Why Replications Do Not Fix the Reproducibility Crisis: a Model And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2102.03380V2 [Cs.AI] 29 Jun 2021
Reproducibility in Evolutionary Computation MANUEL LÓPEZ-IBÁÑEZ, University of Málaga, Spain JUERGEN BRANKE, University of Warwick, UK LUÍS PAQUETE, University of Coimbra, CISUC, Department of Informatics Engineering, Portugal Experimental studies are prevalent in Evolutionary Computation (EC), and concerns about the reproducibility and replicability of such studies have increased in recent times, reflecting similar concerns in other scientific fields. In this article, we discuss, within the context of EC, the different types of reproducibility and suggest a classification that refines the badge system of the Association of Computing Machinery (ACM) adopted by ACM Transactions on Evolutionary Learning and Optimization (https://dlnext.acm.org/journal/telo). We identify cultural and technical obstacles to reproducibility in the EC field. Finally, we provide guidelines and suggest tools that may help to overcome some of these reproducibility obstacles. Additional Key Words and Phrases: Evolutionary Computation, Reproducibility, Empirical study, Benchmarking 1 INTRODUCTION As in many other fields of Computer Science, most of the published research in Evolutionary Computation (EC) relies on experiments to justify their conclusions. The ability of reaching similar conclusions by repeating an experiment performed by other researchers is the only way a research community can reach a consensus on an empirical claim until a mathematical proof is discovered. From an engineering perspective, the assumption that experimental findings hold under similar conditions is essential for making sound decisions and predicting their outcomes when tackling a real-world problem. The “reproducibility crisis” refers to the realisation that many experimental findings described in peer-reviewed scientific publications cannot be reproduced, because e.g. they lack the necessary data, they lack enough details to repeat the experiment or repeating the experiment leads to different conclusions. -
Experimental Evidence During a Global Pandemic
Original research BMJ Glob Health: first published as 10.1136/bmjgh-2020-004222 on 23 October 2020. Downloaded from Is health politically irrelevant? Experimental evidence during a global pandemic Arnab Acharya,1 John Gerring,2 Aaron Reeves3 To cite: Acharya A, Gerring J, ABSTRACT Key questions Reeves A. Is health politically Objective To investigate how health issues affect voting irrelevant? Experimental behaviour by considering the COVID-19 pandemic, which What is already known? evidence during a global offers a unique opportunity to examine this interplay. pandemic. BMJ Global Health Political leaders in democracies are sensitive to cues Design We employ a survey experiment in which ► 2020;5:e004222. doi:10.1136/ from the electorate and are less likely to implement treatment groups are exposed to key facts about the bmjgh-2020-004222 unpopular policies. pandemic, followed by questions intended to elicit attitudes Electoral accountability is not automatic, however, toward the incumbent party and government responsibility ► Additional material is and it only exists if citizens connect specific policies ► for the pandemic. published online only. To view, to politicians and vote accordingly. Setting The survey was conducted amid the lockdown please visit the journal online ► We know little about how public health attitudes af- period of 15–26 April 2020 in three large democratic (http:// dx. doi. org/ 10. 1136/ fect voting intention or behaviour. bmjgh- 2020- 004222). countries with the common governing language of English: India, the United Kingdom and the United States. Due What are the new findings? to limitations on travel and recruitment, subjects were ► The majority of our respondents believe health is an Received 15 October 2020 recruited through the M-T urk internet platform and the important policy area and that government has some Accepted 16 October 2020 survey was administered entirely online. -
Sensitivity and Specificity. Wikipedia. Last Modified on 16 November 2013
Sensitivity and specificity - Wikipedia, the free encyclopedia Create account Log in Article Talk Read Edit View Sensitivity and specificity From Wikipedia, the free encyclopedia Main page Contents Sensitivity and specificity are statistical measures of the performance of a binary classification test, also known in statistics as Featured content classification function. Sensitivity (also called the true positive rate, or the recall rate in some fields) measures the proportion of Current events actual positives which are correctly identified as such (e.g. the percentage of sick people who are correctly identified as having Random article the condition). Specificity measures the proportion of negatives which are correctly identified as such (e.g. the percentage of Donate to Wikipedia healthy people who are correctly identified as not having the condition, sometimes called the true negative rate). These two measures are closely related to the concepts of type I and type II errors. A perfect predictor would be described as 100% Interaction sensitive (i.e. predicting all people from the sick group as sick) and 100% specific (i.e. not predicting anyone from the healthy Help group as sick); however, theoretically any predictor will possess a minimum error bound known as the Bayes error rate. About Wikipedia For any test, there is usually a trade-off between the measures. For example: in an airport security setting in which one is testing Community portal for potential threats to safety, scanners may be set to trigger on low-risk items like belt buckles and keys (low specificity), in Recent changes order to reduce the risk of missing objects that do pose a threat to the aircraft and those aboard (high sensitivity). -
