Ephemeroptera: Heptageniidae)

Total Page:16

File Type:pdf, Size:1020Kb

Ephemeroptera: Heptageniidae) Oriental Insects ISSN: 0030-5316 (Print) 2157-8745 (Online) Journal homepage: http://www.tandfonline.com/loi/toin20 The last two moulting processes of Parafronurus youi and possible emergence evolution of Mayflies (Ephemeroptera: Heptageniidae) Juan-Yan Luo, Ze Hu, Zhen-Xing Ma & Chang-Fa Zhou To cite this article: Juan-Yan Luo, Ze Hu, Zhen-Xing Ma & Chang-Fa Zhou (2017): The last two moulting processes of Parafronurus youi and possible emergence evolution of Mayflies (Ephemeroptera: Heptageniidae), Oriental Insects, DOI: 10.1080/00305316.2017.1415172 To link to this article: https://doi.org/10.1080/00305316.2017.1415172 Published online: 21 Dec 2017. Submit your article to this journal Article views: 2 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=toin20 ORIENTAL INSECTS, 2017 https://doi.org/10.1080/00305316.2017.1415172 The last two moulting processes of Parafronurus youi and possible emergence evolution of Mayflies (Ephemeroptera: Heptageniidae) Juan-Yan Luo , Ze Hu, Zhen-Xing Ma and Chang-Fa Zhou The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China ABSTRACT ARTICLE HISTORY Moulting processes of last instar nymph and subimago, Received 10 February 2017 longevity of subimago and imago of Parafronurus youi is Accepted 6 December 2017 observed and filmed in laboratory for the first time in China. KEYWORDS The videos show clearly this species emerges in the afternoon Mayfly; emergence; moult; (ca. 5:30 PM to 9:30 PM) on the object surface in water. The subimago; Heptageniidae subimagos moult 14–19 h later before noon. Imago can survive for 3 to 4 days in lab. The data in the present paper and others as well as phylogeny do not provide clear evolutionary pattern of mayfly emergence location or time but a possibility maybe present: both the primitive mayfly nymph and adult can live and emerge on moist land, then adapt to aquatic habitats. Introduction Mayflies are unique winged insects because of their two adult instars (subimago and imago). However, the ecdysis of aquatic mayfly nymphs are difficult to observe in the field and their subimaginal stage is very brief. So there are few detailed reports on metamorphic pattern of mayflies although some researchers sum- marised this process. Kimmins (1941) reported the Heptagenia lateralis nymph (now in the genus Electrogena) can emerge underwater or on the surface of water. Minshall (1967) and Hall et al. (1975) observed, respectively, the Epeorus pleralis and Tricorythodes atratus can moult in water too. Peters and Peters (1977) show the species Dolania americana life history. Russev (1987) took some pictures about moulting behaviour and process of Palingenia longicauda. The latter two species emerge on the water surface. Generally, Edmunds and McCafferty (1988) pro- posed some mayflies (like Isonychia and Coloburiscus) can emerge on the surface of water or on the land but most mayflies emerged at surface of the water, such as CONTACT Chang-Fa Zhou [email protected] © 2017 Informa UK Limited, trading as Taylor & Francis Group Published online 21 Dec 2017 .J.-Y. LUO ET AL 2 some species of Baetidae and Ephemerellidae. Brittain (1982) and Bauernfeind and Soldán (2012) indicated mayflies can emerge at surface of water, under water or above water. For instance, Siphlonurus, Isonychia and Baetisca mayflies will climb out of water to moult. But the evolutionary trends of them have not been hypothesised so far. According to Kukalová-Peck (1978, 1991), the original mayflies probably lived in the moist environment and then became aquatic. That means living in the water of mayfly larvae is secondary. So in our own opinion, if more species emergence processes are detailed, they can help us solve some phylogenetic and evolutionary puzzles of Ephemeroptera. In China, only few mayfly species biology was mentioned and discussed briefly (Zhou and Peters 2003, 2004; Wang et al. 2011), but no specific research on this issue. In 2015, the Parafronurus youi Zhou and Braasch (2003) were reared, observed and recorded in lab. Therefore, the biology of this species, such as emer- gence of nymph, moulting of subimago, longevities of subimago and imago are clear to us and described here. Their possible phylogeny and evolutionary value are discussed. Methods Mayfly rearing (Fig. 1) Nymphs are collected with a hand net (40 um) or a hand nylon mesh (35 um) in the ponds and creeks of Zijin Mountain, Nanjing, Eastern China. Mature nymphs (with black wingpads) were taken back to laboratory and reared in the white plastic trays (size 40 × 25 × 8 cm) which were filled with stones (some parts above water), withered leaves and water gathered