlec1, Luana Enache1, C. Toma3, Monica Hancianu1 1.“Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania National Institute of R&D for Biological Sciences 2. “Stejarul” Biological Research Centre, Piatra Neamt, Romania “Al. I Cuza” University, Iasi, Romania 3. Faculty of Biology *Corresponding author. E-mail: [email protected] MORPHOLOGIC PROFILE OF TWO LEUZEA SPECIES HARVESTED FROM WILD FLORA OF EASTERN ROMANIA (Abstract): Leuzea carthamoides DC and Leuzea salina are two plant species found in Chinese and Russian traditional medicine for their adaptogen and stress relieving properties. There are still many unknown bioactive compounds that may influence the mechanism of action of these species. Nevertheless, all chemical investigations are directly related to the proper identification of the raw material. Aim: In Romania, it is known that two different species of Leuzea grow in the wild flora, but there is no data that confirms the difference between the species. Moreover, there are specialists that consider that L. carthamoides DC. is a synonym for Rhaponticum carthamoides (Willd) Iljin, which rises a series of questions regarding the botanical belonging. Our aim was to observe and as- sess possible taxonomic differences between the two Leuzea species. Material and meth- ods: The investigations consisted in the morphologic assessment (microscopy, scanning electronic microscopy) of each important structure found in the roots, stems and leaves of both species on plants harvested from Iasi and Neamt counties in 2017. Results: The micro- scopic observations indicated both similar and different structures that are related to the en- vironmental conditions. Some of the observed features can confirm the species and the growth conditions. Conclusions: Although, the results confirmed the taxonomic variability between the investigated samples, further research is still undergoing to assess the chemical and the biological profile based upon the maker compounds important for taxonomy. Key- words: LEUZEA, ROOTS, LEAVES, MICROSCOPY, VARIABILITY, TAXONOMY. Leuzea species belong to Leuzea genus species. Leuzea carthamoides has a long although, there are researchers that insist history in traditional Siberian medicine that Leuzea and Rhaponticum genus are being used to tone the body and combat synonyms. Moreover, the existent scientific following a long illness (1-3). It is still literature presents mainly Rhaponticum presently used as a remedy for male sexual carthamoides (Willd) Iljin and thus, there dysfunctions. The bioactive compounds of is still great need for more data to confirm this species are ecdysteroids, flavonoids the taxonomic characteristics of Leuzea and polyphenolic acids (4-9). From this 187 A. F. Paduraru et al. species, hydroalcoholic extracts from roots order to identify possible taxonomic simi- administered at a dose of 500 mg / kg body larities and differences. weight in rats increase the locomotor activ- ity, antagonize the narcotic effect of chlo- MATERIAL AND METHODS ralhydrate, increase brain excitability and The plant material was harvested from increase learning memory (4, 7, 10-11). the wild flora in the summer of 2017; Leu- Leuzea carthamoides roots decoction cor- zea carthamoides was collected from Ne- rects depressive status in humans and in- amt county, whereas Leuzea salina raw creases health in patients with somatic material was obtained from Iasi County. gastrointestinal pain. Typically, roots and The sampling of individuals was done for rhizomes are used to prepare extracts used each species within the Biology Faculty, for the adaptogen and tonic qualities, being “Al. I. Cuza” University Iasi. The vegetal incorporated in their entirety or as separate material was represented by the under- fractions in nutraceutical supplements to ground and aerial vegetative organs taken promote muscle development, to treat im- from plants in the antecedent stage. Vege- potence and to eliminate physical and men- tative organs were fixed and conserved in tal fatigue. For this reason, since 1958 70º alcohol. For both samples various types Leuzea has been in the composition of of sections were made using botanical mi- well-known preparations in mixtures with crotome and shock marrow, as follows: Schisandra chinensis, Panax ginseng, Ara- upper, middle