Evaluating and Interpreting Clinical Trials

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating and Interpreting Clinical Trials Article #2 CE Evaluating and Interpreting Clinical Trials Dorothy Cimino Brown, DVM, DACVS University of Pennsylvania ABSTRACT: For the practicing veterinarian, selecting the best treatment for patients can be challeng- ing. The “gold standard” for determining the efficacy of a treatment is the randomized controlled clinical trial (RCT) reported in the veterinary medical or pharmaceutical liter- ature. With the time constraints placed on busy practitioners, the temptation is to review the trial objectives and then the conclusions. However, it is important for practi- tioners to be able to critically review the methods and results of RCTs to determine whether the conclusions are justified by the data and whether a change in their practice based on those conclusions may benefit their patients. eports of randomized controlled clinical enroll a limited number of subjects to deter- trials (RCTs) are the “gold standard” by mine the safety, dose, or toxicity of the treat- Rwhich practitioners and others make deci- ment of the condition for which it is intended. sions about treatment efficacy. Therefore, the Phase III trials are large clinical trials of an RCT, more than any other methodology, can intervention that in phases I and II has been have a powerful and immediate impact on patient shown to be efficacious with tolerable side care. This article reviews the basic components of effects. Phase III trials compare the effect and the methods and results for conducting RCTs value of the treatment versus a control group of and describes the influence of those components subjects; these trials are designed to provide on the interpretation of trial results. With this definitive evidence for the efficacy of the treat- understanding, practitioners can critically review ment. Phase III trials can provide unbiased esti- information presented to them in the veterinary mates of an intervention’s specific effects and medical and pharmaceutical company literature change the way practitioners manage their and make informed decisions for their patients. patients. Whether they are truly unbiased esti- mates that have applicability to patients in any DEFINING A CLINICAL TRIAL given practice depends on the many features of A clinical trial is a rigorously controlled test the trials discussed in this article. of a new intervention on subjects. The term intervention is used in the broadest sense to EXAMPLE TRIAL FOR DISCUSSION include prophylactic, diagnos- To make the discussion clearer and more Send comments/questions via email tic, and therapeutic agents applicable, we will refer to a (fictitious) specific [email protected] and procedures. This article RCT report as an example. This is a report of or fax 800-556-3288. focuses on therapeutic agents the beneficial effects of drug A in dogs with Visit CompendiumVet.com for (i.e., new drugs). osteoarthritis (OA). The authors conclude that, full-text articles, CE testing, and CE Clinical trials progress in based on a “double-blind, randomized, placebo- test answers. phases. Phase I and II trials controlled clinical trial,” dogs with OA receiv- COMPENDIUM 752 October 2005 Evaluating and Interpreting Clinical Trials CE 753 Dogs with OA Reference population General group to which the results of a trial are expected to be applicable Intervention Control Drug A Placebo Experimental population Outcome Actual group in which • Pain score the trial is conducted • Platelet function Figure 1. Schematic appearance of the trial. Study Nonparticipants participants ing drug A have “significant pain relief.” In addition, the authors conclude that drug A has “no significant effect on platelet function, unlike other drugs in its class.” Fig- Treatment Comparison ure 1 is a schematic appearance of the trial. group group We will refer to this example as we highlight the basic components of the reporting of the methods and results of RCTs and describe the influence of those compo- Figure 2. Population hierarchy for a randomized nents on the interpretation of trial results. controlled clinical trial. EVALUATION OF METHODS Study Population ing all other methods are appropriate, the trial results For the conclusions of a trial to be useful to practi- are very valid for the experimental population of the tioners, the study subjects in the trial (e.g., dogs with report. What practitioners must decide is whether the OA) should be representative of the patients seen rou- results of the trial can be generalized to the population tinely in their practice. This can be determined by eval- of dogs that they treat on a regular basis. If the answer is uating inclusion and exclusion criteria in the methods yes, a generally similar result to that reported in the trial section of the report. Narrow inclusion and exclusion may be expected. If the answer is no, more variable criteria confine enrollment in the study to a small subset results may be expected. of patients with the disease, which may impose limita- tions on how useful the results are to a practitioner. In Assignment to Treatment Versus our example, the study concluded that drug A has a Control Groups beneficial effect in dogs with OA (i.e., the reference The RCT is the “gold standard” method of evaluating population); however, the inclusion criteria for the trial new and existing treatments because of its ability to were middle-aged, large-breed dogs with coxofemoral minimize bias. One way to minimize bias in the assign- OA and no other underlying conditions (i.e., the experi- ment to a treatment or control group is through ran- mental population; Figure 2). Although drug A domization. Randomization implies that each study appeared to be very beneficial in this subset of dogs with subject has the same chance of being placed in either OA, practitioners are likely to see more variable results the treatment or control group. This means that with