in the creek where the insects live. The rearing water depth is about 5 cm under the temperature 18–25 °C. Those trays were covered with mosquito nets to catch the adults (Fig. 1). Video taking In order to observe and see clearly the moulting process, we took videos with smartphones. When we find mature nymphs show some abnormal behaviour like moving fast and irregularly, we focus on them and record. The videos will replay on laptop and key information will be written down. Totally 22 emergence videos of nymphs and 3 moulting episodes of subimagos are filmed. They show exactly the last two moulting process of the mayfly P. y oui and some information of its life history. ORIENTAL INSECTS 3 Figure 1. The rearing equipment. Results Moulting of the nymph (Fig. 2A–C) The last instar nymphs of Parafronurus youi moult at about 5:30 PM to 9:30 PM (Beijing time). Just before that, the nymphs will climb to or grasp the stone surface in the water (Fig. 2A). This phenomenon can happen several times. At the same time, the colour of ongoing moulting nymphs becomes conspicuously darker and the vibrations of gills are quicker than normal. Before moulting, the gas bubbles can be seen in head, thorax and wingpads first. This process lasts several minutes. During this period, they will move forth and back if they are touched by other larvae or be shaken. Also in this process, the nymphs can climb to stone tips above the water one to several times, expose their dorsal head or half body into the air 1–2 s and move back down to the water. Just before the emergence, three caudal filaments of nymphs will put together quickly. After the gas bubbles appeared in the body about 6 min, pro- and mesonotum will split in the middle, and then extend to vertex. Soon the head and thorax of subimago come out of nymphal exuviae and pull forward slowly, and then legs, wings, abdomen and caudal fila- ments appeared progressively. This emergence process can last 11s–126s (Table 1). During this process, the packed wings show silver white appearances. After they take off their exuviae, the subimagos will move to the water surface immediately. As soon as they touch the air, the wings of them stretched out fully and became brown to black immediately. .J.-Y. LUO ET AL 4 Figure 2 A–H. Different stages of Parafronurus youi; A, nymph; B–C, nymph moulting to subimago; D, female subimago; E–G, moulting subimago; H, male imago. Longevity of the subimago Under laboratory conditions (20–25 °C), the observed living time of three subima- gos (Fig. 2D) (from coming out of nymphal skin to next moult) is about 14–19 h. Moulting of the subimago (Fig. 2E–G) Before subimagos begin to moult, their vertically positioning wings will flap down and hold laterally step by step. When wings are at horizontal position, they bend backwards slightly. The whole body, meanwhile, is shaking quickly. Then the head and thorax of imago come out from their shells and move forward slowly or roll over to pull abdomen and caudal filaments out of cuticle. The average lasting time ORIENTAL INSECTS 5 Table 1. The moulting time of the Parafronurus youi nymph. Video The start time of moulting The time of metamorphosis 1 19:22:57 112s 2 21:12:26 11s 3 19:33:25 119s 4 17:47:11 111s 5 18:05:58 126s 6 18:01:12 95s 7 18:39:41 88s 8 18:47:21 94s 9 18:59:09 81s 10 19:01:01 87s 11 19:16:08 98s 12 19:24:21 86s 13 19:40:31 107s 14 18:37:14 110s 15 18:57:31 93s 16 19:10:23 108s 17 19:17:51 113s 18 18:07:32 111s 19 18:20:11 121s 20 19:19:41 109s 21 20:32:20 99s of this moulting is 233 s. The time of subimaginal moulting is from about 10:00 to 12:00 AM (Beijing Time) (Table 2). Longevity of the imago The imagos (Fig. 2H) in mosquito net can live 3–4 days under laboratory condi- tions. Mating, swarming and oviposition were not seen. Discussion In order to compare the emergence patterns of mayflies, we list the related infor- mation in the literatures we can find (Table 3). From it, besides most mayflies emerge at the water surface, no other obvious and congruent evolutionary trend can be summarised generally, either the emergence location or time. For exam- ple, the heptageniid and leptophlebiid nymphs have three moulting types: at the surface of water, under water or above water. The ephemerellid and leptohyphid species have two types. Furthermore, the species in same genus can have more than one moulting type, like Ecdyonurus, Habroleptoides and Neoephemera. Even Table 2. The moulting time of the Parafronurus youi subimago. The time of the The start time of The preparation The time of meta- whole moulting Video moulting time of moulting morphosis process A 10:15:28 81s 203s 284s B 11:30:57 – 153s 153s C 11:47:15 81s 180s 261s Average time 81s ≈179s ≈233s 6 Table 3.