and inferior transversal axial lia mandshurica and Eleutherococcus sections through root, rhizome and stem, senticosus, species with adaptogen proper- also transversal and superficial sections ties (9-10). through the lamina (at the median and lat- Regarding Leuzea salina there is not eral ribs) were obtained. much mentioned in scientific literature and Clarification and coloring according to our observations the plant has of the sections a short and thick rhizome with numerous The sections thus obtained were collect- long, thick, black-and-brown roots. Also, ed and the cellular content was removed by the erect stem is thick, cylindrical, simple, introducing the vegetal material sections finely striated, 60-75 cm tall, while the into a few drops of sodium hypochlorite, basal leaves form long rosettes, but the rest where different time for contact was used of the leaves are petiolate, ovate or elliptic. depending on the vegetative organ from The flowers of magenta color are similar to which they originated (underground organs - Leuzea carthamoides (2-3, 11). 20 minutes, stems - 15 minutes, leaf-10 The purpose of our research is the com- minutes). Superficial sections of the leaf and parative investigation of two species of leaf stalks have not been mapped. The clari- Leuzea, namely a species recognized as a fied sections were processed in conformity medicinal species, Leuzea carthamoides with double coloring technique (iodine DC, and a species about which there is green and red ruthenium), but the superficial almost no data in specialized literature: sections of the leaves and stems were col- Leuzea salina. Our intention was to study ored only once with one of the mentioned the two Leuzea species in terms of morpho- reagents. As a result of the double colora- logical and histological characteristics in tion: the lignified cell walls are colored in 188 Morphologic profile of two Leuzea species harvested from wild flora of Eastern Romania blue, and the non-lignified in violet; the and differences for the investigated sam- suberus is colored green, and the parenchy- ples. Briefly, at the severed level, Leuzea ma and the phloem in red and pink. carthamoides root has a typically second- Thus, the plant material was fixed in ary structure. On the outside of the bark glutaraldehyde, dried at the critical point, there was a very thin periderm with 1-2 metallized and then observed and photo- layers of cork cells. The primary bark is graphed with a photonic microscope (Tes- parenchymal (relatively thick, 10-12 lay- kan Electronic Scanning Microscope). ers), consisting of slightly elongated tan- Reagents and equipment gential cells. The most internal layer is an The used apparatus was first Novex endodermis with cells having lignified and Holland Microscope with Sony Cyber-shot suberized walls. The central cylinder DSC-W730 and then Teskan Electronic showed parenchymal cells, many vascular Scanning Microscope (SEM). bundles (phloem and xylem solitary or Green iodine is obtained from one gram grouped vessels). The secondary fibers of iodine green is dissolved in 100 ml of have fairly numerous pits and were often hexane, whereas red ruthenium is obtained arranged in radar strings which intertwine by dissolving 0.02 g of ruthenium red in the phloem resulting in incomplete rays. 100 ml of distilled water; add a thymol The phloem vessels of variable diameter crystal for preservation. are composed of cells with moderately thick walls irregularly arranged, in incom- RESULTS AND DISCUSSION plete radar areas as shown in the image The results indicated both similarities below (fig. 1). Fig. 1. Leuzea carthamoides roots and rhizomes – sectional view with detail thick with parenchymal cells, larger air Our findings indicate that at the sec- cavities surrounded by interfascicular cel- tional level Leuzea salina presents mainly a lular parenchyma are observed between the primary structure, as opposed to what we phloem and xylem fascicles. A detailed have seen in L. carthamoides. The cortical view is presented in the following image parenchyma is very thick, with small cells, (fig 2). including numerous air cavities. The inner At the electronic scanning microscope layer is made of small cells elongated tan- (SEM) we noticed that the cortical cells are gentially, alternating with those of the peri- heavily elongated and all the thin wall (fig. cardium. The central cylinder is relatively 3). 189 A. F. Paduraru et al. The SEM images for Leuzea salina seem different from the other investigated roots are shown in the figure 4. The details species. Fig. 2. Leuzea salina roots and rhizomes – sectional view with detail Fig. 3. The root of Leuzea carthamoides seen on the SEM: lateral root to the top (left); cortical cells (right) Fig. 4. Leuzea salina seen at the scanning electron microscope: rhizoderma (left); the root seen in cross-section (right) 190 Morphologic profile of two Leuzea species harvested from wild flora of Eastern
