Prpl Hypervisor Overview Michael Hohmuth Kernkonzept MICROKERNEL MADE in GERMANY 2 About Kernkonzept

Total Page:16

File Type:pdf, Size:1020Kb

Prpl Hypervisor Overview Michael Hohmuth Kernkonzept MICROKERNEL MADE in GERMANY 2 About Kernkonzept www.kernkonzept.com prpl Hypervisor Overview Michael Hohmuth Kernkonzept MICROKERNEL MADE IN GERMANY www.kernkonzept.com 2 About Kernkonzept Develops‌ and supports the L4Re system L4Re‌ Microkernel / Microhypervisor (AKA L4/Fiasco.OC) L4Re‌ Runtime Environment L4Linux‌ L4Android‌ ‌ Based‌ in Dresden, Germany ‌ ‌ MICROKERNEL MADE IN GERMANY www.kernkonzept.com 3 Outline Virtualization‌ Virtual‌ Machine – Hypervisor – Virtual Machine Monitor Paravirtualization‌ Microkernel‌ – Microhypervisor Tradeoffs‌ Security‌ – Trust – Certification MICROKERNEL MADE IN GERMANY www.kernkonzept.com 4 Virtualization Create‌ a virtual resource Protect‌ / multiplex the actual resource Virtual‌ memory Virtual‌ I/O Virtual‌ machine (VM) ● Virtual computer ● (Sometimes: abstract machine, e. g. Java VM) …‌ while keeping the programming model intact “‌ As if using the actual resource” MICROKERNEL MADE IN GERMANY www.kernkonzept.com 5 Virtual Machine Virtual‌ environment for running systems meant for actual machines Implemented‌ using system software on the actual system, the “host”: Hypervisor‌ ● Implements “world switch” ● Virtual CPU: Rich execution model (privileged and user modes) ● Benefits from hardware acceleration: AMD-V, VT-x, VZ Virtual‌ Machine Monitor ● Virtualizes/emulates platform/devices MICROKERNEL MADE IN GERMANY www.kernkonzept.com 6 Type 1 hypervisors Self-hosted‌ (“bare metal”) hypervisor Sometimes,‌ VMM runs in a VM VMM ‌ Example‌ systems: File File File Driver Net Driver Net Driver Net sys sys sys ● Hyper-V pass virt guest virt virt guest virt virt guest ● Xen thru CPU mem dev CPU mem dev CPU mem ● VMware ESX ● L4Re Microkernel Hypervisor Device CPU 0MICROKERNELCPU 1 MADEPhys. IN Memory GERMANY www.kernkonzept.com 7 Type 2 hypervisors Hosted‌ on conventional host OS VMM‌ runs in a host application ‌ File File Driver Net Driver Net sys sys Example‌ systems: virt virt guest virt virt guest VMM dev CPU mem dev CPU mem ● Linux KVM ● VMware Host OS Kernel Workstation Driver Filesys Net ● VirtualBox Device CPU 0MICROKERNELCPU 1 MADEPhys. IN Memory GERMANY www.kernkonzept.com 8 Paravirtualization Relaxes‌ requirement to keep programming model intact Software‌ API instead of faithful hardware emulation ● Simpler ● Faster ● No need for hardware acceleration For‌ entire guest system No need to emulate privileged CPU modes Or‌ just for devices Virtual‌ network, block devices, clocks, … Downside:‌ Need to change guest OSes MICROKERNEL MADE IN GERMANY www.kernkonzept.com 9 Microkernel Run OS components as Paravirt. system untrusted user-mode Secure app app app applications app Reduces trusted computing base for Real-time app trusted apps Blends well with Linux server File paravirtualization Native app Driver Net sys virt virt guest Example systems: Driver Filesys Net dev CPU mem ● L4Re microkernel ● PikeOS Microkernel ● seL4 microkernel Device CPU 0MICROKERNELCPU 1 MADEPhys. IN Memory GERMANY www.kernkonzept.com 10 Microhypervisor Run‌ VMM as untrusted user-mode applications Secure app Can‌ even have one VMM Real-time app per guest ‌ VMM ‌ Example systems: File File Driver Net Driver Net Net sys sys ● L4Re virt guest virt guest Microkernel Driver virt virt Filesys dev CPU mem dev CPU mem ● Nova microhypervisor Microhypervisor Device CPU 0MICROKERNELCPU 1 MADEPhys. IN Memory GERMANY www.kernkonzept.com 11 Security – Trust – Certification Complexity‌ defeats security Fight‌ complexity: Remove‌ untrusted systems from the TCB (VMs) Minimize‌ your application's TCB ● Remove dependencies to unneeded components ● Isolate noncritical functions into secure compartments Minimal‌ TCBs are amenable to certification / verification MICROKERNEL MADE IN GERMANY www.kernkonzept.com 12 Thank you! www.kernkonzept.com MICROKERNEL MADE IN GERMANY.