Recommended publications
  • A New Species of Behningia Lestage, 1929 (Ephemerotera: Behningiidae) from China
    Zootaxa 4671 (3): 420–426 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4671.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:EED176F4-BDA3-4053-A36C-8A76D3C4C186 A new species of Behningia Lestage, 1929 (Ephemerotera: Behningiidae) from China XIONGDONG ZHOU1, MIKE BISSET2, MENGZHEN XU3,5 & ZHAOYIN WANG4 1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 2Department of Physics, Tsinghua University, Beiing, China. E-mail: [email protected] 3State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 4State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 5Corresponding author Abstract A new species of sand-burrowing mayfly (Ephemeroptera: Behningiidae), Behningia nujiangensis Zhou & Bisset, is described based on more than 50 nymphs collected from the Nujiang River in Yunnan Province, P.R. China. This is the first species of the family Behningiidae discovered in China. It is also the second species of genus Behningia, and the third species of the family Behningiidae collected from the Oriental biogeographic region. The shapes of the labrum and the labium in B. nujiangensis are markedly different from those found in other species of Behningia. Differences in the mandibles, the galea-lacina of maxillae, and both the prothoracic and metathoracic legs differentiate B. nujiangensis from both B. baei and B. ulmeri. The biology of and conservation challenges for B. nujiangensis are also briefly discussed.
    [Show full text]
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena Fiorii Grandi, 1953 and R
    Aquatic Insects, Vol. 5 (1983), No. 2, pp. 69-76. Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena fiorii Grandi, 1953 and R. adrianae sp. n. by Carlo BELFIORE (Roma) ABSTRACT Rhithrogena adrianae, a new species related to R. diaphana Nav., is described from nymphs and male imagines collected in Central Italy. Taxonomic characters of nymphs and males of R. fiorii Grandi, whose nymphal stage was previously unknown, are also described and figured. Lectotype is designated for R. fiorii. The taxonomic status of Rhithrogena fiorii Grandi, 1953, described from winged stages only, was till now very uncertain. The type locality, near Bologna, is now altered by buildings and factories: R. fiorii has probably disappeared from that site. I have examined in Grandi's collection the specimens referred by her to R. fiorii, labelled: "Bologna, S. Luca, 16.III.1952 (l >, l < subim.), 20.III.1954 (l <, l > subim, l < subim.), 20.11.1955 (1 > subim.), 17.III.1955 (l <), .IV. 1955 (l >).I designate lectotype the male imago collected on 16.III. 1952. None of the spe- cimens is in a good state of preservation. Titillators are not truncate (Grandi, 1960: fig. 21,6 and pag. 91), but with few pointed lobes at the apex. During the first months of 1980 and 1981, in the river Mignone, near Rome, I collected and reared a hundred nymphs of Rhithrogena, from which I obtained some subimagines and two male imagines, easily referable to R. fiorii. I describe herein the taxonomic features of nymphs and males of this species. I also describe the male imago and nymph of a new species of Rhithrogena which lives in the same localities as R.
    [Show full text]
  • Environmental Factors Affecting Mayfly Assemblages in Tufa-Depositing
    Knowl. Manag. Aquat. Ecosyst. 2017, 418, 14 Knowledge & © M. Vilenica et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017005 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst Marina Vilenica1,*, Vlatka Mičetić Stanković2, Michel Sartori3, Mladen Kučinić4 and Zlatko Mihaljević4 1 University of Zagreb, Faculty of Teacher Education, Trg Matice hrvatske 12, 44250 Petrinja, Croatia 2 Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia 3 Museum of Zoology, Place de la Riponne 6, 1005 Lausanne, Switzerland 4 University of Zagreb, Faculty of Science, Rooseveltov trg 6, 10000 Zagreb, Croatia Abstract – Remarkably, unlike other parts of Europe, the ecology of mayflies in the southeastern regions is still poorly known. Here we present the first comprehensive study of Ephemeroptera in the tufa-depositing habitats of the Dinaric Karst. The study was conducted in Plitvice Lakes National Park monthly during a one-year period (2007–2008) in different types of habitats (springs, streams, mountainous rivers, tufa barriers). The aims of the study were to determine mayfly composition, abundance, spatial distribution and habitat preferences, and to examine the environmental factors important for the structuring of mayfly assemblages in Plitvice Lakes National Park. The mayfly fauna of tufa-depositing habitats was composed of 14 species (20 taxa). Water temperature, pH and ammonium concentration were the most important environmental variables explaining mayfly assemblages. Mayfly assemblages grouped according to habitat type. Generally, the most favourable habitat type was mountainous stream, tufa barriers were less favourable, and the least favourable were springs.