Recommended publications
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Quality Assessment of Rhaponticum Carthamoides (Willd.) Iljin As
    Timofeev N.P., Lapin A.A., Zelenkov V.N. Quality Assessment of Rhaponticum carthamoides (Willd.) Iljin as Medicinal Raw Material by the Bromic Antioxidant Capacity Estimation // Journal Chemistry and Computational Simulation: Butlerov Communications, 2006, 8(2): 35-40. QUALITY ASSESSMENT OF RHAPONTICUM CARTHAMOIDES (WILLD.) ILJIN AS MEDICINAL RAW MATERIAL BY THE BROMIC ANTIOXIDANT CAPACITY ESTIMATION N.P. Timofeev1, A.A. Lapin2, V.N. Zelenkov3 1 Collective farm BIO, 165650, Russia, Koryazhma; e-mail: [email protected] 2 Arbuzov’s Institute of organic and physical chemistry, KazSC of the Russian Academy of Sci- ence, Kazan; 3 Russian academy of natural sciences, Moscow ABSCTRACT The possibility of an express assessment of quality medicinal raw materials Rhaponticum carthamoides (Willd.) Iljin is investigated, at various stages of harvesting and storage by method Bromic Antioxidant Capacity Estimation (BACE), after extraction of sample in an aqueous solu- tion. Revealed that phytoecdysteroids R. carthamoides extracted in aqueous solution at level of ethanol, have the temperature resistance. Among the investigated 17 species of industrial medici- nal plants value R. carthamoides has the greatest value BACE, exceeding values of other species from 2-3 up to 5-12 times. Change BACE of leaf organs during the growing season was correlated with the dynamics of the concentration ecdysteroid 20-hydroxyecdysone, as defined by method of the reversed-phase highly effective liquid chromatography (RP-HPLC). Higher values for both indicators were also true for the early phases of vegetation. Established a connection between the loss of active sub- stances and reduction value BACE during storage. On the safety of 20-hydroxyecdysone and the value BACE strongly influenced by the pres- ence of impurities in raw materials, infected microflora.
    [Show full text]
  • Szent István University Faculty of Horticultural Science Department of Genetics and Plant Breeding
    10.14751/SZIE.2016.071 SZENT ISTVÁN UNIVERSITY FACULTY OF HORTICULTURAL SCIENCE DEPARTMENT OF GENETICS AND PLANT BREEDING ANALYSIS OF THE GLYCOSIDE BIOSYNTHESIS IN RHODIOLA ROSEA L. DOCTORAL (Ph.D.) DISSERTATION SEYED IMAN MIRMAZLOUM SUPERVISOR: BENYÓNÉ DR. GYÖRGY ZSUZSANNA BUDAPEST 2016 1 10.14751/SZIE.2016.071 Ph.D School Name: Doctoral School of Horticultural Science Field: Crop Sciences and Horticulture Head of the Ph.D school: Prof. Dr. Zámboriné Németh Éva, Doctor of the Hungarian Academy of Science Head of Department of Medicinal and Aromatic SZENT ISTVÁN UNIVERSITY, Faculty of Horticultural Science Supervisor: Benyóné Dr. György Zsuzsanna Department of Genetics and Plant Breeding SZENT ISTVÁN UNIVERSITY, Faculty of Horticultural Sciences The applicant met the requirement of the Ph.D regulations of the SZENT ISTVÁN UNIVERSITY and the thesis is accepted for the defense process. .................................. ................................ Head of Ph.D. School Supervisor 2 10.14751/SZIE.2016.071 JURY MEMBERS: Chairman: Dr. Jenő Bernáth DSc Scientific committee: Dr. István Papp DSc Dr. György Bisztray PhD Dr. Éva Szőke DSc Dr. Alexandra Soltész PhD Opponents: Dr. Tamás Deák PhD Dr. Ágnes Dalmadi PhD 3 10.14751/SZIE.2016.071 CONTENT LIST OF ABBREVIATIONS…………………………………………………………………….....6 1. INTRODUCTION AND OBJECTIVES ....................................................................................... 7 2. LITERATURE REVIEW ........................................................................................................