Recommended publications
  • Real-Time, Safe and Certified OS
    Real-Time, Safe and Certified OS Roman Kapl <[email protected]> drivers, customer projects, development Tomas Martinec <[email protected]> testing and certification © SYSGO AG · INTERNAL 1 Introduction • PikeOS – real-time, safety certified OS • Desktop and Server vs. • Embedded • Real-Time • Safety-Critical • Certified • Differences • Scheduling • Resource management • Features • Development © SYSGO AG · INTERNAL 2 Certification • Testing • Analysis • Lot of time • Even more paper • Required for safety-critical systems • Trains • Airplanes © SYSGO AG · INTERNAL 3 PikeOS • Embedded, real-time, certified OS • ~150 people (not just engineers) • Rail • Avionics • Space • This presentation is not about PikeOS specifically © SYSGO AG · INTERNAL 4 PikeOS technical • Microkernel • Inspired by L4 • Memory protection (MMU) • More complex than FreeRTOS • Virtualization hypervisor • X86, ARM, SPARC, PowerPC • Eclipse IDE for development © SYSGO AG · INTERNAL 5 Personalities • General • POSIX • Linux • Domain specific • ARINC653 • PikeOS native • Other • Ada, RT JAVA, AUTOSAR, ITRON, RTEMS © SYSGO AG · INTERNAL 6 PikeOS Architecture App. App. App. App. App. App. Volume Syste m Provider Partition PikeOS Para-Virtualized HW Virtualized File System (Native, POSIX, Guest OS PikeOS Native ARINC653, ...) Guest OS Linux, Android Linux, Android Device Driver User Space / Partitions Syste m PikeOS System Software ExtensionSyste m Extension PikeOS Microkernel Kernel Space / Hypervisor Architecture Platform Kernel Level Support Package Support Package Driver SoC /
    [Show full text]
  • Effective Virtual CPU Configuration with QEMU and Libvirt
    Effective Virtual CPU Configuration with QEMU and libvirt Kashyap Chamarthy <[email protected]> Open Source Summit Edinburgh, 2018 1 / 38 Timeline of recent CPU flaws, 2018 (a) Jan 03 • Spectre v1: Bounds Check Bypass Jan 03 • Spectre v2: Branch Target Injection Jan 03 • Meltdown: Rogue Data Cache Load May 21 • Spectre-NG: Speculative Store Bypass Jun 21 • TLBleed: Side-channel attack over shared TLBs 2 / 38 Timeline of recent CPU flaws, 2018 (b) Jun 29 • NetSpectre: Side-channel attack over local network Jul 10 • Spectre-NG: Bounds Check Bypass Store Aug 14 • L1TF: "L1 Terminal Fault" ... • ? 3 / 38 Related talks in the ‘References’ section Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications What this talk is not about 4 / 38 Related talks in the ‘References’ section What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications 4 / 38 What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications Related talks in the ‘References’ section 4 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP QEMU QEMU VM1 VM2 Custom Disk1 Disk2 Appliance ioctl() KVM-based virtualization components Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP Custom Appliance KVM-based virtualization components QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) Custom Appliance KVM-based virtualization components libvirtd QMP QMP QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 libguestfs (guestfish) Custom Appliance KVM-based virtualization components OpenStack, et al.