A Randomized Control Trial Evaluating the Effects of Police Body-Worn
A randomized control trial evaluating the effects of police body-worn cameras David Yokuma,b,1,2, Anita Ravishankara,c,d,1, and Alexander Coppocke,1 aThe Lab @ DC, Office of the City Administrator, Executive Office of the Mayor, Washington, DC 20004; bThe Policy Lab, Brown University, Providence, RI 02912; cExecutive Office of the Chief of Police, Metropolitan Police Department, Washington, DC 20024; dPublic Policy and Political Science Joint PhD Program, University of Michigan, Ann Arbor, MI 48109; and eDepartment of Political Science, Yale University, New Haven, CT 06511 Edited by Susan A. Murphy, Harvard University, Cambridge, MA, and approved March 21, 2019 (received for review August 28, 2018) Police body-worn cameras (BWCs) have been widely promoted as The existing evidence on whether BWCs have the anticipated a technological mechanism to improve policing and the perceived effects on policing outcomes remains relatively limited (17–19). legitimacy of police and legal institutions, yet evidence of their Several observational studies have evaluated BWCs by compar- effectiveness is limited. To estimate the effects of BWCs, we con- ing the behavior of officers before and after the introduction of ducted a randomized controlled trial involving 2,224 Metropolitan BWCs into the police department (20, 21). Other studies com- Police Department officers in Washington, DC. Here we show pared officers who happened to wear BWCs to those without (15, that BWCs have very small and statistically insignificant effects 22, 23). The causal inferences drawn in those studies depend on on police use of force and civilian complaints, as well as other strong assumptions about whether, after statistical adjustments policing activities and judicial outcomes. -
The Reproducibility Crisis in Research and Open Science Solutions Andrée Rathemacher University of Rhode Island, [email protected] Creative Commons License
University of Rhode Island DigitalCommons@URI Technical Services Faculty Presentations Technical Services 2017 "Fake Results": The Reproducibility Crisis in Research and Open Science Solutions Andrée Rathemacher University of Rhode Island, [email protected] Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. Follow this and additional works at: http://digitalcommons.uri.edu/lib_ts_presentations Part of the Scholarly Communication Commons, and the Scholarly Publishing Commons Recommended Citation Rathemacher, Andrée, ""Fake Results": The Reproducibility Crisis in Research and Open Science Solutions" (2017). Technical Services Faculty Presentations. Paper 48. http://digitalcommons.uri.edu/lib_ts_presentations/48http://digitalcommons.uri.edu/lib_ts_presentations/48 This Speech is brought to you for free and open access by the Technical Services at DigitalCommons@URI. It has been accepted for inclusion in Technical Services Faculty Presentations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. “Fake Results” The Reproducibility Crisis in Research and Open Science Solutions “It can be proven that most claimed research findings are false.” — John P. A. Ioannidis, 2005 Those are the words of John Ioannidis (yo-NEE-dees) in a highly-cited article from 2005. Now based at Stanford University, Ioannidis is a meta-scientist who conducts “research on research” with the goal of making improvements. Sources: Ionnidis, John P. A. “Why Most -
Which Findings Should Be Published?∗
Which findings should be published?∗ Alexander Frankel† Maximilian Kasy‡ December 5, 2020 Abstract Given a scarcity of journal space, what is the optimal rule for whether an empirical finding should be published? Suppose publications inform the public about a policy-relevant state. Then journals should publish extreme results, meaning ones that move beliefs sufficiently. This optimal rule may take the form of a one- or a two-sided test comparing a point estimate to the prior mean, with critical values determined by a cost-benefit analysis. Consideration of future studies may additionally justify the publication of precise null results. If one insists that standard inference remain valid, however, publication must not select on the study’s findings. Keywords: Publication bias, mechanism design, value of information JEL Codes: C44, D80, D83 1 Introduction Not all empirical findings get published. Journals may be more likely to publish findings that are statistically significant, as documented for instance by Franco et al. (2014), Brodeur et al. (2016), and Andrews and Kasy (2019). They may also be more likely to publish findings that are surprising, or conversely ones that confirm some prior belief. Whatever its form, selective publication distorts statistical inference. If only estimates with large effect sizes were to be written up and published, say, then ∗We thank Isaiah Andrews, Victoria Baranov, Ben Brooks, Gary Chamberlain, Zoe Hitzig, Emir Kamenica, Matthew Notowidigdo, Jesse Shapiro, and Glen Weyl for helpful discussions and com- ments. †University of Chicago Booth School of Business. Address: 5807 South Woodlawn Avenue Chicago, IL 60637. E-Mail: [email protected]. ‡Department of Economics, Oxford University. -