    [Show full text]
  • Russian Knapweed in the Southwest
    United States Department of Agriculture Field Guide for Managing Russian Knapweed in the Southwest Forest Southwestern Service Region TP-R3-16-13 February 2015 Cover Photos Upper left: Steve Dewey, Utah State University, Bugwood.org Upper right: Steve Dewey, Utah State University, Bugwood.org Bottom center: Steve Dewey, Utah State University, Bugwood.org The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Printed on recycled paper Russian knapweed (Rhaponticum repens L., formerly Acroptilon repens L. Sunflower family (Asteraceae) Russian knapweed is an invasive plant that has been listed cloned plants. Also produces seed (50 to 500 seeds as a noxious weed in Arizona and New Mexico. This field per plant; viable for 2 to 3 years). guide serves as the U.S. Forest Service’s recommendations • Releases allelopathic chemicals that can inhibit for management of Russian knapweed in forests, growth of other plants; contains sesquiterpene woodlands, and rangelands associated with its Southwestern lactones that are toxic to horses.
    [Show full text]
  • Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
    BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years.
    [Show full text]
  • Thistle Identification Referee 2017
    Thistle Identification Referee 2017 Welcome to the Thistle Identification Referee. The purpose of the referee is to review morphological characters that are useful for identification of thistle and knapweed fruits, as well as review useful resources for making decisions on identification and classification of species as noxious weed seeds. Using the Identification Guide for Some Common and Noxious Thistle and Knapweed Fruits (Meyer 2017) and other references of your choosing, please answer the questions below (most are multiple choice). Use the last page of this document as your answer sheet for the questions. Please send your answer sheet to Deborah Meyer via email ([email protected]) by May 26, 2017. Be sure to fill in your name, lab name, and email address on the answer sheet to receive CE credit. 1. In the Asteraceae, the pappus represents this floral structure: a. Modified stigma b. Modified corolla c. Modified calyx d. Modified perianth 2. Which of the following species has an epappose fruit? a. Centaurea calcitrapa b. Cirsium vulgare c. Onopordum acaulon d. Cynara cardunculus 3. Which of the following genera has a pappus comprised of plumose bristles? a. Centaurea b. Carduus c. Silybum d. Cirsium 4. Which of the following species has the largest fruits? a. Cirsium arvense b. Cirsium japonicum c. Cirsium undulatum d. Cirsium vulgare 5. Which of the following species has a pappus that hides the style base? a. Volutaria muricata b. Mantisalca salmantica c. Centaurea solstitialis d. Crupina vulgaris 6. Which of the following species is classified as a noxious weed seed somewhere in the United States? a.
    [Show full text]
  • Montana Knapweeds
    Biology, Ecology and Management of Montana Knapweeds EB0204 revised August 2017 Celestine Duncan, Consultant, Weed Management Services, Helena, MT Jim Story, Research Professor, retired, MSU Western Ag Research Center, Corvallis, MT Roger Sheley, former MSU Extension Weed Specialist, Bozeman, MT revised by Hilary Parkinson, former MSU Research Associate, and Jane Mangold, MSU Extension Invasive Plant Specialist Table of Contents Plant Biology . 3 SpeedyWeed ID . 5 Ecology . 4 Habitat . 4 Spread and Establishment Potential . 6 Damage Potential . 7 Origins, Current Status and Distribution . 8 Management Alternatives . 8 Prevention . 8 Mechanical Control . .9 Cultural Control . .10 Biological Control . .11 Chemical Control . .14 Integrated Weed Management (IWM) . 16 Additional Resources . 17 Acknowledgements . .19 COVER PHOTOS large - spotted knapweed by Marisa Williams, University of Arkansas, Fayetteville, bugwood.org top inset - diffuse knapweed by Cindy Roche, bugwood.org bottom inset - Russain knapweed by Steve Dewey, Utah State University, bugwood.org Any mention of products in this publication does not constitute a recommendation by Montana State University Extension. It is a violation of Federal law to use herbicides in a manner inconsistent with their labeling. Copyright © 2017 MSU Extension The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Jeff Bader, Director of Extension, Montana State University, Bozeman, MT 59717.