    [Show full text]
  • Interrupts and Exceptions CPU Modes and Address Spaces Dual-Mode Of
    CPU Modes and Address Spaces There are two processor (CPU) modes of operation: • Kernel (Supervisor) Mode and • User Mode The processor is in Kernel Mode when CPU mode bit in Status Interrupts and Exceptions register is set to zero. The processor enters Kernel Mode at power-up, or as result of an interrupt, exception, or error. The processor leaves Kernel Mode and enters User Mode when the CPU mode bit is set to one (by some instruction). Memory address space is divided in two ranges (simplified): • User address space – addresses in the range [0 – 7FFFFFFF16] Studying Assignment: A.7 • Kernel address space Reading Assignment: 3.1-3.2, A.10 – addresses in the range [8000000016 – FFFFFFFF16] g. babic Presentation B 28 g. babic 29 Dual-Mode of CPU Operation MIPS Privilege Instructions • CPU mode bit indicates the current CPU mode: 0 (=kernel) With CPU in User Mode, the program in execution has access or 1 (=user). only to the CPU and FPU registers, while when CPU operates • When an interrupt occurs, CPU hardware switches to the in Kernel Mode, the program has access to the full capabilities kernel mode. of processor including CP0 registers. • Switching to user mode (from kernel mode) done by setting CPU mode bit (by an instruction). Privileged instructions can not be executed when the Exception/Interrupt processor is in User mode, they can be executed only when the processor is in Kernel mode. kernel user Examples of MIPS privileged instructions: Set user mode • any instruction that accesses Kernel address space • all instructions that access any of CP0 registers, e.g.
    [Show full text]
  • Sistemi Operativi Real-Time Marco Cesati Lezione R13 Sistemi Operativi Real-Time – II Schema Della Lezione
    Sistemi operativi real-time Marco Cesati Lezione R13 Sistemi operativi real-time – II Schema della lezione Caratteristiche comuni VxWorks LynxOS Sistemi embedded e real-time QNX eCos Windows Linux come RTOS 15 gennaio 2013 Marco Cesati Dipartimento di Ingegneria Civile e Ingegneria Informatica Università degli Studi di Roma Tor Vergata SERT’13 R13.1 Sistemi operativi Di cosa parliamo in questa lezione? real-time Marco Cesati In questa lezione descriviamo brevemente alcuni dei più diffusi sistemi operativi real-time Schema della lezione Caratteristiche comuni VxWorks LynxOS 1 Caratteristiche comuni degli RTOS QNX 2 VxWorks eCos 3 LynxOS Windows Linux come RTOS 4 QNX Neutrino 5 eCos 6 Windows Embedded CE 7 Linux come RTOS SERT’13 R13.2 Sistemi operativi Caratteristiche comuni dei principali RTOS real-time Marco Cesati Corrispondenza agli standard: generalmente le API sono proprietarie, ma gli RTOS offrono anche compatibilità (compliancy) o conformità (conformancy) allo standard Real-Time POSIX Modularità e Scalabilità: il kernel ha una dimensione Schema della lezione Caratteristiche comuni (footprint) ridotta e le sue funzionalità sono configurabili VxWorks Dimensione del codice: spesso basati su microkernel LynxOS QNX Velocità e Efficienza: basso overhead per cambi di eCos contesto, latenza delle interruzioni e primitive di Windows sincronizzazione Linux come RTOS Porzioni di codice non interrompibile: generalmente molto corte e di durata predicibile Gestione delle interruzioni “separata”: interrupt handler corto e predicibile, ISR lunga
    [Show full text]
  • Understanding Full Virtualization, Paravirtualization, and Hardware Assist
    VMware Understanding Full Virtualization, Paravirtualization, and Hardware Assist Contents Introduction .................................................................................................................1 Overview of x86 Virtualization..................................................................................2 CPU Virtualization .......................................................................................................3 The Challenges of x86 Hardware Virtualization ...........................................................................................................3 Technique 1 - Full Virtualization using Binary Translation......................................................................................4 Technique 2 - OS Assisted Virtualization or Paravirtualization.............................................................................5 Technique 3 - Hardware Assisted Virtualization ..........................................................................................................6 Memory Virtualization................................................................................................6 Device and I/O Virtualization.....................................................................................7 Summarizing the Current State of x86 Virtualization Techniques......................8 Full Virtualization with Binary Translation is the Most Established Technology Today..........................8 Hardware Assist is the Future of Virtualization, but the Real Gains Have
    [Show full text]
  • Performance Study of Real-Time Operating Systems for Internet Of
    IET Software Research Article ISSN 1751-8806 Performance study of real-time operating Received on 11th April 2017 Revised 13th December 2017 systems for internet of things devices Accepted on 13th January 2018 E-First on 16th February 2018 doi: 10.1049/iet-sen.2017.0048 www.ietdl.org Rafael Raymundo Belleza1 , Edison Pignaton de Freitas1 1Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CP 15064, Porto Alegre CEP: 91501-970, Brazil E-mail: [email protected] Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software developers who build applications on top of these devices. Many applications in this domain have severe non-functional requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some of the key points in the software development for IoT in these constrained devices, like task synchronisation and network communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner, as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them according to their performance evaluation in the obtained results.