an in their practices when administering the drug to dogs adequate sample size, the study groups (i.e., treatment of varying ages and sizes, with varying joints affected by and control) tend to be comparable with respect to all OA, and with underlying diseases. This is not to say variables except for the treatment being studied. Selec- that the reported results of the trial are not valid; assum- tion bias occurs when study subjects with one or more October 2005 COMPENDIUM 754 CE Evaluating and Interpreting Clinical Trials influencing factors appear more frequently in one study ment will know the assigned group. This is known as group than in another. For example, if younger age is blinding. When a system of assignment is known, there associated with a better outcome in dogs with OA and is potential for bias. For example, if the first two eligible the proportion of younger study subjects is greater in the dogs with OA (i.e., a 4-year-old dog and an 8-year-old treatment group than in the control group, then even if dog) present at the same time with different prognoses the treatment and control are equally effective, there and, according to the randomization list, dog 1 is to would be an observed benefit of the treatment that did receive drug A and dog 2 is to receive the placebo, an not really exist. Using our trial example of middle-aged investigator may, consciously or not, enter them into the (4- to 8-year-old) dogs reported in the OA trial, if 50% study in the order that would allow the dog with the of the dogs in the drug A group were 4 to 5 years of age better potential outcome (i.e., the 4-year-old dog) and only 10% were 7 to 8 years of age, and the opposite to receive the treatment. If a large proportion of study were true in the placebo group (i.e., 50% were 7 to 8 subjects are entered in this way, a serious imbalance in years of age, and 10% were 4 to 5 years of age), the drug the treatment groups with respect to factors affecting A group would appear to do much better than the the outcome under study would result.1,2 Ideally, the placebo group, not necessarily because the drug was that randomization list should be kept by a third party much more effective than the placebo but because the (usually a pharmacy) that dispenses the drug or placebo dogs in the drug A group tended to be much younger, to the investigators without them knowing into which Because of its ability to reduce bias (i.e., systematic errors), the randomized controlled clinical trial is the “gold standard” for evaluating drug efficacy. and younger dogs do better. Randomization can take group the dog is being placed. In short, blinding miti- care of this problem by ensuring that a 4-year-old dog is gates the influences of expectation or other human just as likely to be placed in the drug A group as in the predilections.3,4 placebo group. If blinding of the group allocation is not reported or is The beauty of randomization is that not only known reported not to have been done, the practitioner must factors (e.g., age) are evenly distributed between groups again interpret the results of the trial knowing that sig- but also factors that are unsuspected by the investigators nificant selection bias could be present. When allocation because of limitations of biologic knowledge at the time to a treatment or control group is done by a method the trial is initiated. For example, if it were discovered 2 other than blind randomization, the burden of proof is years after our example trial was reported that thin dogs on the investigator/author of the trial report to show do better than obese dogs, the results of the trial would that all possible biases in allocating study subjects to a still be valid because randomization would have roughly group or influencing effects of known or unknown fac- equally allocated the obese and thin dogs between the tors that may differ between the study groups did not two study groups, thus negating the potential for the account for the observed result.
Recommended publications
  • Experimental Evidence During a Global Pandemic
    Original research BMJ Glob Health: first published as 10.1136/bmjgh-2020-004222 on 23 October 2020. Downloaded from Is health politically irrelevant? Experimental evidence during a global pandemic Arnab Acharya,1 John Gerring,2 Aaron Reeves3 To cite: Acharya A, Gerring J, ABSTRACT Key questions Reeves A. Is health politically Objective To investigate how health issues affect voting irrelevant? Experimental behaviour by considering the COVID-19 pandemic, which What is already known? evidence during a global offers a unique opportunity to examine this interplay. pandemic. BMJ Global Health Political leaders in democracies are sensitive to cues Design We employ a survey experiment in which ► 2020;5:e004222. doi:10.1136/ from the electorate and are less likely to implement treatment groups are exposed to key facts about the bmjgh-2020-004222 unpopular policies. pandemic, followed by questions intended to elicit attitudes Electoral accountability is not automatic, however, toward the incumbent party and government responsibility ► Additional material is and it only exists if citizens connect specific policies ► for the pandemic. published online only. To view, to politicians and vote accordingly. Setting The survey was conducted amid the lockdown please visit the journal online ► We know little about how public health attitudes af- period of 15–26 April 2020 in three large democratic (http:// dx. doi. org/ 10. 1136/ fect voting intention or behaviour. bmjgh- 2020- 004222). countries with the common governing language of English: India, the United Kingdom and the United States. Due What are the new findings? to limitations on travel and recruitment, subjects were ► The majority of our respondents believe health is an Received 15 October 2020 recruited through the M-T urk internet platform and the important policy area and that government has some Accepted 16 October 2020 survey was administered entirely online.