    [Show full text]
  • Nigropallidal Encephalomalacia in Horses Grazing Rhaponticum Repens
    EQUINE CASE REPORT AND CLINICAL REVIEW Nigropallidal encephalomalacia in horses grazing Rhaponticum repens (creeping knapweed)avj_879 151..154 EQUINE CRB Elliotta* and CI McCowanb treatment options for this disease. Affected horses will die of starva- Nigropallidal encephalomalacia was diagnosed in two horses in tion and dehydration if they are not euthanased. Pathology typically northern Victoria that had a history of long-term pasture access to involves bilaterally symmetrical malacia of the globus pallidus and/or a dense growth of Rhaponticum repens. The region in which the 1–7 affected horses lived had received well above average rainfall for the substantia nigra regions within the thalamus. The only previous several months preceding the poisoning. Affected horses had Australian case was documented in five Spring-drop foals and one sudden onset of subcutaneous oedema of the head, impaired pre- 9-month-old foal with signs of lethargy, inability to graze or drink and hension and mastication, dullness, lethargy and repeated chewing- paresis of the tongue with the lateral edges curling upwards to form an 8 like jaw movements. Diagnosis was confirmed at necropsy, with open tube. characteristic malacic lesions in the substantia nigra and globus The toxin causing equine NPEM remains uncertain. Tyramine and the pallidus of the brain. This is the first documented case of nigro- pallidal encephalomalacia in Australian horses associated with sesquiterpene lactone repin have both been proposed as causative 2,10 R. repens. agents. The characteristics
    [Show full text]
  • Effect of Climate on Plant Growth and Level of Adaptogenic Compounds
    ® The European Journal of Plant Science and Biotechnology ©2011 Global Science Books Effect of Climate on Plant Growth and Level of Adaptogenic Compounds in Maral Root (Leuzea charthamoides (Willd.) DC.), Crowned Saw-wort (Serratula coronata L.) and Roseroot (Rhodiola rosea L.) Inger Martinussen1* • Vladimir Volodin2 • Svetlana Volodina2 • Eivind Uleberg1 1 Norwegian Institute for Agricultural and Environmental Research, Arctic Agriculture and Land Use Division, Box 2284, N-9269 Tromsø, Norway 2 Institute of Biology, Komi Science Centre, Ural Division, Russian Academy of Sciences, 28 Kommunisticheskaya str., 167982, Syktyvkar, Republic of Komi, Russia Corresponding author : * [email protected] ABSTRACT Maral root (Leuzea charthamoides DC), roseroot (Rhodiola rosea L.), and crowned saw-wort (Serratula coronata L.) were grown in a phytotron under controlled conditions at 9, 15, 21°C day/9°C night and 21°C. All these treatments had 24 hours of light (long day-LD). In addition there was one treatment at 21°C with only 12 hours of light (short day-SD). Plants were harvested after four months and plant growth was recorded. Leaves of S. coronata and the underground part of L. carthamoides and R. rosea were dried and analyzed for adaptogenic compounds. The number of shoots and dry weight of caudex with roots of R. rosea increased by raising the temperature from 9 to 15°C. Differentiated day and night temperature with an average temperature of 15°C further increased the growth. The lowest number of shoots and the lowest dry weight of roots were produced at the highest temperature (21°C). The concentration of tyrosol and cinnamic alcohol in dried R.
    [Show full text]
  • Sustainable Sourcing : Markets for Certified Chinese
    SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union.
