Smartwatch-Centered Design and Development in Mobile Computing Classes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Texting on a Smartwatch Versus a Smartphone: a Comparison of Their Effects on Driving Performance
TEXTING ON A SMARTWATCH VERSUS A SMARTPHONE: A COMPARISON OF THEIR EFFECTS ON DRIVING PERFORMANCE A Dissertation by Joel Persinger Master of Arts, Wichita State University, 2014 Bachelor of Science, Eastern Kentucky University, 2005 Submitted to the Department of Psychology and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2017 ©Copyright 2017 by Joel A. Persinger All Rights Reserved TEXTING ON A SMARTWATCH VERSUS A SMARTPHONE: A COMPARISON OF THEIR EFFECTS ON DRIVING PERFORMANCE The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy, with a major in Psychology. _____________________________________________ Rui Ni, Committee Chair _____________________________________________ Alex Chaparro, Committee Member _____________________________________________ Barbara Chaparro, Committee Member _____________________________________________ Jibo He, Committee Member _____________________________________________ Jeremy Patterson, Committee Member Accepted for the College of Liberal Arts and Sciences _______________________________________________ Ron Matson, Dean Accepted for the Graduate School _______________________________________________ Dennis Livesay, Dean iii DEDICATION To my beautiful wife, who has pushed me to go further than I ever thought I could. She has truly carried me though graduate school with love and encouragement. iv ABSTRACT The National Safety Council reports that 6 percent or more car crashes involved text messaging from a smartphone. In addition, many studies have found that cell phone while driving increases crash risk by 2.8–5 times (Klauer et al. 2006; Redelmeier and Tibshirani 1997; Violanti 1998; Violanti and Marshall 1996). -
Mobile Phones and Cloud Computing
Mobile phones and cloud computing A quantitative research paper on mobile phone application offloading by cloud computing utilization Oskar Hamrén Department of informatics Human Computer Interaction Master’s programme Master thesis 2-year level, 30 credits SPM 2012.07 Abstract The development of the mobile phone has been rapid. From being a device mainly used for phone calls and writing text messages the mobile phone of today, or commonly referred to as the smartphone, has become a multi-purpose device. Because of its size and thermal constraints there are certain limitations in areas of battery life and computational capabilities. Some say that cloud computing is just another buzzword, a way to sell already existing technology. Others claim that it has the potential to transform the whole IT-industry. This thesis is covering the intersection of these two fields by investigating if it is possible to increase the speed of mobile phones by offloading computational heavy mobile phone application functions by using cloud computing. A mobile phone application was developed that conducts three computational heavy tests. The tests were run twice, by not using cloud computing offloading and by using it. The time taken to carry out the tests were saved and later compared to see if it is faster to use cloud computing in comparison to not use it. The results showed that it is not beneficial to use cloud computing to carry out these types of tasks; it is faster to use the mobile phone. 1 Table of Contents Abstract ..................................................................................................................................... 1 Table of Contents ..................................................................................................................... 2 1. Introduction .......................................................................................................................... 5 1.1 Previous research ........................................................................................................................ -
Uses and Effects of Mobile Computing Devices in K–8 Classrooms
Uses and Effects of Mobile Computing Devices in K–8 Classrooms Karen Swan Mark van ‘t Hooft Annette Kratcoski Kent State University Darlene Unger Virginia Commonwealth University Abstract This preliminary study employed mixed methodologies to explore students’ use of mobile comput- ing devices and its effects on their motivation to learn, engagement in learning activities, and support for learning processes. Data collected from students in four elementary and two seventh grade science classes in Northeast Ohio included usage logs, student work samples, student and teacher interviews, and classroom observations. Findings highlight the personalization of learning afforded by such devices both in terms of individuals and individual classroom cultures, as well as their usefulness in extending learning beyond the classroom. They also sug- gest that increased motivation due to mobile device use leads to increases in the quality and quantity of student work. (Keywords: mobile computing, motivation, writing.) BACKGROUND More than a decade ago, Mark Weiser (1991) wrote that we live in a society in which technology is so pervasive that we do not notice it anymore when used for everyday tasks such as information retrieval, communication, and entertainment. Defining this environment as ubiquitous computing, he described it more as a state of mind, as “a new way of thinking about computers in the world . [that] allows the computers themselves to vanish into the background . [and] be- come indistinguishable from everyday life” (p. 94). As a result, the current gener- ation of K–12 students is growing up more technologically literate than children their age were a decade ago, with access to an increasing number of devices and services such as video game consoles, mobile gaming devices, cell phones, the In- ternet, and instant messaging. -