    [Show full text]
  • Sensitivity and Specificity. Wikipedia. Last Modified on 16 November 2013
    Sensitivity and specificity - Wikipedia, the free encyclopedia Create account Log in Article Talk Read Edit View Sensitivity and specificity From Wikipedia, the free encyclopedia Main page Contents Sensitivity and specificity are statistical measures of the performance of a binary classification test, also known in statistics as Featured content classification function. Sensitivity (also called the true positive rate, or the recall rate in some fields) measures the proportion of Current events actual positives which are correctly identified as such (e.g. the percentage of sick people who are correctly identified as having Random article the condition). Specificity measures the proportion of negatives which are correctly identified as such (e.g. the percentage of Donate to Wikipedia healthy people who are correctly identified as not having the condition, sometimes called the true negative rate). These two measures are closely related to the concepts of type I and type II errors. A perfect predictor would be described as 100% Interaction sensitive (i.e. predicting all people from the sick group as sick) and 100% specific (i.e. not predicting anyone from the healthy Help group as sick); however, theoretically any predictor will possess a minimum error bound known as the Bayes error rate. About Wikipedia For any test, there is usually a trade-off between the measures. For example: in an airport security setting in which one is testing Community portal for potential threats to safety, scanners may be set to trigger on low-risk items like belt buckles and keys (low specificity), in Recent changes order to reduce the risk of missing objects that do pose a threat to the aircraft and those aboard (high sensitivity).
    [Show full text]
  • A Randomized Control Trial Evaluating the Effects of Police Body-Worn
    A randomized control trial evaluating the effects of police body-worn cameras David Yokuma,b,1,2, Anita Ravishankara,c,d,1, and Alexander Coppocke,1 aThe Lab @ DC, Office of the City Administrator, Executive Office of the Mayor, Washington, DC 20004; bThe Policy Lab, Brown University, Providence, RI 02912; cExecutive Office of the Chief of Police, Metropolitan Police Department, Washington, DC 20024; dPublic Policy and Political Science Joint PhD Program, University of Michigan, Ann Arbor, MI 48109; and eDepartment of Political Science, Yale University, New Haven, CT 06511 Edited by Susan A. Murphy, Harvard University, Cambridge, MA, and approved March 21, 2019 (received for review August 28, 2018) Police body-worn cameras (BWCs) have been widely promoted as The existing evidence on whether BWCs have the anticipated a technological mechanism to improve policing and the perceived effects on policing outcomes remains relatively limited (17–19). legitimacy of police and legal institutions, yet evidence of their Several observational studies have evaluated BWCs by compar- effectiveness is limited. To estimate the effects of BWCs, we con- ing the behavior of officers before and after the introduction of ducted a randomized controlled trial involving 2,224 Metropolitan BWCs into the police department (20, 21). Other studies com- Police Department officers in Washington, DC. Here we show pared officers who happened to wear BWCs to those without (15, that BWCs have very small and statistically insignificant effects 22, 23). The causal inferences drawn in those studies depend on on police use of force and civilian complaints, as well as other strong assumptions about whether, after statistical adjustments policing activities and judicial outcomes.
    [Show full text]
  • Why Replications Do Not Fix the Reproducibility Crisis: a Model And
    1 63 2 Why Replications Do Not Fix the Reproducibility 64 3 65 4 Crisis: A Model and Evidence from a Large-Scale 66 5 67 6 Vignette Experiment 68 7 69 8 Adam J. Berinskya,1, James N. Druckmanb,1, and Teppei Yamamotoa,1,2 70 9 71 a b 10 Department of Political Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Department of Political Science, Northwestern 72 University, 601 University Place, Evanston, IL 60208 11 73 12 This manuscript was compiled on January 9, 2018 74 13 75 14 There has recently been a dramatic increase in concern about collective “file drawer” (4). When publication decisions depend 76 15 whether “most published research findings are false” (Ioannidis on factors beyond research quality, the emergent scientific 77 16 2005). While the extent to which this is true in different disciplines re- consensus may be skewed. Encouraging replication seems to 78 17 mains debated, less contested is the presence of “publication bias,” be one way to correct a biased record of published research 79 18 which occurs when publication decisions depend on factors beyond resulting from this file drawer problem (5–7). Yet, in the 80 19 research quality, most notably the statistical significance of an ef- current landscape, one must also consider potential publication 81 20 fect. Evidence of this “file drawer problem” and related phenom- biases at the replication stage. While this was not an issue 82 21 ena across fields abounds, suggesting that an emergent scientific for OSC since they relied on over 250 scholars to replicate the 83 22 consensus may represent false positives.