    [Show full text]
  • Antimicrobial Activity of Rhaponticum Acaule and Scorzonera Undulata Growing Wild in Tunisia
    African Journal of Microbiology Research Vol. 4(19) pp. 1954-1958, 4 October, 2010 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2010 Academic Journals Full Length Research Paper Antimicrobial activity of Rhaponticum acaule and Scorzonera undulata growing wild in Tunisia Houda Ben Abdelkader1*, Karima Bel Haj Salah2, Kaouthar Liouane1, Olfa Boussaada3, Karima Gafsi1, Mohamed Ali Mahjoub1, Mahjoub Aouni2, Ahmed Nourreddine Hellal3 and Zine Mighri1 1Laboratory of Natural Substances, Chemistry and Organic Synthesis, Faculty of Science, 5000 Monastir, Tunisia (99/UR/12-26). 2Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, 5000 Monastir, Tunisia. 3Laboratory of Conservation and Valorisation of Plant Resources, Faculty of Pharmacy, 5000 Monastir, Tunisia. Accepted 3 August, 2010 This study examined the in vitro antibacterial and antifungal activities of the extracts (butanolic, ethyl acetate, petroleum ether and the product H2) of 2 plants belonging to the Asteraceae family: Rhaponticum acaule L. and Scorzonera undulata L. Butanolic and ethyl acetate extracts of the Rhaponticum acaule plant showed a moderate antibacterial activity against 3 of the tested strains; Staphylococcus aureus, Escherichia coli and Enterococcus fecalis while Proteus mirabilis, Pseudomonas aeruginosa and Citrobacter freundeï were resistant to the extracts. The product H2 showed an antibacterial activity against S. aureus, C. freundeï and E. fecalis. From the results of the antifungal activity, we observed that butanolic and ethyl acetate extracts of R. acaule showed a strong inhibition against Trichophyton rubrum with inhibition percentage of 56.25 and 78.75%, respectively. Butanolic extract showed a moderate inhibition of Microsporum canis, Scopulariopsis brevicaulis and Aspergillus fumigatus while ethyl acetate extract showed low inhibition.
    [Show full text]
  • The European Alpine Seed Conservation and Research Network
    The International Newsletter of the Millennium Seed Bank Partnership August 2016 – January 2017 kew.org/msbp/samara ISSN 1475-8245 Issue: 30 View of Val Dosdé with Myosotis alpestris The European Alpine Seed Conservation and Research Network ELINOR BREMAN AND JONAS V. MUELLER (RBG Kew, UK), CHRISTIAN BERG AND PATRICK SCHWAGER (Karl-Franzens-Universitat Graz, Austria), BRIGITTA ERSCHBAMER, KONRAD PAGITZ AND VERA MARGREITER (Institute of Botany; University of Innsbruck, Austria), NOÉMIE FORT (CBNA, France), ANDREA MONDONI, THOMAS ABELI, FRANCESCO PORRO AND GRAZIANO ROSSI (Dipartimento di Scienze della Terra e dell’Ambiente; Universita degli studi di Pavia, Italy), CATHERINE LAMBELET-HAUETER, JACQUELINE DÉTRAZ- Photo: Dr Andrea Mondoni Andrea Dr Photo: MÉROZ AND FLORIAN MOMBRIAL (Conservatoire et Jardin Botaniques de la Ville de Genève, Switzerland). The European Alps are home to nearly 4,500 taxa of vascular plants, and have been recognised as one of 24 centres of plant diversity in Europe. While species richness decreases with increasing elevation, the proportion of endemic species increases – of the 501 endemic taxa in the European Alps, 431 occur in subalpine to nival belts. he varied geology of the pre and they are converting to shrub land and forest awareness of its increasing vulnerability. inner Alps, extreme temperature with reduced species diversity. Conversely, The Alpine Seed Conservation and Research T fluctuations at altitude, exposure to over-grazing in some areas (notably by Network currently brings together five plant high levels of UV radiation and short growing sheep) is leading to eutrophication and a science institutions across the Alps, housed season mean that the majority of alpine loss of species adapted to low nutrient at leading universities and botanic gardens: species are highly adapted to their harsh levels.
    [Show full text]