    [Show full text]
  • Introduction to Virtualization
    z Systems Introduction to Virtualization SHARE Orlando Linux and VM Program Romney White, IBM [email protected] z Systems Architecture and Technology © 2015 IBM Corporation Agenda ° Introduction to Virtualization – Concept – Server Virtualization Approaches – Hypervisor Implementation Methods – Why Virtualization Matters ° Virtualization on z Systems – Logical Partitions – Virtual Machines 2 z Systems Virtualization Technology © 2015 IBM Corporation Virtualization Concept Virtual Resources Proxies for real resources: same interfaces/functions, different attributes May be part of a physical resource or multiple physical resources Virtualization Creates virtual resources and "maps" them to real resources Primarily accomplished with software or firmware Resources Components with architecturally-defined interfaces/functions May be centralized or distributed - usually physical Examples: memory, disk drives, networks, servers Separates presentation of resources to users from actual resources Aggregates pools of resources for allocation to users as virtual resources 3 z Systems Virtualization Technology © 2015 IBM Corporation Server Virtualization Approaches Hardware Partitioning Bare-metal Hypervisor Hosted Hypervisor Apps ... Apps Apps ... Apps Apps ... Apps OS OS OS OS OS OS Adjustable partitions Hypervisor Hypervisor Partition Controller Host OS SMP Server SMP Server SMP Server Server is subdivided into fractions Hypervisor provides fine-grained Hypervisor uses OS services to each of which can run an OS timesharing of all resources
    [Show full text]
  • Improving the Reliability of Commodity Operating Systems
    Improving the Reliability of Commodity Operating Systems MICHAEL M. SWIFT, BRIAN N. BERSHAD, and HENRY M. LEVY University of Washington Despite decades of research in extensible operating system technology, extensions such as device drivers remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of recently reported failures. This paper describes Nooks, a reliability subsystem that seeks to greatly enhance OS reliability by isolating the OS from driver failures. The Nooks approach is practical: rather than guaranteeing complete fault tolerance through a new (and incompatible) OS or driver architecture, our goal is to prevent the vast majority of driver-caused crashes with little or no change to existing driver and system code. Nooks isolates drivers within lightweight protection domains inside the kernel address space, where hardware and software prevent them from corrupting the kernel. Nooks also tracks a driver’s use of kernel resources to facilitate automatic clean-up during recovery. To prove the viability of our approach, we implemented Nooks in the Linux operating system and used it to fault-isolate several device drivers. Our results show that Nooks offers a substantial increase in the reliability of operating systems, catching and quickly recovering from many faults that would otherwise crash the system. Under a wide range and number of fault conditions, we show that Nooks recovers automatically from 99% of the faults that otherwise cause Linux to crash. While Nooks was designed for drivers, our techniques generalize to other kernel extensions. We demonstrate this by isolating a kernel-mode file system and an in-kernel Internet service.
    [Show full text]
  • KVM Based Virtualization and Remote Management Srinath Reddy Pasunuru St
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Information Assurance Department of Information Systems 5-2018 KVM Based Virtualization and Remote Management Srinath Reddy Pasunuru St. Cloud State University, [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds Recommended Citation Pasunuru, Srinath Reddy, "KVM Based Virtualization and Remote Management" (2018). Culminating Projects in Information Assurance. 53. https://repository.stcloudstate.edu/msia_etds/53 This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. 1 KVM Based Virtualization and Remote Management by Srinath Reddy Pasunuru A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree Master of Science in Information Assurance May, 2018 Starred Paper Committee Susantha Herath, Chairperson Ezzat Kirmani Sneh Kalia 2 Abstract In the recent past, cloud computing is the most significant shifts and Kernel Virtual Machine (KVM) is the most commonly deployed hypervisor which are used in the IaaS layer of the cloud computing systems. The Hypervisor is the one which provides the complete virtualization environment which will intend to virtualize as much as hardware and systems which will include the CPUs, Memory, network interfaces and so on. Because of the virtualization technologies such as the KVM and others such as ESXi, there has been a significant decrease in the usage if the resources and decrease in the costs involved.