    [Show full text]
  • Ecological Considerations on the Presence and Distribution of The
    GENUS EPEORUS EATON IN THE DISTRICT OF CUNEO 373 Ecological considerations on the Introduction presence and distribution of the The nymphs of the family Heptageniidae are genus Epeorus EATON in the district typically wide and depressed, with prognathous of Cuneo (NW Italy) (Epheme- mouthparts and trophic roles ecologically belonging to the functional feeding group of roptera: Heptageniidae) scrapers and collector-gatherers (Mc Shaffrey, 1988; Elliott et al., 1988). Heptageniidae generally present a low ANGELO MORISI tolerance to environmental alterations (Russev, 1979; Buffagni, 1997), and they assume therefore MAURIZIO BATTEGAZZORE a great importance as indicators of the A.R.P.A- Piemonte, C.so Massimo D’Azeglio 4, environmental quality in many biomonitoring I-12100 Cuneo methods such as Family Biotic Index (F.B.I. - Hilsenhoff, 1988). The genus Epeorus EATON, STEFANO FENOGLIO 1881 is a typical representative of the family, with Di.S.T.A., University of Eastern Piedmont, C.so lithophilous nymphs, adapted to the life in the Borsalino 54, I-15100 Alessandria oxygenated and fast flowing waters of erosional [email protected] lotic environments (Minshall, 1967); they play an important role as primary consumers in fast-water habitats, like riffles and cascades (Wellnitz et al., 2001). This taxon is represented in Europe by five species (Zurwerra et al., 1986): E. zajtzevi (THSERNOVA, 1981), E. torrentium EATON, 1881, E. alpicola (EATON, 1871), E. sylvicola (PICTET, 1865) and E. yougoslavicus (ŠAMAL, 1935). Of these species, only the last three are reported for the Italian fauna: the first one is characteristic of Northern Italy, the second one is widespread in the whole peninsula and also in the isles, while the last one is only reported for the central and southern regions, Sicily included (Belfiore, 1988, 1994).
    [Show full text]
  • The Mayfly Newsletter: Vol
    Volume 20 | Issue 2 Article 1 1-9-2018 The aM yfly Newsletter Donna J. Giberson The Permanent Committee of the International Conferences on Ephemeroptera, [email protected] Follow this and additional works at: https://dc.swosu.edu/mayfly Part of the Biology Commons, Entomology Commons, Systems Biology Commons, and the Zoology Commons Recommended Citation Giberson, Donna J. (2018) "The aM yfly eN wsletter," The Mayfly Newsletter: Vol. 20 : Iss. 2 , Article 1. Available at: https://dc.swosu.edu/mayfly/vol20/iss2/1 This Article is brought to you for free and open access by the Newsletters at SWOSU Digital Commons. It has been accepted for inclusion in The Mayfly eN wsletter by an authorized editor of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. The Mayfly Newsletter Vol. 20(2) Winter 2017 The Mayfly Newsletter is the official newsletter of the Permanent Committee of the International Conferences on Ephemeroptera In this issue Project Updates: Development of new phylo- Project Updates genetic markers..................1 A new study of Ephemeroptera Development of new phylogenetic markers to uncover island in North West Algeria...........3 colonization histories by mayflies Sereina Rutschmann1, Harald Detering1 & Michael T. Monaghan2,3 Quest for a western mayfly to culture...............................4 1Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain 2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany 3 Joint International Conf. Berlin Center for Genomics in Biodiversity Research, Berlin, Germany Items for the silent auction at Email: [email protected]; [email protected]; [email protected] the Aracruz meeting (to sup- port the scholarship fund).....6 The diversification of evolutionary young species (<20 million years) is often poorly under- stood because standard molecular markers may not accurately reconstruct their evolutionary How to donate to the histories.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Life History and Production of Mayflies, Stoneflies, and Caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a Spring-Fe
    Color profile: Generic CMYK printer profile Composite Default screen 1083 Life history and production of mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a spring-fed stream in Prince Edward Island, Canada: evidence for population asynchrony in spring habitats? Michelle Dobrin and Donna J. Giberson Abstract: We examined the life history and production of the Ephemeroptera, Plecoptera, and Trichoptera (EPT) commu- nity along a 500-m stretch of a hydrologically stable cold springbrook in Prince Edward Island during 1997 and 1998. Six mayfly species (Ephemeroptera), 6 stonefly species (Plecoptera), and 11 caddisfly species (Trichoptera) were collected from benthic and emergence samples from five sites in Balsam Hollow Brook. Eleven species were abundant enough for life-history and production analysis: Baetis tricaudatus, Cinygmula subaequalis, Epeorus (Iron) fragilis,andEpeorus (Iron) pleuralis (Ephemeroptera), Paracapnia angulata, Sweltsa naica, Leuctra ferruginea, Amphinemura nigritta,and Nemoura trispinosa (Plecoptera), and Parapsyche apicalis and Rhyacophila brunnea (Trichoptera). Life-cycle timing of EPT taxa in Balsam Hollow Brook was generally similar to other literature reports, but several species showed extended emergence periods when compared with other studies, suggesting a reduction in synchronization of life-cycle timing, pos- sibly as a result of the thermal patterns in the stream. Total EPT secondary production (June 1997 to May 1998) was 2.74–2.80 g·m–2·year–1 dry mass (size-frequency method). Mayflies were dominant, with a production rate of 2.2 g·m–2·year–1 dry mass, followed by caddisflies at 0.41 g·m–2·year–1 dry mass, and stoneflies at 0.19 g·m–2·year–1 dry mass.