On Energy Consumption of Mobile Cloud Gaming Using Gaminganywhere
Thesis no.:MSEE-2016-54 On energy consumption of mobile cloud gaming using GamingAnywhere Suren Musinada Faculty of Computing Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Masters in Electrical Engineering with Emphasis on Telecommunication Systems. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Suren Musinada E-mail: [email protected] University advisor: Dr. Yong Yao Department of communication systems E-mail: [email protected] Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract In the contemporary world, there has been a great proliferation of using smart-phone devices and broadband wireless networks, the young gener- ation using mobile gaming market is tremendously increasing because of the enormous entertainment features. Mobile cloud gaming is a promising technology that overcome the implicit restrictions such as computational capacity and limited battery life. GamingAnywhere is an open source cloud gaming system which is used in this thesis and calculate the energy con- sumption of mobile device when using GamingAnywhere. The aim of the thesis is to measure the power consumption of the mo- bile device when the game is streamed from the GamingAnywhere server to GamingAnywhere client. Total power consumption is calculated for four resolutions by using the hardware monsoon power monitoring tool and the individual components of mobile device such as CPU, LCD and Audio power are calculated by software PowerTutor. -
Mobile Supercomputers
EMBEDDED COMPUTING ing. We also anticipate the emergence of relatively simple, disposable devices Mobile that support the pervasive computing infrastructure—for example, sensor network nodes. The requirements of low-end devices Supercomputers are increasing exponentially, and com- puter architectures must adapt to keep Todd Austin, David Blaauw, Scott Mahlke, up. Some elements of high-end devices and Trevor Mudge, University of Michigan are already present in 3G cell phones Chaitali Chakrabarti, Arizona State University from the major manufacturers. High- Wayne Wolf, Princeton University end PDAs also include an amazing range of features, such as networking and cameras. oore’s law has held sway over the past several Current trends in computer decades, with the number architecture and power cannot M of transistors per chip doubling every 18 meet the demands of mobile months. As a result, a fairly inexpen- supercomputing. Significant sive CPU can perform hundreds of millions of operations per second— innovation is required. performance that would have cost mil- lions of dollars two decades ago. We should be proud of our achieve- puters. Rather than worrying solely SUPERCOMPUTING REQUIREMENTS ments and rest on our laurels, right? about performance, with the occa- A mobile supercomputer will employ Unfortunately, no. sional nod to power consumption and natural I/O interfaces to the mobile The human appetite for computation cost, we need to judge computers by user. For example, input could come has grown even faster than the pro- their performance-power-cost product. through a continuous real-time speech- cessing power that Moore’s law pre- This new way of looking at proces- processing component. -
The Application of Personal Digital Assistants As Mobile Computing Device on Construction Site
The Application of Personal Digital Assistants as Mobile Computing Device on Construction Site Kenji Kimoto, Kazuyoshi Endo, Satoru Iwashita and Mitsuhiro Fujiwara Konoike Construction Co., Ltd., Research Institute of Technology 1-20-1 Sakura, Tsukuba-Science City, IBARAKI 305-0003, Japan. {kimoto_kj, Iwashita_st, fujiwara_mh}@konoike.co.jp . Kogakuin University, Department of Architecture, 1-24-2 Nishishinjuku, Shinjyuku-ku, TOKYO 163-8677, Japan. [email protected] ABSTRACT: Construction managers need to access the real construction site to manage the construction project. They have recently handled various types of digital information such as drawings, specification, checklists and daily reports. They usually use sheets of paper and/or field notes. As a result, a gap in time and space between the outdoor construction site and the office, which leads to the low efficiency, occurs. This paper reports the application of PDA (Personal Digital Assistants) as mobile computing device for construction managers on construction sites. First, this paper describes the aim and the essential element of the mobile systems. This also shows the analysis of necessary functions as mobile computing device through the discussion with construction managers, and the concept of development of this computer-aided engineering system. Secondly, this paper describes the outline of below subsystems with PDA: Progress Monitoring System, Inspection System and Position Check System. Subsystems have two programs: the data input program in PDA and the output program in PC. Finally, this paper indicates the development of more refined process of construction management with the mobile computing device on construction site. • Progress Monitoring System has been built for construction managers to monitor the progress of works. -
Sustainable Principles of Mobile Computing