    [Show full text]
  • Hypervisors Vs. Lightweight Virtualization: a Performance Comparison
    2015 IEEE International Conference on Cloud Engineering Hypervisors vs. Lightweight Virtualization: a Performance Comparison Roberto Morabito, Jimmy Kjällman, and Miika Komu Ericsson Research, NomadicLab Jorvas, Finland [email protected], [email protected], [email protected] Abstract — Virtualization of operating systems provides a container and alternative solutions. The idea is to quantify the common way to run different services in the cloud. Recently, the level of overhead introduced by these platforms and the lightweight virtualization technologies claim to offer superior existing gap compared to a non-virtualized environment. performance. In this paper, we present a detailed performance The remainder of this paper is structured as follows: in comparison of traditional hypervisor based virtualization and Section II, literature review and a brief description of all the new lightweight solutions. In our measurements, we use several technologies and platforms evaluated is provided. The benchmarks tools in order to understand the strengths, methodology used to realize our performance comparison is weaknesses, and anomalies introduced by these different platforms in terms of processing, storage, memory and network. introduced in Section III. The benchmark results are presented Our results show that containers achieve generally better in Section IV. Finally, some concluding remarks and future performance when compared with traditional virtual machines work are provided in Section V. and other recent solutions. Albeit containers offer clearly more dense deployment of virtual machines, the performance II. BACKGROUND AND RELATED WORK difference with other technologies is in many cases relatively small. In this section, we provide an overview of the different technologies included in the performance comparison.
    [Show full text]
  • Security Target Pikeos Separation Kernel V4.2.2
    Security Target PikeOS Separation Kernel v4.2.2 Document ID Revision DOORS Baseline Date State 00101-8000-ST 20.6 N.A. 2018-10-10 App Author: Dominic Eschweiler SYSGO AG Am Pfaffenstein 14, D-55270 Klein-Winternheim Notice: The contents of this document are proprietary to SYSGO AG and shall not be disclosed, disseminated, copied, or used except for purposes expressly authorized in writing by SYSGO AG. Doc. ID: 00101-8000-ST Revision: 20.6 This page intentionally left blank Copyright 2018 Page 2 of 47 All rights reserved. SYSGO AG Doc. ID: 00101-8000-ST Revision: 20.6 This page intentionally left blank Copyright 2018 Page 3 of 47 All rights reserved. SYSGO AG Doc. ID: 00101-8000-ST Revision: 20.6 Table of Contents 1 Introduction .................................................................................................................... 6 1.1 Purpose of this Document ........................................................................................... 6 1.2 Document References ................................................................................................ 6 1.2.1 Applicable Documents......................................................................................... 6 1.2.2 Referenced Documents ....................................................................................... 6 1.3 Abbreviations and Acronyms ....................................................................................... 6 1.4 Terms and Definitions................................................................................................
    [Show full text]
  • RTA-OSEK Binding Manual: TMS470/TI
    RTA-OSEK Binding Manual: TMS470/TI Contact Details ETAS Group www.etasgroup.com Germany USA ETAS GmbH ETAS Inc. Borsigstraße 14 3021 Miller Road 70469 Stuttgart Ann Arbor, MI 48103 Tel.:+49 (711) 8 96 61-102 Tel.: +1 (888) ETAS INC Fax:+49 (711) 8 96 61-106 Fax: +1 (734) 997-94 49 www.etas.de www.etasinc.com Japan France ETAS K.K. ETAS S.A.S. Queen's Tower C-17F, 1, place des États-Unis 2-3-5, Minatomirai, Nishi-ku, SILIC 307 Yokohama, Kanagawa 94588 Rungis Cedex 220-6217 Japan Tel.: +33 (1) 56 70 00 50 Tel.: +81 (45) 222-0900 Fax: +33 (1) 56 70 00 51 Fax: +81 (45) 222-0956 www.etas.fr www.etas.co.jp Korea Great Britain ETAS Korea Co. Ltd. ETAS UK Ltd. 4F, 705 Bldg. 70-5 Studio 3, Waterside Court Yangjae-dong, Seocho-gu Third Avenue, Centrum 100 Seoul 137-889, Korea Burton-upon-Trent Tel.: +82 (2) 57 47-016 Staffordshire DE14 2WQ Fax: +82 (2) 57 47-120 Tel.: +44 (0) 1283 - 54 65 12 www.etas.co.kr Fax: +44 (0) 1283 - 54 87 67 www.etas-uk.net Copyright Notice © 2001 - 2007 LiveDevices Ltd. All rights reserved. Version: M00088-001 No part of this document may be reproduced without the prior written consent of LiveDevices Ltd. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. Disclaimer The information in this document is subject to change without notice and does not represent a commitment on any part of LiveDevices.
    [Show full text]