1 Maximizing the Reproducibility of Your Research Open
1 Maximizing the Reproducibility of Your Research Open Science Collaboration1 Open Science Collaboration (in press). Maximizing the reproducibility of your research. In S. O. Lilienfeld & I. D. Waldman (Eds.), Psychological Science Under Scrutiny: Recent Challenges and Proposed Solutions. New York, NY: Wiley. Authors’ Note: Preparation of this chapter was supported by the Center for Open Science and by a Veni Grant (016.145.049) awarded to Hans IJzerman. Correspondence can be addressed to Brian Nosek, [email protected]. 1 Alexander A. Aarts, Nuenen, The Netherlands; Frank A. Bosco, Virginia Commonwealth University; Katherine S. Button, University of Bristol; Joshua Carp, Center for Open Science; Susann Fiedler, Max Planck Institut for Research on Collective Goods; James G. Field, Virginia Commonwealth University; Roger Giner-Sorolla, University of Kent; Hans IJzerman, Tilburg University; Melissa Lewis, Center for Open Science; Marcus Munafò, University of Bristol; Brian A. Nosek, University of Virginia; Jason M. Prenoveau, Loyola University Maryland; Jeffrey R. Spies, Center for Open Science 2 Commentators in this book and elsewhere describe evidence that modal scientific practices in design, analysis, and reporting are interfering with the credibility and veracity of the published literature (Begley & Ellis, 2012; Ioannidis, 2005; Miguel et al., 2014; Simmons, Nelson, & Simonsohn, 2011). The reproducibility of published findings is unknown (Open Science Collaboration, 2012a), but concern that is lower than desirable is widespread - -
Intro to Science Studies I
PHIL 209A / SOCG 255A / HIGR 238 / COGR 225A Intro to Science Studies I Fall 2017 Instructor: Kerry McKenzie [email protected] Seminars: Tuesday 9.30-12.20pm, HSS 3027. Office Hours: Wednesday 2-4pm, HSS 8088. 1 Overview. This course is a philosophically slanted introduction to Science Studies. Our central question is a conceptual one, whose relevance to Science Studies should speak for itself – namely, what is science, and what distinguishes science from other fields? In grappling with this question we’ll familiarize ourselves with central works in the philosophy of science canon, and make glancing acquaintance with some more contemporary issues in scientific epistemology and metaphysics. But our guiding motif is a normative one: what, if anything, makes science entitled to the privileged status that it enjoys within culture? In more detail. The ‘question of demarcation’ – that of what, if anything, makes what we call ‘science’ science – was a central preoccupation of many of the major 20th century philosophers of science. While interest in this topic waned after the appearance of Larry Laudan’s ‘Demise of the Demarcation Problem’ in 1983, the question of what separates science from ‘pseudoscience’ is now making something of a comeback. In this course, we will review the approaches to demarcation offered by the philosophers Popper, Kuhn, and Lakatos – all of which serve as concise introductions to the dominant themes of their work as a whole – and then examine some more contemporary approaches more centred on pragmatics and the philosophy of language. We will then consider how homeopathy – for most a pseudoscience par excellence – fares with regard to the criteria we’ll have studied. -
Psychology's Replication Crisis and the Grant Culture: Righting the Ship
PPSXXX10.1177/1745691616687745LilienfeldRighting the Ship 687745research-article2017 Perspectives on Psychological Science 2017, Vol. 12(4) 660 –664 Psychology’s Replication Crisis and the © The Author(s) 2017 Reprints and permissions: Grant Culture: Righting the Ship sagepub.com/journalsPermissions.nav DOI:https://doi.org/10.1177/1745691616687745 10.1177/1745691616687745 www.psychologicalscience.org/PPS Scott O. Lilienfeld Department of Psychology, Emory University Abstract The past several years have been a time for soul searching in psychology, as we have gradually come to grips with the reality that some of our cherished findings are less robust than we had assumed. Nevertheless, the replication crisis highlights the operation of psychological science at its best, as it reflects our growing humility. At the same time, institutional variables, especially the growing emphasis on external funding as an expectation or de facto requirement for faculty tenure and promotion, pose largely unappreciated hazards for psychological science, including (a) incentives for engaging in questionable research practices, (b) a singleminded focus on programmatic research, (c) intellectual hyperspecialization, (d) disincentives for conducting direct replications, (e) stifling of creativity and intellectual risk taking, (f) researchers promising more than they can deliver, and (g) diminished time for thinking deeply. Preregistration should assist with (a), but will do little about (b) through (g). Psychology is beginning to right the ship, but it will need to confront the increasingly deleterious impact of the grant culture on scientific inquiry. Keywords replication, grants, preregistration, confirmation bias “Science is a struggle for truth against method psychological phenomena, such as behavioral priming, ological, psychological, and sociological obstacles” the effects of facial expressions on emotions, and the (Fanelli & Ioannidis, 2013, p. -
Paradoxical Conclusions in Randomised Controlled Trials with 'Doubly Null