Journal of Information Technology & Software Engineering Short communication Sustainable Principles of Mobile Computing Nicholas Furness* Department of Trauma & Orthopaedics, Royal United Hospital Bath NHS Trust, Combe Park, Bath, United Kingdom ABSTRACT Mobile Computing is the advanced and developing computer application that allows voice and video transmission in the form of data through computer or wireless devices without any further linking. Mobile computing has three aspects: mobile communication, mobile hardware, and mobile software. Modern way of mobile computing view as any electronic device that helps you organize your life, communicate with coworkers or friends, or do your job more efficiently is part of mobile computing. Keywords: Mobile computing; Cloud computing; Internet of Things INTRODUCTION • Good battery life. Cloud computing empowered Internet of Things (IoT) • Huge memory capacity. technology has conceptualized the ideology of Industry 4.0. APPLICATIONS Inspired by this, the food industry 4.0 presents a unique concept for determining food quality in real-time. Conspicuously, the current research provides an IoT-based smart framework for Traffic evaluating the food-quality parameters in restaurants and food During traveling in traffic if we require to know road situation, outlets. IoT technology is primarily utilized to gather data that latest news and when if feel more stress in driving then can play can explicitly affect food quality within a food serving music and other important broadcast data are received through environment. This allows us to synthetically generate realistic Digital Audio Broadcasting (DAB). content requests starting from real-world databases of user activities in smart homes [1-3]. Emergencies situation FUTURE OF MOBILE COMPUTING Only Wireless networks work of communication in nature disaster 2 such as earthquakes, tsunami, flood, and fire. -
Eff Dmca Jailbreaking Exemptio
Before the U.S. COPYRIGHT OFFICE, LIBRARY OF CONGRESS In the matter of Exemption to Prohibition on Circumvention of Copyright Protection Systems for Access Control Technologies Docket No. 2014-07 Petition of Electronic Frontier Foundation Submitted by: Electronic Frontier Foundation Mitchell L. Stoltz Corynne McSherry Kit Walsh 815 Eddy St San Francisco, CA 94109 (415) 436-9333 [email protected] The Electronic Frontier Foundation submits the following petition and respectfully asks the Librarian of Congress to exempt the class of copyrighted works described below from 17 U.S.C. § 1201(a)(1)’s prohibition on the circumvention of access control technologies for 2015-2018: Proposed Class: Computer programs that enable mobile computing devices, such as telephone handsets and tablets, to execute lawfully obtained software, where circumvention is accomplished for the sole purposes of enabling interoperability of such software with computer programs on the device, or removing software from the device.1 I. The Commenting Party The Electronic Frontier Foundation (EFF) is a member-supported, nonprofit public interest organization devoted to maintaining the traditional balance that copyright law strikes between the interests of copyright owners and the interests of the public. Founded in 1990, EFF represents thousands of dues-paying members, including consumers, hobbyists, computer programmers, entrepreneurs, students, teachers, and researchers, who are united in their reliance on a balanced copyright system that ensures adequate protection for copyright owners while facilitating innovation and broad access to information in the digital age. 1 Petitioners expect to further develop the proposed exemption consistent with the principles identified in this petition and the record developed in the course of this proceeding. -
Securing and Managing Wearables in the Enterprise
White Paper: Securing and Managing Wearables in the Enterprise Streamline deployment and protect smartwatch data with Samsung Knox Configure White Paper: Securing and Managing Wearables in the Enterprise 2 Introduction: Smartwatches in the Enterprise As the wearable device market heats up, wrist-worn devices Industries as varied as healthcare, such as smartwatches are leading the pack. According to CCS Insight, forecasts for global sales of smart wearable devices finance, energy, transportation, will grow strongly over the next five years, with the global public safety, retail and hospitality market reaching nearly $30 billion by 2023.1 are deploying smartwatches for While smartwatches for fitness and activity tracking are popular, consumer demand is only part of the equation. added business value. Enterprises are also seeing business value in wearable devices. In a report by Robert Half Technology, 81 percent of CIOs surveyed expect wearable devices like smartwatches to Samsung has been working to address these concerns and become common tools in the workplace.2 has developed the tools to make its Galaxy and Galaxy Active smartwatches customizable, easily manageable and highly secure for enterprise users. This white paper will look at how these tools address key wearable security and manageability challenges, as well as considerations for smartwatch 81% deployments. of CIOs surveyed expect wearable devices like smartwatches to become common tools in the workplace. Industries as varied as healthcare, finance, energy, transportation, public safety, retail and hospitality are deploying smartwatches for added business value, such as hands-free communication for maintenance workers, task management, as well as physical monitoring of field workers in dangerous or remote locations. -