    [Show full text]
  • Which Findings Should Be Published?∗
    Which findings should be published?∗ Alexander Frankel† Maximilian Kasy‡ December 5, 2020 Abstract Given a scarcity of journal space, what is the optimal rule for whether an empirical finding should be published? Suppose publications inform the public about a policy-relevant state. Then journals should publish extreme results, meaning ones that move beliefs sufficiently. This optimal rule may take the form of a one- or a two-sided test comparing a point estimate to the prior mean, with critical values determined by a cost-benefit analysis. Consideration of future studies may additionally justify the publication of precise null results. If one insists that standard inference remain valid, however, publication must not select on the study’s findings. Keywords: Publication bias, mechanism design, value of information JEL Codes: C44, D80, D83 1 Introduction Not all empirical findings get published. Journals may be more likely to publish findings that are statistically significant, as documented for instance by Franco et al. (2014), Brodeur et al. (2016), and Andrews and Kasy (2019). They may also be more likely to publish findings that are surprising, or conversely ones that confirm some prior belief. Whatever its form, selective publication distorts statistical inference. If only estimates with large effect sizes were to be written up and published, say, then ∗We thank Isaiah Andrews, Victoria Baranov, Ben Brooks, Gary Chamberlain, Zoe Hitzig, Emir Kamenica, Matthew Notowidigdo, Jesse Shapiro, and Glen Weyl for helpful discussions and com- ments. †University of Chicago Booth School of Business. Address: 5807 South Woodlawn Avenue Chicago, IL 60637. E-Mail: [email protected]. ‡Department of Economics, Oxford University.
    [Show full text]
  • 1 Maximizing the Reproducibility of Your Research Open
    1 Maximizing the Reproducibility of Your Research Open Science Collaboration1 Open Science Collaboration (in press). Maximizing the reproducibility of your research. In S. O. Lilienfeld & I. D. Waldman (Eds.), Psychological Science Under Scrutiny: Recent Challenges and Proposed Solutions. New York, NY: Wiley. Authors’ Note: Preparation of this chapter was supported by the Center for Open Science and by a Veni Grant (016.145.049) awarded to Hans IJzerman. Correspondence can be addressed to Brian Nosek, [email protected]. 1 Alexander A. Aarts, Nuenen, The Netherlands; Frank A. Bosco, Virginia Commonwealth University; Katherine S. Button, University of Bristol; Joshua Carp, Center for Open Science; Susann Fiedler, Max Planck Institut for Research on Collective Goods; James G. Field, Virginia Commonwealth University; Roger Giner-Sorolla, University of Kent; Hans IJzerman, Tilburg University; Melissa Lewis, Center for Open Science; Marcus Munafò, University of Bristol; Brian A. Nosek, University of Virginia; Jason M. Prenoveau, Loyola University Maryland; Jeffrey R. Spies, Center for Open Science 2 Commentators in this book and elsewhere describe evidence that modal scientific practices in design, analysis, and reporting are interfering with the credibility and veracity of the published literature (Begley & Ellis, 2012; Ioannidis, 2005; Miguel et al., 2014; Simmons, Nelson, & Simonsohn, 2011). The reproducibility of published findings is unknown (Open Science Collaboration, 2012a), but concern that is lower than desirable is widespread -
    [Show full text]
  • Paradoxical Conclusions in Randomised Controlled Trials with 'Doubly Null
    Open access Original research BMJ Open: first published as 10.1136/bmjopen-2019-029596 on 9 January 2020. Downloaded from ‘Not clinically effective but cost- effective’ - paradoxical conclusions in randomised controlled trials with ‘doubly null’ results: a cross- sectional study James Raftery ,1 HC Williams,2 Aileen Clarke,3 Jim Thornton,2 John Norrie,4 Helen Snooks,5 Ken Stein6 To cite: Raftery J, Williams HC, ABSTRACT Strengths and limitations of this study Clarke A, et al. ‘Not clinically Objectives Randomised controlled trials in healthcare effective but cost- effective’ increasingly include economic evaluations. Some show - paradoxical conclusions in ► A strength of this study is the identification of a small differences which are not statistically significant. randomised controlled trials with problem to do with results on cost- effectiveness ‘doubly null’ results: a cross- Yet these sometimes come to paradoxical conclusions from randomised trials which is fairly common but sectional study. BMJ Open such as: ‘the intervention is not clinically effective’ but has not otherwise been reported or examined. ‘is probably cost- effective’. This study aims to quantify 2020;10:e029596. doi:10.1136/ ► A limitation was that the sample was confined bmjopen-2019-029596 the extent of non- significant results and the types of to that of trials funded and published by the UK’s conclusions drawn from them. ► Prepublication history and Health Technology Assessment (HTA) programme. additional material for this Design Cross- sectional retrospective analysis of ► The study was strengthened by using full reports paper are available online. To randomised trials published by the UK’s National of each study in the HTA monograph series, which view these files, please visit Institute for Health Research (NIHR) Health Technology requires conclusions and recommendations for the journal online (http:// dx.