Open access Original research BMJ Open: first published as 10.1136/bmjopen-2019-029596 on 9 January 2020. Downloaded from ‘Not clinically effective but cost- effective’ - paradoxical conclusions in randomised controlled trials with ‘doubly null’ results: a cross- sectional study James Raftery ,1 HC Williams,2 Aileen Clarke,3 Jim Thornton,2 John Norrie,4 Helen Snooks,5 Ken Stein6 To cite: Raftery J, Williams HC, ABSTRACT Strengths and limitations of this study Clarke A, et al. ‘Not clinically Objectives Randomised controlled trials in healthcare effective but cost- effective’ increasingly include economic evaluations. Some show - paradoxical conclusions in ► A strength of this study is the identification of a small differences which are not statistically significant. randomised controlled trials with problem to do with results on cost- effectiveness ‘doubly null’ results: a cross- Yet these sometimes come to paradoxical conclusions from randomised trials which is fairly common but sectional study. BMJ Open such as: ‘the intervention is not clinically effective’ but has not otherwise been reported or examined. ‘is probably cost- effective’. This study aims to quantify 2020;10:e029596. doi:10.1136/ ► A limitation was that the sample was confined bmjopen-2019-029596 the extent of non- significant results and the types of to that of trials funded and published by the UK’s conclusions drawn from them. ► Prepublication history and Health Technology Assessment (HTA) programme. additional material for this Design Cross- sectional retrospective analysis of ► The study was strengthened by using full reports paper are available online. To randomised trials published by the UK’s National of each study in the HTA monograph series, which view these files, please visit Institute for Health Research (NIHR) Health Technology requires conclusions and recommendations for the journal online (http:// dx. -
A Bayesian Treatise on the Replication Crisis in Science
A Bayesian Treatise on The Replication Crisis in Science by True Gibson A thesis submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Biochemistry and Biophysics Honors Scholar Presented May 25, 2018 Commencement June 2018 AN ABSTRACT OF THE THESIS OF True Gibson for the degree of Honors Baccalaureate of Science in Biochemistry and Biophysics presented on May 25, 2018. Title: A Bayesian Treatise on The Replication Crisis in Science. Abstract approved: __________________________________________________ Jonathan Kaplan Abstract Over the past decade, it has come to light that many published scientific findings cannot be reproduced. This has led to the replication crisis in science. Many researchers feel that they can no longer trust much of what they read in scientific journals, and the public is becoming ever more dubious of published research findings. I argue herein that the replication crisis is a result of the mistaken belief that the methods of classical statistical inference provide a coherent objective basis for evaluating scientific hypotheses. To solve the replication crisis, I suggest that the scientific community ought to invoke a Bayesian framework of statistical inference which integrates both successful and failed replication attempts to determine the confidence they should have in any given scientific hypothesis. Key Words: Inductive Reasoning, Replication Crisis, Reproducibility, Statistical Inference, Bayesian Statistics Corresponding -
Researchers Overturn Landmark Study on the Replicability of Psychological Science
Researchers overturn landmark study on the replicability of psychological science By Peter Reuell Harvard Staff Writer Category: HarvardScience Subcategory: Culture & Society KEYWORDS: psychology, psychological science, replication, replicate, reproduce, reproducibility, Center for Open Science, Gilbert, Daniel Gilbert, King, Gary King, Science, Harvard, FAS, Faculty of Arts and Sciences, Reuell, Peter Reuell Summary: A 2015 study claiming that more than half of all psychology studies cannot be replicated turns out to be wrong. Harvard researchers have discovered that the study contains several statistical and methodological mistakes, and that when these are corrected, the study actually shows that the replication rate in psychology is quite high – indeed, it is statistically indistinguishable from 100%. RELATED LINKS: According to two Harvard professors and their collaborators, a 2015 landmark study showing that more than half of all psychology studies cannot be replicated is actually wrong. In an attempt to determine the replicability of psychological science, a consortium of 270 scientists known as The Open Science Collaboration (OSC) tried to replicate the results of 100 published studies. More than half of them failed, creating sensational headlines worldwide about the “replication crisis” in psychology. But an in-depth examination of the data by Daniel Gilbert (Edgar Pierce Professor of Psychology at Harvard University), Gary King (Albert J. Weatherhead III University Professor at Harvard University), Stephen Pettigrew (doctoral student in the Department of Government at Harvard University), and Timothy Wilson (Sherrell J. Aston Professor of Psychology at the University of Virginia) has revealed that the OSC made some serious mistakes that make this pessimistic conclusion completely unwarranted: The methods of many of the replication studies turn out to be remarkably different from the originals and, according to Gilbert, King, Pettigrew, and Wilson, these “infidelities” had two important consequences.