    [Show full text]
  • The Life History, Nymphal Growth Rates, and Feeding Habits of Siphlonisca Aerodromia Needham (Epherneroptera: Siphlonuridae) in ~Aine'
    The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in ~aine' K. ELIZABETHGIBBS AND TERRYM. MINGO Department of Entomology, University of Maine, Orono, ME, U. S. A. 04469 Received March 25. 1985 GIBBS,K. E., and T. M. MINGO.1986. The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in Maine. Can. J. Zool. 64: 427-430. Siphlonisca aerodromia Needham has a univoltine life history in Maine. Adults emerge in late May or early June. Each female contains about 394 large (0.46 mm long) eggs covered with coiled fibers that anchor the eggs to the substrate. Eggs are deposited in the main channel of the stream and small nymphs appear in January. Nymphal growth rate (GHW)was expressed as a percent per day increase in head width. Initially nymphs feed on detritus and grow slowly (GHW= 0.28-0.79) at water temperatures near 0°C. Following snow melt, the nymphs move into the adjacent Carex floodplain. Here, water temperature increases, animal material, in the form of mayfly nymphs, becomes increasingly common in the diet, and growth rate increases (GHW = 2.13-2.89). The sex ratio of nymphs collected in May and June was 1: 1.8 (ma1e:female). GIBBS,K. E., et T. M. MINGO. 1986. The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in Maine. Can. J. Zool. 64: 427-430. Dans le Maine, le cycle de Siphlonisca aerodromia Needham est univoltin. L'emergence des adultes se produit a la fin de mai ou au debut de juin.
    [Show full text]
  • TB142: Mayflies of Maine: an Annotated Faunal List
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow­ ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro­ vided support and advice throughout the project and we especially appreci­ ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida.
    [Show full text]
  • SOP #: MDNR-WQMS-209 EFFECTIVE DATE: May 31, 2005
    MISSOURI DEPARTMENT OF NATURAL RESOURCES AIR AND LAND PROTECTION DIVISION ENVIRONMENTAL SERVICES PROGRAM Standard Operating Procedures SOP #: MDNR-WQMS-209 EFFECTIVE DATE: May 31, 2005 SOP TITLE: Taxonomic Levels for Macroinvertebrate Identifications WRITTEN BY: Randy Sarver, WQMS, ESP APPROVED BY: Earl Pabst, Director, ESP SUMMARY OF REVISIONS: Changes to reflect new taxa and current taxonomy APPLICABILITY: Applies to Water Quality Monitoring Section personnel who perform community level surveys of aquatic macroinvertebrates in wadeable streams of Missouri . DISTRIBUTION: MoDNR Intranet ESP SOP Coordinator RECERTIFICATION RECORD: Date Reviewed Initials Page 1 of 30 MDNR-WQMS-209 Effective Date: 05/31/05 Page 2 of 30 1.0 GENERAL OVERVIEW 1.1 This Standard Operating Procedure (SOP) is designed to be used as a reference by biologists who analyze aquatic macroinvertebrate samples from Missouri. Its purpose is to establish consistent levels of taxonomic resolution among agency, academic and other biologists. The information in this SOP has been established by researching current taxonomic literature. It should assist an experienced aquatic biologist to identify organisms from aquatic surveys to a consistent and reliable level. The criteria used to set the level of taxonomy beyond the genus level are the systematic treatment of the genus by a professional taxonomist and the availability of a published key. 1.2 The consistency in macroinvertebrate identification allowed by this document is important regardless of whether one person is conducting an aquatic survey over a period of time or multiple investigators wish to compare results. It is especially important to provide guidance on the level of taxonomic identification when calculating metrics that depend upon the number of taxa.
    [Show full text]