    [Show full text]
  • (Salmo Salar) with Amoebic Gill Disease (AGD) Chlo
    The diversity and pathogenicity of amoebae on the gills of Atlantic salmon (Salmo salar) with amoebic gill disease (AGD) Chloe Jessica English BMarSt (Hons I) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 i Abstract Amoebic gill disease (AGD) is an ectoparasitic condition affecting many teleost fish globally, and it is one of the main health issues impacting farmed Atlantic salmon, Salmo salar in Tasmania’s expanding aquaculture industry. To date, Neoparamoeba perurans is considered the only aetiological agent of AGD, based on laboratory trials that confirmed its pathogenicity, and its frequent presence on the gills of farmed Atlantic salmon with branchitis. However, the development of gill disease in salmonid aquaculture is complex and multifactorial and is not always closely associated with the presence and abundance of N. perurans. Moreover, multiple other amoeba species colonise the gills and their role in AGD is unknown. In this study we profiled the Amoebozoa community on the gills of AGD-affected and healthy farmed Atlantic salmon and performed in vivo challenge trials to investigate the possible role these accompanying amoebae play alongside N. perurans in AGD onset and severity. Significantly, it was shown that despite N. perurans being the primary aetiological agent, it is possible AGD has a multi-amoeba aetiology. Specifically, the diversity of amoebae colonising the gills of AGD-affected farmed Atlantic salmon was documented by culturing the gill community in vitro, then identifying amoebae using a combination of morphological and sequence-based taxonomic methods. In addition to N. perurans, 11 other Amoebozoa were isolated from the gills, and were classified within the genera Neoparamoeba, Paramoeba, Vexillifera, Pseudoparamoeba, Vannella and Nolandella.
    [Show full text]
  • The Significance of Null Results in Physics Education Research
    NOTHING’S PLENTY - Preprint Nothing’s plenty: The significance of null results in physics education research Luke D. Conlin1, Eric Kuo2, and Nicole R. Hallinen3 1Department of Chemistry and Physics, Salem State University, Salem, MA 01970, USA 2Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA 3College of Education, Temple University, Philadelphia, PA 19122, USA A central aim of physics education research is to understand the processes of learning and use that understanding to inform instruction. To this end, researchers often conduct studies to measure the effect of classroom interventions on student learning outcomes. Many of these intervention studies have provided an empirical foundation of reformed teaching techniques, such as active engagement. However, many times there is not sufficient evidence to conclude that the intervention had the intended effect, and these null results often end up in the file drawer. In this paper, we argue that null results can contribute significantly to physics education research, even if the results are not statistically significant. First, we review social sciences and biomedical research that has found widespread publication bias against null results, exploring why it occurs and how it can hurt the field. We then present three cases from physics education research to highlight how studies that yield null results can contribute to our understanding of teaching and learning. Finally, we distill from these studies some general principles for learning from null results, proposing that we should evaluate them not on whether they reject the null hypothesis, but according to their potential for generating new understanding. I. INTRODUCTION What research findings are significant enough to be published? One answer to this question is that the criterion for publication should be whether a study advances our understanding of educational phenomena in teaching and learning.