Apple and Nokia: the Transformation from Products to Services
9 Apple and Nokia: The Transformation from Products to Services In the mid- to late 2000s, Nokia flourished as the world’s dominant mobile phone – and mobile phone operating software – producer. Founded in 1871 originally as a rubber boots manufacturer, by 2007 Nokia produced more than half of all mobile phones sold on the planet, and its Symbian mobile operating system commanded a 65.6 percent global market share. 1 But within half a decade, Nokia would falter and be surpassed in the smartphone market not only by Apple’s revolu- tionary iPhone but also by competitors including Google and Samsung. And in September 2013, Nokia would sell its mobile phone business to Microsoft for $7 billion. 2 Apple literally came out of nowhere – it sold exactly zero mobile phones before the year 2007 (the year Nokia held more than half of the global market share) – but by the first quarter of 2013, Apple had captured almost 40 percent of the US smartphone market and over 50 percent of the operating profit in the global handset industry.3 In fiscal year 2013, Apple would sell five times more smart- phones than Nokia: 150 million iPhones compared to Nokia’s sales of 30 million Lumia Windows phones. 4 In contrast to Nokia, Apple real- ized it wasn’t just about the mobile device itself, it was about leveraging software to create a platform for developing compelling mobile experi- ences – including not just telephony but also music, movies, applica- tions, and computing – and then building a business model that allows partners to make money alongside the company (e.g., Apple’s iTunes and AppStore) and, in so doing, perpetuate a virtuous cycle of making the iPhone attractive to customers over multiple life cycles through ever-ex- panding feature sets. -
UI Design for Wearable Devices
FACULTY OF ENGINEERING UNIVERSITY OF PORTO UI Design for Wearable Devices Vitor Mota Master in Informatics and Computing Engineering Supervised by: Miguel Pimenta Monteiro (Assistant professor) Pedro Rocha (GlinttHS) January 2015 2 Abstract Smartwatches have been around for some time now (Ranger 2015), but 2015 is the year this wearable technology will finally get its boom in terms of popularity and growth. Technology giants like Apple, Google and Samsung are betting on their own-line of products such as the Apple Watch, Android Wear and Gear respectively (Apple Inc 2015a; Google Inc 2015b; SAMSUNG 2015). All of these devices are computation capable electronics with very small touch capacitive screens, limited number of hardware buttons with varying screen sizes and even shapes. Our research focused mainly on these constraints and how to successfully develop user friendly GUI’s for such small screens. The goal was to develop a model with guidelines to help developers provide easy to use and user friendly applications at a visual and interaction level to end users. To successfully achieve this, we first took a deep look at the available technology within these devices, including the framework each of the major platforms provide and the underlying hardware capabilities such as sensors like GPS, gyroscope, the use of the touch screen or microphone for user input and whether the shape of the device (round or squared) can have different effects on the design and usability. We also analyzed the impact of placement and arrangement of interface components having in mind that this technology, since it is a wearable watch, can be worn on both wrists and therefore will be used with only one hand that may obscure a different portion of the interface depending on which wrist the user uses it (Chandra and Raghunath 2000). -
Characterizing Smartwatch Usage in the Wild
Characterizing Smartwatch Usage In The Wild Xing Liu1 Tianyu Chen1 Feng Qian1 Zhixiu Guo23 Felix Xiaozhu Lin4 Xiaofeng Wang1 Kai Chen25 1Indiana University Bloomington 2SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences 3Beijing Jiaotong University 4Purdue ECE 5School of Cyber Security, University of Chinese Academy of Sciences ABSTRACT participants, we conduct an in-depth characterization of three key Smartwatch has become one of the most popular wearable aspects of smartwatch usage “in the wild”: usage patterns, energy computers on the market. We conduct an IRB-approved consumption, and network traffic characteristics. This is to our measurement study involving 27 Android smartwatch users. Using knowledge the most comprehensive and in-depth crowd-sourced a 106-day dataset collected from our participants, we perform in- study of smartwatches. Our key measurement results consist of depth characterization of three key aspects of smartwatch usage “in the following. the wild”: usage patterns, energy consumption, and network traffic. • We characterize the smartwatch usage patterns. An Android Based on our findings, we identify key aspects of the smartwatch watch can stay in one of the four states with diverse power ecosystem that can be further improved, propose recommendations, characteristics: fully awake, dozing (with dimmed watch face and point out future research directions. display and restricted system activity), sleeping (screen further turned off), and charging. We find that smartwatch’s wake-up CCS Concepts period accounts for only 2% of the overall usage period among • → the four states. The wake-up sessions are not only short, but Human-centered computing Ubiquitous and mobile also frequent (72 times per day on average).