    [Show full text]
  • Using Bias Analysis to Address Misclassification in Epidemiology
    Using bias analysis to address misclassification in epidemiology 20 June 2011 SPER Workshop Timothy Lash University of Aarhus Denmark 1 Premise If The objective of etiologic epidemiologic research is to obtain a valid and precise measure of the effect of an exposure on the occurrence of a disease. Then Epidemiologists have an obligation to quantify how far from the objective their estimate might fall. 2 Conventionally Epidemiologists quantify how far from the mark they may have landed due to chance (confidence intervals, p-values, etc). All of these require an assumption of no bias acting on the estimate of effect Epidemiologist do NOT quantify how far from the mark they may have landed due to bias, although these errors often dominate the uncertainty Some argue that we make the bias assessment intuitively 3 Reasoning under uncertainty: heuristics and biases 4 Heuristics Definition: Strategies that people use deliberately in order to simplify judgmental tasks that would otherwise be too difficult (or too resource intensive) to solve rationally. Example: Non-differential misclassification biases toward the null. Problem: While they often serve us well, heuristics can cause systematic errors in judgment, which in turn bias the judgments we reach. 5 Anchoring and adjustment (1) Estimates of uncertain quantities begin with an anchor. Adjust away from the anchor toward the plausible range. Adjustments are insufficient because we only adjust until we enter the plausible range. Adjustment Plausible Range Anchor Estimate Truth 6 Anchoring
    [Show full text]
  • Null Hypothesis Significance Testing: a Review of an Old and Continuing Controversy
    Psychological Methods Copyright 2000 by the American Psychological Association, Inc. 2000, Vol. 5, No. 2, 241-301 1082-989X/00/$5.00 DOI: 10.1037//1082-989X.5.2.241 Null Hypothesis Significance Testing: A Review of an Old and Continuing Controversy Raymond S. Nickerson Tufts University Null hypothesis significance testing (NHST) is arguably the most widely used approach to hypothesis evaluation among behavioral and social scientists. It is also very controversial. A major concern expressed by critics is that such testing is misunderstood by many of those who use it. Several other objections to its use have also been raised. In this article the author reviews and comments on the claimed misunderstandings as well as on other criticisms of the approach, and he notes arguments that have been advanced in support of NHST. Alternatives and supple- ments to NHST are considered, as are several related recommendations regarding the interpretation of experimental data. The concluding opinion is that NHST is easily misunderstood and misused but that when applied with good judgment it can be an effective aid to the interpretation of experimental data. Null hypothesis statistical testing (NHST 1) is argu- The purpose of this article is to review the contro- ably the most widely used method of analysis of data versy critically, especially the more recent contribu- collected in psychological experiments and has been tions to it. The motivation for this exercise comes so for about 70 years. One might think that a method from the frustration I have felt as the editor of an that had been embraced by an entire research com- empirical journal in dealing with submitted manu- munity would be well understood and noncontrover- sial after many decades of constant use.
    [Show full text]
  • ORBITA and Coronary Stents: a Case Study in the Analysis and Reporting
    ORBITA and coronary stents: A case study in the analysis and reporting of clinical trials Andrew Gelman, John B. Carlin and Brahmajee K Nallamothu 25 Mar 2019 Department of Statistics and Political Science, Columbia University, New YorK City, NY, United States (Andrew Gelman, professor); Clinical Epidemiology & Biostatistics, Murdoch Children’s Research Institute, Melbourne School of Population and Global Health and Department of Paediatrics, University of Melbourne, Melbourne, Australia (John Carlin, professor); Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States (Brahmajee K Nallamothu, professor); Correspondence to: Brahmajee K Nallamothu [email protected] Acknowledgements: We thanK Doug Helmreich for bringing this eXample to our attention, Shira Mitchell for helpful comments, and the Office of Naval Research, Defense Advanced Research Project Agency, and the National Institutes of Health for partial support of this worK. Competing interests: Dr. Gelman and Dr. Carlin report no competing interests. Dr. Nallamothu is an interventional cardiologist and Editor-in-Chief of a journal of the American Heart Association but otherwise has no competing interests. Word Count: 3078 Appeared in American Heart Journal 214, 54-59 (2019) 1. Introduction Al-Lamee et al. (2017) report results from a randomized controlled trial of percutaneous coronary intervention using coronary stents for stable angina. The study, called ORBITA (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina), included approXimately 200 patients and was notable for being a blinded eXperiment in which half the patients received stents and half received a placebo procedure in which a sham operation was performed. In follow-up, patients were asKed to guess their treatment and of those who were willing to guess only 56% guessed correctly, indicating that the blinding was largely successful.
    [Show full text]